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Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often
share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for
functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that
can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118
glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97%
of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hy-
drolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correla-
tion between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be pre-
dicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important
for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR
divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins
and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences
were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of
conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with
high precision.

Transforming gene sequence data into valid information, based
on which new biological understanding can be built, is becom-

ing increasingly important, as the amounts of gene sequences
available are increasing dramatically, and it has been revealed and
documented that even very distantly related gene sequences may
code for proteins with similar function. It is most essential for
such progress to improve the ability to predict function from se-
quence. This is most often attempted by sequence alignment,
based on finding regions with similar sequences in two or more
biological polymers. Typically, protein alignment is used for iden-
tification of conserved regions that can have functional impor-
tance to find proteins with similar characteristics. This approach is
very successful in comparing closely related sequences. However,
the outcome of alignment of very distantly related sequences can
be notoriously difficult to interpret and may be unreliable. Ad-
vanced methods for sequence alignment misalign 11 to 19% of the
sequences analyzed (1). This problem is even more pronounced
when many divergent sequences are compared (2).

The Carbohydrate-Active Enzyme database (CAZy) (http:
//www.cazy.org/) is a great resource for understanding glycoside
hydrolase (GH) evolution and biology (3). As pointed out by the
team at CAZy, it is not straightforward to predict the enzymatic
activity of glycoside hydrolases based on their sequence (4).
Therefore, CAZy divides the glycoside hydrolases into 131 protein
families, GH1 to GH131, based on sequence and structural infor-
mation (5–7). Due to convergent evolution of glycoside hydrolase
function (8), most of the GH families comprise enzymes with
different functions, and up to 28 different enzyme activities have
been described for proteins belonging to a single GH family. It is
therefore not possible to predict the activity of a glycoside hydro-
lase simply by assigning it to a GH family.

Likewise, prediction of function is complicated by the fact that
proteins with the same enzymatic function belong to different GH

families. Many of the glycoside hydrolase families include en-
zymes that are important for lignocellulose turnover in nature and
are potentially interesting enzymes for industrial conversion of
biomass. One example is the endo-1,4-�-D-glucanase (EC
3.2.1.4), which can be found in 17 different GH families.

An obvious approach to functional prediction of glycoside hy-
drolases is to analyze a single GH family by alignment and eluci-
dation of phylogenetic relationships. However, the low sequence
identity between proteins even in a single GH family makes align-
ment difficult to perform and unreliable. Furthermore, enzymes
with the same function often develop from different ancestors by
convergent evolution, obscuring the correlation between phylog-
eny and enzyme activity (8). In a recent report, Aspeborg and
coworkers analyzed the proteins in GH5 family and delineated 51
functionally relevant subfamilies (9). This work is a tremendous
effort and implies the use of several algorithms for alignment,
phylogenetic tree building, and considerable manual curation by
experts in the fields of sequence analysis and glycoside hydrolase
biology.

The notion that similar enzymes often share a few short motifs,
e.g., around the active site, even when the overall sequences are
very different (10), suggests an alternative approach to functional
prediction. The hypothesis for the present work was that the func-
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tion of glycoside hydrolases could be predicted by recognizing
short, conserved sequence motifs in functionally characterized
glycoside hydrolases and that the presence of such motifs could be
used to predict the function of other glycoside hydrolases.

Although the relevant conserved sequence motifs are impor-
tant, they will normally occur only once within each protein, e.g.,
a conserved motif forming an active site. Therefore, we developed
a method designated peptide pattern recognition (PPR), which
consists of two steps: (i) finding a limited number of n-mer short
sequences that are highly conserved in a collection of glycoside
hydrolases and (ii) selecting glycoside hydrolases that contain
more than a threshold number of the n-mer short sequences. This
approach implies that any input glycoside hydrolase that is unre-
lated to the other input glycoside hydrolases will be discarded. The
level of relatedness of the sequences in a group depends on the
length of the n-mer short sequences and the number of n-mers
used to define the group. In the present report, settings that in-
cluded sequences with as low as 20% identity in the same group
resulted in a functionally meaningful subdivision of the glycoside
hydrolases. The sequences that are not included in the group can
be used to perform another round of analysis to find a new group,
and so on. The output of PPR is a group of related glycoside hy-
drolases selected from the input and a list of the n-mer short se-
quences that are most conserved in this group.

