Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 5;69(Pt 5):o633. doi: 10.1107/S1600536813007320

N-(2-Methyl-3-oxo-1,3-diphenyl­prop­yl)acetamide

Deli Yang a, Daxin Shi a, Qi Zhang a, Hongxin Chai a, Jiarong Li a,*
PMCID: PMC3647834  PMID: 23723800

Abstract

In the title compound, C18H19NO2, the dihedral angle between the benzene rings is 42.0 (1)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯π inter­actions.

Related literature  

For the biological properties of N-(2-methyl-3-oxo-1,3-diphenyl­prop­yl)acetamide derivatives, see: Barluenga et al. (1993); Casimir et al. (1995) and for their synthesis, see: Dakin & West (1928); Selvam & Perumal (2009); Heravi et al. (2009).graphic file with name e-69-0o633-scheme1.jpg

Experimental  

Crystal data  

  • C18H19NO2

  • M r = 281.34

  • Monoclinic, Inline graphic

  • a = 9.156 (5) Å

  • b = 17.668 (8) Å

  • c = 10.103 (5) Å

  • β = 107.914 (7)°

  • V = 1555.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.61 × 0.07 × 0.02 mm

Data collection  

  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.954, T max = 0.998

  • 12600 measured reflections

  • 3028 independent reflections

  • 2386 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.156

  • S = 1.00

  • 3028 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007320/lx2279sup1.cif

e-69-0o633-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007320/lx2279Isup2.hkl

e-69-0o633-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007320/lx2279Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.94 (3) 1.98 (3) 2.874 (3) 158 (2)
C1—H1⋯Cg1i 0.95 2.85 (1) 3.649 (3) 142 (1)
C16—H16ACg2ii 0.98 2.98 (1) 3.472 (3) 112 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Beijing Institute of Technology for the X-ray diffraction analysis.

supplementary crystallographic information

Comment

N–(2–methyl–3–oxo–1,3–diphenylpropyl)acetamide is a class of 2–acetamino carbonyl compounds which exhibit great importance of biological (Casimir et al., 1995) and pharmacological (Barluenga et al., 1993) properties. Here, we report the crystal structure of the title compound. In the title molecule (Fig. 1), the dihedral angle formed by the benzene rings is 42.0°, and the methyl and the acetamide groups have an anti–conformation. In the crystal structure (Fig. 2), molecules are connected by N—H···O and C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C10–C15 benzene ring and the C1–C6 benzene ring, respectively).

Experimental

A solution of benzaldehyde (2 mmol) and propiophenone (2 mmol) in the presence of acetyl chloride and TiCl4 was stirred in acetonitrile (5 ml) at room teperature for 3 h. The reaction mixture was poured to room temperature and then filtered to give the title compound. The product was recrystallizated from petrolum ether and ethyl acetate to give white crystalline powder. m.p. 439–441 K.

Refinement

C—H were included in the riding model approximation with C—H distances 0.95–1.00 Å, and with Uiso(H)=1.2Ueq(C) or 1.5Ueq(C)(methyl). Freely refined H atoms of NH group were located in difference Fourrier maps with N—H distances 0.94 Å with Uiso(H)=1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of N—H···O and C—H···π interactions. (dotted lines) in the crystal structure of the title compound. H atoms non–participating in hydrogen–bonding were omitted for clarity. [Symmetry codes: (i) x, - y + 3/2, z - 1/2; (ii) - x + 1, - y + 1, - z + 1; (iii) x, - y + 3/2, z + 1/2.]

Crystal data

C18H19NO2 F(000) = 600
Mr = 281.34 Dx = 1.202 Mg m3
Monoclinic, P21/c Melting point = 439–441 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.156 (5) Å Cell parameters from 3372 reflections
b = 17.668 (8) Å θ = 2.3–29.0°
c = 10.103 (5) Å µ = 0.08 mm1
β = 107.914 (7)° T = 153 K
V = 1555.0 (13) Å3 Prism, colorless
Z = 4 0.61 × 0.07 × 0.02 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 3028 independent reflections
Radiation source: Rotating Anode 2386 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 28.5714 pixels mm-1 θmax = 26.0°, θmin = 2.3°
phi and ω scans h = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −20→21
Tmin = 0.954, Tmax = 0.998 l = −12→12
12600 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0511P)2 + 1.630P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3028 reflections Δρmax = 0.22 e Å3
197 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (2)

Special details

Experimental. Spectral data: IR (KBr): 3297, 3061, 2980, 1683, 1651, 1544, 1448, 1370, 1208, 1140, 970, 707, 615 cm-1; 1H–NMR(DMSO,p.p.m.):1.13 (3H, d, J = 6.8 Hz C1H3), 1.85 (3H, s, C1O1C1H3), 4.00–4.14 (1H, m, C1H1), 5.26 (1H, t, J = 11.6 Hz, C1H1), 7.12 (1H, t, J = 6.8 Hz, Benzene-H), 7.22 (2H, t, J = 8.0 Hz, Benzene-H), 7.29 (2H, d, J = 7.6 Hz, Benzene-H), 7.47 (2H, t, J = 8.0 Hz, Benzene-H), 7.58 (1H, t, J = 6.8 Hz, Benzene-H), 7.80 (2H, t, J = 7.6 Hz, Benzene-H), 8.30 (1H, d, J = 9.2 Hz, NH); ESI-MS m/z: [M+Na]+ 304.2.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2368 (2) 0.56897 (11) 0.6152 (2) 0.0553 (6)
O2 0.13769 (19) 0.74116 (10) 0.76594 (17) 0.0390 (4)
N1 0.1849 (2) 0.74059 (11) 0.5589 (2) 0.0305 (5)
C1 0.2662 (3) 0.55877 (14) 0.2653 (3) 0.0401 (6)
H1 0.3342 0.5998 0.2680 0.048*
C2 0.2150 (3) 0.51473 (15) 0.1457 (3) 0.0483 (7)
H2 0.2490 0.5252 0.0677 0.058*
C3 0.1143 (3) 0.45551 (16) 0.1410 (3) 0.0535 (8)
H3 0.0791 0.4255 0.0593 0.064*
C4 0.0646 (3) 0.43978 (15) 0.2540 (3) 0.0520 (8)
H4 −0.0055 0.3995 0.2497 0.062*
C5 0.1172 (3) 0.48288 (15) 0.3731 (3) 0.0456 (7)
H5 0.0841 0.4714 0.4512 0.055*
C6 0.2190 (3) 0.54355 (13) 0.3808 (3) 0.0373 (6)
C7 0.2732 (3) 0.58798 (14) 0.5128 (3) 0.0384 (6)
C8 0.3799 (3) 0.65579 (13) 0.5217 (2) 0.0324 (5)
H8 0.3626 0.6769 0.4263 0.039*
C9 0.3469 (3) 0.71774 (13) 0.6157 (2) 0.0317 (5)
H9 0.3627 0.6956 0.7101 0.038*
C10 0.4548 (3) 0.78490 (13) 0.6304 (2) 0.0327 (5)
C11 0.4362 (3) 0.83580 (13) 0.5211 (3) 0.0369 (6)
H11 0.3546 0.8289 0.4372 0.044*
C12 0.5363 (3) 0.89691 (15) 0.5338 (3) 0.0444 (7)
H12 0.5236 0.9308 0.4580 0.053*
C13 0.6541 (3) 0.90834 (16) 0.6565 (3) 0.0472 (7)
H13 0.7209 0.9505 0.6656 0.057*
C14 0.6741 (3) 0.85819 (16) 0.7654 (3) 0.0470 (7)
H14 0.7551 0.8657 0.8495 0.056*
C15 0.5756 (3) 0.79640 (15) 0.7523 (3) 0.0400 (6)
H15 0.5910 0.7618 0.8273 0.048*
C16 0.5456 (3) 0.62634 (15) 0.5778 (3) 0.0439 (6)
H16A 0.5626 0.6044 0.6704 0.053*