This method can be used to predict the enzyme activity of
glycoside hydrolases if the identified short, conserved sequence
motifs are functionally important: uncharacterized glycoside hy-
drolases can be expected to have the same activity as functionally
described glycoside hydrolases that share the same short, con-
served sequence motifs.

To test the hypothesis, we applied PPR to glycoside hydrolase
families 5 and 13. The complete sequences of the proteins were
analyzed without removing signal peptides, carbohydrate-bind-
ing modules, or other sequences not directly related to catalytic
activity. Despite this lack of curation, the PPR analysis provided
subfamilies that could predict the function of the GH5 proteins
with 97% accuracy and that of the GH13 proteins with 82% accu-
racy. This enables a shortcut for targeted discovery, where a spe-
cific function (e.g., endo-1,4-�-D-glucanase [EC 3.2.1.4]) is aimed
for. Furthermore, the analysis of 8,138 GH13 proteins holding 28
described functions demonstrated the ability of the presently de-
scribed method to handle large data sets.

Despite their importance for natural and industrial degrada-
tion of lignocellulosic material, only a few GH61 proteins have
been characterized enzymatically (11–16). A search for short, con-
served sequence motifs in 743 GH61 proteins divided the proteins
into 16 subfamilies. Assuming that these subfamilies are function-
ally relevant, as was found for the subfamilies generated for the
GH5 and GH13 proteins, this subdivision provides a guide for
characterization of the enzyme activity of the GH61 family toward
lignocellulose as well as other substrates. Furthermore, the lists of
conserved peptides pinpoint putative functionally important
amino acids in the GH61 proteins and were used to identify new
GH61 proteins from 14 different fungi.

Identification of short, conserved sequence motifs is a new
method implemented as PPR for analysis of glycoside hydrolases
that can predict function from sequence with a high level of accu-
racy and delineate function-related subfamilies. This method
moves the prediction of function from sequence one step closer by

finding the functionally and structurally most essential peptides of
a protein.

MATERIALS AND METHODS
PPR algorithm and implementation. A list of protein sequences was used
as the input for the algorithm, with each protein on the list used as a seed
protein (see Fig. S1 in the supplemental material for the flow diagram):

1. Make all the n-mer peptides that occur in the sequence of the seed
protein.

2. Select all proteins that contain more than a cutoff value of the
peptides.

3. Make all the n-mer peptides that occur in these proteins, and select
the N most frequently occurring peptides. N is a predefined num-
ber of n-mer peptides. The selected peptides should occur in at least
two of the proteins (score, �2). Peptide cutoff is a specific fre-
quency (e.g., if more than 20 out of 100 proteins contain a peptide,
the frequency is 0.2). Each peptide should have a frequency higher
than the peptide cutoff to be included on the list. A peptide cutoff of
�0.2 was used in all studies unless otherwise indicated.

4. Go back to step 2 until no new peptides are made in the following
round.

All peptides that occurred in only one protein were excluded from the
analysis to reduce the number of calculations.

When groups had been made from each of the seed proteins, the group
including the highest number of proteins was selected.

The output was a peptide pattern defined as a list of the N most fre-
quently occurring n-mer peptides in the largest group of proteins and a
group of proteins defined as all the proteins that include more than the
cutoff value of the n-mer peptides.

The score of a protein was defined as the number of peptides (from the
list of n-mers) included in the protein sequence.

The frequency of a peptide was defined as the number of proteins that
contain a peptide divided by the total number of proteins in the group.

The algorithm was executed more than once on the same input list of
proteins by removing the largest group of proteins from the input after
each run. In this way, several peptide patterns and protein groups were
extracted from the input sequences.

The possibility of a specific number of peptides occurring at random
and the possibility of a protein containing a high number of the peptides
can be calculated as follows, where comb(a, b) means a!/[b! � (a � b)!]:
there are 206 � 6.4 � 107 different hexamers. Choosing 100 of these to
create a list of hexapeptides can be done in comb(6.4 � 107, 100) � 4.4 �
10622 different ways. A 305-amino-acid-long protein consists of up to 300
different hexamers. This gives comb(6.4 � 107, 300) � 2.3 � 101,727

different combinations of 300 hexamers. The probability that a 305-amino-
acid-long protein contains at least 10 of 100 hexamers by chance is
comb(100, 10) � comb(206, 300 � 10)/comb(206, 300) � 7.6 � 10�41.
The parameters number of peptides, peptide length, and number of pep-
tides that a protein should contain to be part of a group (cutoff) can be
adjusted to increase or decrease this probability. Increasing N will increase
the probability, whereas increasing peptide length or cutoff will decrease
the probability. Higher probability will lead to larger groups including
more proteins, and lower probability will have the opposite effect.

Short, conserved sequence motifs and assignment of subfamilies for
GH5 proteins. Characterized eukaryotic GH5 proteins from CAZy (http:
//www.cazy.org/) (3) were used as the input for PPR with different param-
eters. GenBank and Joint Genome Institute accession numbers for the
proteins can be found in the supplemental material.

For each round of PPR, the largest group of proteins was removed as a
subfamily, and the analysis was repeated with the rest of the proteins.

Each protein subfamily was assigned a function corresponding to the
function of the most abundant enzyme type in the subfamily.
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Next, all 118 GH5 proteins were given a score for each subfamily-
specific peptide lists by

1. Finding all the peptides from the list that were present in the se-
quence of the protein.

2. Summing the frequency of these peptides. This gave the subfamily-
specific frequency score.

The proteins were assigned to the subfamily with the highest subfam-
ily-specific frequency score.

Finally, the function of the proteins, as reported in CAZy, was com-
pared to the function assigned to the subfamily.

Generation of function-specific peptide lists from GH5 proteins.
The eukaryotic GH5 proteins were divided into four lists of proteins with
the same function: endo-1,4-�-D-glucanase (EC 3.2.1.4), glucan 1,3-�-
glucosidase (EC 3.2.1.58), glucan endo-1,6-�-glucosidase (EC 3.2.1.75),
and mannan endo-�-1,4-mannosidase (EC 3.2.1.78). Half of the protein
sequences chosen at random from each list were used for step 3 of the PPR
algorithm: make all the n-mer peptides that occur in these proteins, and
find the N most frequently occurring peptides, where N is a predefined
number of n-mer peptides. In this way, peptide patterns were created for
the four enzyme classes. No peptide cutoff was used for this analysis.

The other half of the GH5 proteins were assigned a function by calcu-
lating the frequency score for each function-specific peptide list and as-
signing the protein to the function with the highest function-specific fre-
quency score.

Short, conserved sequence motifs and assignment of subfamilies for
GH13 and GH61. The implementation of PPR where each protein was
used to generate a group of proteins in each repetition of the algorithm is
computationally intensive. To reduce the number of computations and
reach similar results, we developed the following procedure: for each pro-
tein used as the seed protein,

1. Make all the n-mer peptides that occur in the sequence of the seed
protein.

2. Count the number of proteins that contain more than a cutoff
value of the peptides.

3. Assign this number to the seed protein.

4. Rank all the seed proteins according to this number, with the seed
protein with the highest number first.

5. Use the 100 highest-ranked proteins on this list as seed proteins for
PPR analysis.

6. Select the largest group of proteins as a subfamily, and remove the
proteins from the list of proteins and from the list of seed proteins.

7. Repeat the PPR analysis.

This procedure significantly reduced the number of calculations when
many proteins were used as the input, as only 100 seed proteins were used
in each round of PPR instead of all the proteins and were used for PPR
analysis of 8,138 GH13 proteins downloaded from CAZy and for 743
GH61 proteins (accession numbers in the supplemental material) that
were downloaded from CAZy or found by CDD-search (10) in the protein
database at the NCBI (http://www.ncbi.nlm.nih.gov/protein/).

This version of PPR is available for download [http://vbn.aau.dk/en
/publications/peptide-pattern-recognition(1400c5df-fa69-4701-8d67
-ec5c38cc963b).html].

Distribution of hexapeptides in GH61 proteins. The position of a
conserved hexapeptide was defined as the median of the position in all the
proteins that contained the hexapeptide sequence.

Design of primers. Conserved hexapeptides were reverse translated
according to the genetic code. Positions containing any nucleotide (A, C,
G, or T) were replaced with inosine (see Table S1 in the supplemental
material). Degenerate nucleotides at the 3= end of the primers were re-
moved from the sequence of the primers. The degeneracy of the primer
that results from reverse translation of each hexapeptide was calculated

based on the genetic code and replacing positions containing any nucle-
otide (A, C, G, or T) with inosine (see Table S1 in the supplemental
material). In addition, the relative position of the hexapeptides in the
proteins was estimated as the median of the distance of the peptide to the
N terminus of each protein in the group that contained the peptide.

Sequences for primers were selected based on three criteria: (i) they
should have high frequency in the group of GH61 proteins; (ii) they
should give an amplicon of at least 40 bp, excluding primer sequences, in
order to be able to obtain sufficient sequence information to identify the
PCR product; and (iii) the primers should have the smallest possible re-
dundancy, and redundant bases at the 3= end were not allowed.

A tail of six bases (CTGGAC) was added to the 5= end of all primer
sequences, as this improves the performance of short primers (17–19).

Reverse primers were designed to be complementary to the DNA se-
quence encoding the hexapeptide and according to the same rules.

The primers were synthesized and purified by high-performance liq-
uid chromatography (HPLC) by Sigma-Aldrich (United Kingdom).

Fungi. Fungi (Table 1) were purchased from the Centraalbureau voor
Schimmelcultures, The Netherlands, and grown on 6% wheat bran (Fi-
nax, Denmark)–1.5% agar (Sigma-Aldrich, United Kingdom) plates at
the recommended temperature.

DNA purification. Fungal mycelium was scraped off the top of a
wheat bran agar plate, frozen in liquid nitrogen, and ground with a mortar
and pestle. DNA was extracted from the homogenized mycelium with the
Fungal DNA minikit (Omega Bio-Tek, USA) according to the manufac-
turer’s instructions.

PCR. A mix of 100 ng total fungal DNA in 1� Run PCR buffer; 2 mM
each dATP, dCTP, dGTP, and dTTP; 400 nM forward primer; 400 nM
reverse primer; and 1 U Run DNA polymerase (A&A Biotechnology, Po-
land) in a total volume of 20 �l was used for PCR on a MyCycler instru-
ment (Bio-Rad, USA) with the following thermal profile: an initial dena-
turation step at 95°C for 5 min; 40 cycles of 95°C for 20 s, 54°C for 30 s, and
72°C for 60 s; and a final extension step at 72°C for 5 min.

PCR products were analyzed by agarose gel electrophoresis, and se-
lected DNAs were cut out and purified with the Qiaquick kit (Qiagen,
Germany).

One microliter of the purified PCR product was reamplified in a 50-�l
reaction mixture under the same conditions as the original PCR except
that only 15 to 20 cycles of PCR were performed.

Sequencing and analysis. PCR products were cycle sequenced by
Eurofins-MWG (Germany) or StarSEQ (Germany) with one of the de-
generate primers used for PCR.

The resulting sequences were translated into amino acid sequences
and used for a BLAST search (20) against the nonredundant protein se-
quence database at the NCBI and inspected for conserved domains (10) in

TABLE 1 List of fungi used for PCR

Order Fungus CBS no.a

Sordariales Chaetomium senegalense 728.84
Sordariales Chaetomium thermophilum 180.67
Sordariales Corynascus thermophilus 406.69
Sordariales Melanocarpus albomyces 638.94
Sordariales Remersonia thermophila 540.69
Sordariales Scytalidium indonesiacum 259.81
Sordariales Scytalidium thermophilum 620.91
Onygenales Malbranchea cinnamomea 115.68
Eurotiales Talaromyces byssochlamydoides 151.75
Eurotiales Talaromyces emersonii 393.64
Eurotiales Talaromyces leycettanus 398.68
Eurotiales Talaromyces thermophilus 236.58
Eurotiales Thermoascus aurantiacus 891.70
Eurotiales Thermomyces lanuginosus 632.91
a Strain registration number at the Centraalbureau voor Schimmelcultures.
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the CDD database at the NCBI to identify sequences encoding GH61-like
proteins.

A sequence alignment was made with ClustalW (21) and adjusted
manually. Phylogenetic trees were made with MUSCLE, PhyML, and
TreeDyn at Phylogeny.fr (22).

Statistical analysis. P values were calculated by one of three different
methods, as indicated. Combinatorics means that the P value was calcu-
lated as the number of positive outcomes divided by the total number of
outcomes. Simulation means that the P value was estimated by running a
computer simulation of the distribution 108 or 109 times. The P values
estimated by simulations are given with 99% confidence. �2 test means
that the observed result was compared to the expected distribution, and
the P value was calculated by Pearson’s �2 test.

Nucleotide sequence accession numbers. The DNA sequences of the
products of PCR amplification of GH61 from 14 fungi were deposited in
the GenBank/EMBL/DDBJ database under accession numbers HF565034
to HF565047. The DNA and translated amino acid sequences can be
found in the supplemental data.

RESULTS
Rationale and theory of PPR. The members of a group of proteins
with similar structure and function are characterized by having a
number of identical or closely related short sequence motifs (10).
These sequence motifs may be conserved for a number of reasons,
for example, if they are located in the active site of an enzyme, in
structurally important regions, or in regions involved in binding
to other proteins. Pinpointing the conserved peptides will yield a
new conceptual understanding of biological functions.

PPR was designed to find such conserved, short sequences by
counting the number of proteins that contain each peptide of
length n. The output of PPR consists of a list of peptides and a
group of proteins that are mutually dependent: a list of peptides
consists of the peptides most frequently occurring in the group of
proteins, and a group of proteins is defined as the proteins con-
taining a high number of these peptides. Thus, to identify protein
groups and peptides, PPR is executed as a cyclical algorithm until
no new proteins and peptides are found.

Division of eukaryotic GH5 proteins into function-related
subfamilies by recognition of short, conserved sequence motifs.
The amino acid sequences of 118 functionally characterized eu-
karyotic GH5 proteins were downloaded from CAZy (see acces-
sion numbers in the supplemental material). This collection in-
cluded proteins with four enzymatic activities and with very
divergent sequences. The average pairwise identity was only 9%,
and only 23% of the pairwise sequence comparisons produced any
significant alignment. Phylogenetic tree analysis separated the
GH5 proteins into five phylogenetic clusters: two clusters of EC
3.2.1.4 enzymes and one cluster for each of the other three enzyme
classes (see Fig. S2 in the supplemental material). However, 13 of
the 118 proteins (11%) were placed outside the clusters.

To investigate if short, conserved sequence motifs could be
found in this sequence collection and if the motifs could be used
for separation of the proteins into different enzyme classes, the
proteins were analyzed by PPR, the tool for finding short, con-
served sequence motifs. Three critical parameters for the analysis
were (i) the length of the sequence motifs, (ii) the number of
motifs used to define a group, and (iii) the number of motifs that
should be found in a protein in order to include the protein in the
group (cutoff value).

To establish a set of useful conditions, we performed PPR anal-
ysis of the GH5 proteins with different values for these three pa-

rameters. Each analysis resulted in a number of protein subfami-
lies that were assigned a function corresponding to the function of
the most abundant enzyme type in the subfamily. All 118 GH5
proteins were scored against the subfamily-specific peptide lists
and placed into the subfamily with the highest score. The experi-
mentally reported function of the proteins was compared to the
function predicted by PPR. The parameters tested were a peptide
length of 3 to 10 amino acids, peptide lists with 30 to 200 con-
served peptides, and a cutoff from 5 to 40 peptides. The cutoff and
the number of conserved peptides are important for group size, as
a higher cutoff for the same peptide list leads to the inclusion of
fewer proteins, whereas a longer peptide list for the same cutoff
includes more proteins. It is convenient to describe this relation-
ship as stringency and define stringency as the cutoff divided by
the number of conserved peptides per group.

The number of GH5 proteins that were assigned to subfamilies
with the same function depended on the stringency of the PPR
analysis with a broad maximum: stringencies of between 0.10 and
0.33 correctly classified 78 to 86% of the GH5 proteins when av-
eraging the results for peptide lengths from 3 to 10 amino acids
(Fig. 1). However, the best correlation between classification and
enzymatic activity was obtained with peptides with lengths of 4 to
6 amino acids. Hexamer peptides at a stringency of 0.14 (cutoff �
10; number of peptides � 70) gave the highest level of correct
classification of all the conditions tested. These parameters gener-
ated nine subfamilies containing 97 of the GH5 proteins (Fig. 2).
Both endo-1,4-�-D-glucanase (EC 3.2.1.4) and mannan endo-�-
1,4-mannosidase (EC 3.2.1.78) were divided into several subfam-
ilies, whereas glucan 1,3-�-glucosidase (EC 3.2.1.58) and glucan
endo-1,6-�-glucosidase (EC 3.2.1.75) were placed into a single
subfamily for each enzyme type. Except for one glucan endo-1,6-
�-glucosidase from Schizosaccharomyces pombe, the subfamilies
correlated with the function of the proteins (P � 2 � 10�8, deter-
mined by simulation). Cross comparison of the hexapeptide lists
for the subfamilies showed that only 4 of the 477 conserved pep-
tides were shared between two subfamilies (Fig. 2).

Scoring of the 118 GH5 proteins with the subfamily-specific
peptide lists assigned the correct function to 115 of the proteins
(Table 2), corresponding to successful prediction of the function
of 97% of the proteins (P � 9 � 10�48 by �2 test). This is compa-
rable to the precision of functional separation of the GH5 enzymes
by phylogenetic analysis.

One of the proteins classified into subfamily 1 (P � 6 � 10�263

by combinatorics) was the GH5 endo-1,4-�-D-glucanase (EC
3.2.1.4) from Thermoascus aurantiacus (GenBank accession num-
ber AAL1642.1). Eleven functionally important amino acid resi-
dues can be inferred from the crystal structure of this enzyme (23,
24). Except for the disulfide bridge, all of these functionally im-
portant amino acids, including the two catalytic glutamates, were
found in the 70 most frequent hexapeptides for subfamily 1 (P �
4 � 10�8 by combinatorics), indicating that the short, conserved
motifs identified for the subfamily are related to endo-1,4-�-D-
glucanase function, as predicted (Table 3).

Function-specific conserved sequence motifs in GH5 pro-
teins with the same activity. Another way to find short, conserved
sequences is to take proteins with a known function and make the
best possible peptide pattern for these proteins by finding the N
most frequently occurring n-mers in the protein sequences. The
list of n-mers will be useful for characterization of the proteins
with known function and for finding other proteins with the same
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function whenever the conserved sequences are related to protein
function.

To test this hypothesis, we randomly chose half of the 118 GH5
proteins for each of the four enzyme classes. Next, we made list of
conserved n-mers with different lengths and with different num-
bers of conserved n-mers on the list. The parameters were n-mer
length from 2 to 10 amino acids and number of n-mers from the
10 to the 3,200 most conserved n-mers. Finally, the four generated
peptide lists were used to predict the function of the other half of
the GH5 proteins. Each analysis was repeated 10 times.

The best result was prediction of the function of 98% of the
proteins with 92% accuracy, giving a correct prediction rate (pre-
dicted proteins � correct predictions) of 90% (see Fig. S3 in the
supplemental material). Interestingly, the highest prediction rates
were achieved with a large number (400 to 3,200) of 3- to 5-mer
peptides. When the analysis was performed with all possible pep-
tides of a given length, it was possible to achieve a correct predic-
tion rate of 92% with 4-mer peptides (Table 4). However, even a
limited number of conserved sequences correctly predicted the
function of a large number of the GH5 proteins; e.g., lists of 20
conserved 4-mers predicted the function of 69% of the proteins
with 96% accuracy (see Fig. S3 in the supplemental material),
indicating that the short, conserved sequence motifs found in the
GH5 proteins with identical enzymatic activity are indeed func-
tionally relevant.

Comparison of PPR with benchmark method for analysis of
the GH13 family. The GH13 family, which is the GH family with
the largest number of described enzymatic functions, has been
classified into 35 subfamilies (25) that can be found in CAZy. The
generation of the subfamilies implied the sequential use of several

TABLE 2 Prediction of the function of the 118 GH5 proteins by the
peptides lists for each protein subfamily

Classification

No. of predictions

P valueaCorrect Wrong

EC 3.2.1.4 59 1 5 � 10�20

EC 3.2.1.58 18 1 1 � 10�17

EC 3.2.1.75 7 0 2 � 10�7

EC 3.2.1.78 31 1 2 � 10�14

Total 115 3 2 � 10�56

a Calculated by combinatorics.

FIG 1 Correlation of PPR stringency and peptide length to correct prediction of the function of GH5 proteins. The correct prediction of the function of 118 GH5
proteins as a function of the stringency (cutoff/number of peptides) was calculated as an average of the prediction rates obtained by performing PPR analysis with
peptide lengths of 3, 4, 5, 6, 8, and 10 amino acids. Likewise, correct prediction rates for all stringencies were calculated for each peptide length, as indicated.

FIG 2 Analysis of the proteins by EC number and cross comparison of the
peptides in each GH5 subfamily.
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algorithms for sequence alignment, clustering, and removal of
sequences with insufficient similarity. The analysis included 1,691
GH13 sequences, was very time-consuming, and would have been
difficult to perform on the 2,456 GH13 sequences in CAZy at the
time of publication (25). In comparison to this highly accurate but
time-consuming analysis, automated PPR analysis based on short,
conserved motifs of 8,138 GH13 proteins yielded 50 subfamilies.
The PPR analysis of 8,138 GH13 proteins took 7 h with a script
written in Ruby, which is a relatively slow programming language,
and was executed on a powerful desktop computer (IntelR Core
i7-2600 CPU at 3.40 GHz, with 16 GB RAM). It took less than 25
min to perform a PPR analysis of 1,691 sequences chosen at ran-
dom from the 8,138 GH13 proteins. Cross comparison of 5,442
proteins that were assigned to both a CAZy subfamily (25) (http:
//www.cazy.org/) and a PPR subfamily showed a high correlation
between CAZy and PPR subfamilies (R2 � 0.871; P � 2 � 10�7,
determined by simulation). On average, 90% of the proteins in
each CAZy subfamily were assigned to one PPR subfamily (Fig. 3).

Several GH13 proteins contain multiple domains and more
than one catalytic domain that can confuse analysis. The CAZy
subfamilies of GH13 accounted for this protein structure, whereas
the classification based on short, conserved motifs did not. Nev-
ertheless, short, conserved motifs found with PPR classified 442 of
540 experimentally characterized GH13 proteins (82%) into sub-
families that were assigned the same function as the protein (P �
2 � 10�7, determined by simulation) (see Table S2 in the supple-
mental material).

PPR peptide lists for pinpointing interesting amino acids in
the GH61 protein family. The GH61 proteins are important for
fungal biomass degradation. However, the highly heterogeneous
sequences of the GH61 proteins make them difficult to compare
and analyze in a comprehensive way. A CDD-search of the protein
databases available at the NCBI combined with all the GH61 pro-
teins in CAZy identified 763 proteins with a GH61 domain. We
used PPR to find short, conserved sequence motifs in these GH61
proteins.

PPR made 16 subfamilies containing 493 of the 763 GH61
proteins (see Table S3 in the supplemental material). After 16
rounds, the subfamilies became too small (fewer than 10 proteins)
to define any common peptide pattern for the remaining proteins.
Most of the conserved hexapeptides for the 16 subfamilies were
specific for the subfamily, but almost all the conserved peptides
were found in the N-terminal half of the GH61 proteins (P � 5 �

10�190 by �2 test) (Fig. 4), with two peaks at residues 100 to 120
(P � 8 � 10�42 by �2 test) and 160 to 200 (P � 2 � 10�158 by �2

test). The entire lists of conserved peptides can be found in Table
S4 in the supplemental material.

Within subfamilies, there were large sequence differences be-
tween the proteins. In the largest group, the average sequence
identity between pairs of proteins was 48% and varied from 27 to
99.6%. However, 10% of the pairwise sequence comparisons did
not yield any significant alignment. Sequence differences between
subfamilies were even larger, and the average sequence identity
between the 16 proteins with the highest score in each subfamily
was 29% and varied from 22 to 45%, with 10% of the comparisons
not yielding any significant alignment.

An example of classification of a protein sequence is GH61E
from the ascomycete Thielavia terrestris of the order Sordariales.
This protein included 26 of the conserved peptides from subfam-
ily 3 with an accumulated frequency of 9.12 (P � 5 � 10�126 by
combinatorics). Only 0 to 4 hexapeptides from other subfamilies
were found in the sequence of GH61E (see Table S5 in the supple-
mental material). The spatial position of the most conserved hexa-
peptides for GH61 subfamily 3 could be depicted on the tertiary
structure of GH61E (26). Many of the residues are hidden within
the structure, but three sequence stretches consisting of amino
acids from the conserved hexapeptides were found on the surface
of the crystal structure (Fig. 5). One is located on the metal ion-
binding surface of GH61 and includes Gln-151 and Tyr-153,
which are involved in binding to the divalent cation (Fig. 5). The
other two sequences are located on other surfaces of the protein
and are conserved within subfamilies but differ considerably be-
tween subfamilies (Fig. 5). To our knowledge, these conserved
protein surfaces have not been described in connection with
GH61 function.

The few GH61 proteins that have been enzymatically charac-
terized possess cellulose oxidase activity rather than glycoside hy-
drolase activity as such (14, 16, 26–28). These enzymes are further
classified as type 1 or type 2 depending on whether the oxidation
products are modified at the reducing or the nonreducing end
(14). These proteins are classified into 6 of the 16 GH61 subfam-
ilies (see Table S6 in the supplemental material). The two type 1
proteins (subfamilies 1 and 5) and the two type 2 proteins (sub-
families 2 and 4) are in different subfamilies, but this result is not
statistically significant (P � 0.77 by combinatorics) for only four
proteins distributed into subfamily 16.

TABLE 3 Conserved amino acids in the structure of Thermoascus
aurantiacus (Eurotiales) GH5 endo-1,4-�-D-glucanase with indication of
the number of conserved peptides from subfamily 1 that contain these
residues

Residue No. of peptides Highest frequency Sequencea

G44 1 0.38 GMNIFR
E133 5 0.71 FDTNNE
W170 6 0.52 WTGAWT
W174 4 0.67 TGAWTW
Y200 6 0.95 MHQYLD
E240 3 0.57 GEFAGG
W273 2 0.76 WAAGPW
W278 5 0.76 WAAGPW
W279 4 0.76 AAGPWW
a The conserved amino acid residue is underlined.

TABLE 4 Prediction of the function of