H16B 0.6174 0.6683 0.5838 0.053*
H16C 0.5626 0.5875 0.5148 0.053*
C17 0.0921 (3) 0.74884 (12) 0.6372 (2) 0.0304 (5)
C18 −0.0729 (3) 0.76761 (16) 0.5617 (3) 0.0443 (7)
H18A −0.1391 0.7270 0.5764 0.053*
H18B −0.0867 0.7728 0.4621 0.053*
H18C −0.1003 0.8153 0.5976 0.053*
H1N 0.143 (3) 0.7487 (15) 0.463 (3) 0.045 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0705 (14) 0.0501 (12) 0.0574 (12) −0.0110 (10) 0.0374 (11) 0.0049 (9)
O2 0.0429 (10) 0.0491 (11) 0.0273 (9) −0.0032 (8) 0.0144 (7) −0.0034 (7)
N1 0.0310 (10) 0.0378 (11) 0.0252 (10) 0.0059 (8) 0.0122 (8) 0.0044 (8)
C1 0.0411 (14) 0.0314 (13) 0.0484 (15) −0.0016 (11) 0.0149 (12) −0.0001 (11)
C2 0.0540 (16) 0.0398 (15) 0.0507 (17) 0.0019 (13) 0.0157 (14) −0.0025 (12)
C3 0.0512 (16) 0.0361 (15) 0.065 (2) −0.0022 (13) 0.0063 (15) −0.0054 (13)
C4 0.0422 (15) 0.0315 (14) 0.078 (2) −0.0072 (12) 0.0126 (15) 0.0000 (13)
C5 0.0415 (15) 0.0352 (14) 0.0650 (19) 0.0015 (11) 0.0236 (14) 0.0066 (12)
C6 0.0362 (13) 0.0276 (12) 0.0517 (15) 0.0044 (10) 0.0190 (12) 0.0039 (10)
C7 0.0386 (13) 0.0340 (13) 0.0480 (15) 0.0036 (11) 0.0216 (12) 0.0056 (11)
C8 0.0364 (12) 0.0302 (12) 0.0347 (12) 0.0023 (10) 0.0172 (10) 0.0055 (9)
C9 0.0321 (12) 0.0359 (13) 0.0291 (12) 0.0045 (10) 0.0121 (10) 0.0036 (9)
C10 0.0336 (12) 0.0361 (13) 0.0319 (12) 0.0035 (10) 0.0151 (10) −0.0036 (10)
C11 0.0459 (14) 0.0335 (13) 0.0340 (13) −0.0012 (11) 0.0163 (11) −0.0043 (10)
C12 0.0546 (16) 0.0338 (14) 0.0499 (16) −0.0018 (12) 0.0235 (14) −0.0036 (11)
C13 0.0499 (16) 0.0396 (15) 0.0576 (17) −0.0069 (12) 0.0245 (14) −0.0101 (13)
C14 0.0425 (15) 0.0511 (17) 0.0470 (16) −0.0064 (13) 0.0132 (12) −0.0118 (13)
C15 0.0383 (13) 0.0471 (15) 0.0357 (13) 0.0031 (11) 0.0131 (11) −0.0022 (11)
C16 0.0406 (14) 0.0395 (14) 0.0545 (17) 0.0083 (12) 0.0190 (13) 0.0072 (12)
C17 0.0347 (12) 0.0273 (11) 0.0312 (12) −0.0021 (9) 0.0129 (10) −0.0013 (9)
C18 0.0363 (13) 0.0554 (17) 0.0446 (15) 0.0087 (12) 0.0172 (12) 0.0066 (12)

Geometric parameters (Å, º)

O1—C7 1.227 (3) C9—C10 1.522 (3)
O2—C17 1.245 (3) C9—H9 1.0000
N1—C17 1.336 (3) C10—C11 1.393 (3)
N1—C9 1.473 (3) C10—C15 1.394 (3)
N1—H1N 0.94 (3) C11—C12 1.396 (4)
C1—C6 1.390 (3) C11—H11 0.9500
C1—C2 1.392 (4) C12—C13 1.385 (4)
C1—H1 0.9500 C12—H12 0.9500
C2—C3 1.386 (4) C13—C14 1.380 (4)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.381 (4) C14—C15 1.396 (4)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.380 (4) C15—H15 0.9500
C4—H4 0.9500 C16—H16A 0.9800
C5—C6 1.407 (3) C16—H16B 0.9800
C5—H5 0.9500 C16—H16C 0.9800
C6—C7 1.494 (4) C17—C18 1.505 (3)
C7—C8 1.531 (3) C18—H18A 0.9800
C8—C16 1.538 (3) C18—H18B 0.9800
C8—C9 1.538 (3) C18—H18C 0.9800
C8—H8 1.0000
C17—N1—C9 123.2 (2) C8—C9—H9 108.2
C17—N1—H1N 117.8 (16) C11—C10—C15 118.4 (2)
C9—N1—H1N 119.0 (16) C11—C10—C9 120.5 (2)
C6—C1—C2 120.8 (3) C15—C10—C9 121.0 (2)
C6—C1—H1 119.6 C10—C11—C12 120.6 (2)
C2—C1—H1 119.6 C10—C11—H11 119.7
C3—C2—C1 119.6 (3) C12—C11—H11 119.7
C3—C2—H2 120.2 C13—C12—C11 120.2 (3)
C1—C2—H2 120.2 C13—C12—H12 119.9
C4—C3—C2 120.6 (3) C11—C12—H12 119.9
C4—C3—H3 119.7 C14—C13—C12 119.7 (3)
C2—C3—H3 119.7 C14—C13—H13 120.2
C5—C4—C3 119.6 (3) C12—C13—H13 120.2
C5—C4—H4 120.2 C13—C14—C15 120.2 (3)
C3—C4—H4 120.2 C13—C14—H14 119.9
C4—C5—C6 121.1 (3) C15—C14—H14 119.9
C4—C5—H5 119.4 C10—C15—C14 120.8 (3)
C6—C5—H5 119.4 C10—C15—H15 119.6
C1—C6—C5 118.2 (2) C14—C15—H15 119.6
C1—C6—C7 123.0 (2) C8—C16—H16A 109.5
C5—C6—C7 118.9 (2) C8—C16—H16B 109.5
O1—C7—C6 120.4 (2) H16A—C16—H16B 109.5
O1—C7—C8 119.9 (2) C8—C16—H16C 109.5
C6—C7—C8 119.6 (2) H16A—C16—H16C 109.5
C7—C8—C16 107.2 (2) H16B—C16—H16C 109.5
C7—C8—C9 110.49 (19) O2—C17—N1 122.5 (2)
C16—C8—C9 111.9 (2) O2—C17—C18 121.0 (2)
C7—C8—H8 109.1 N1—C17—C18 116.5 (2)
C16—C8—H8 109.1 C17—C18—H18A 109.5
C9—C8—H8 109.1 C17—C18—H18B 109.5
N1—C9—C10 111.73 (19) H18A—C18—H18B 109.5
N1—C9—C8 108.67 (19) C17—C18—H18C 109.5
C10—C9—C8 111.73 (18) H18A—C18—H18C 109.5
N1—C9—H9 108.2 H18B—C18—H18C 109.5
C10—C9—H9 108.2
C6—C1—C2—C3 0.8 (4) C7—C8—C9—N1 −58.1 (2)
C1—C2—C3—C4 −0.1 (4) C16—C8—C9—N1 −177.54 (19)
C2—C3—C4—C5 −0.8 (4) C7—C8—C9—C10 178.12 (19)
C3—C4—C5—C6 1.0 (4) C16—C8—C9—C10 58.7 (3)
C2—C1—C6—C5 −0.5 (4) N1—C9—C10—C11 −47.8 (3)
C2—C1—C6—C7 178.6 (2) C8—C9—C10—C11 74.1 (3)
C4—C5—C6—C1 −0.4 (4) N1—C9—C10—C15 133.1 (2)
C4—C5—C6—C7 −179.5 (2) C8—C9—C10—C15 −104.9 (2)
C1—C6—C7—O1 −174.8 (2) C15—C10—C11—C12 −0.1 (3)
C5—C6—C7—O1 4.3 (4) C9—C10—C11—C12 −179.2 (2)
C1—C6—C7—C8 2.8 (3) C10—C11—C12—C13 −1.1 (4)
C5—C6—C7—C8 −178.0 (2) C11—C12—C13—C14 1.3 (4)
O1—C7—C8—C16 86.0 (3) C12—C13—C14—C15 −0.3 (4)
C6—C7—C8—C16 −91.6 (3) C11—C10—C15—C14 1.0 (4)
O1—C7—C8—C9 −36.1 (3) C9—C10—C15—C14 −179.9 (2)
C6—C7—C8—C9 146.2 (2) C13—C14—C15—C10 −0.9 (4)
C17—N1—C9—C10 −102.4 (2) C9—N1—C17—O2 3.4 (3)
C17—N1—C9—C8 133.9 (2) C9—N1—C17—C18 −176.2 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.94 (3) 1.98 (3) 2.874 (3) 158 (2)
C1—H1···Cg1i 0.95 2.85 (1) 3.649 (3) 142 (1)
C16—H16A···Cg2ii 0.98 2.98 (1) 3.472 (3) 112 (1)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y+3/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2279).

References

  1. Barluenga, J., Viado, A., Aguilar, E., Fustero, S. & Olano, B. (1993). J. Org. Chem. 58, 5972–5975.
  2. Casimir, J. R., Turetta, C., Ettouati, L. & Pairs, J. (1995). Tetrahedron Lett. 36, 4797–4800.
  3. Dakin, H. D. & West, R. (1928). J. Biol. Chem. 78, 745–756.
  4. Heravi, M. M., Behbahani, F. K., Daraie, M. & Oskooie, H. A. (2009). Mol. Divers. 13, 375–378. [DOI] [PubMed]
  5. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2009). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Selvam, P. & Perumal, P. (2009). Arkivoc, x, 265–282.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813007320/lx2279sup1.cif

e-69-0o633-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007320/lx2279Isup2.hkl

e-69-0o633-Isup2.hkl (148.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007320/lx2279Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES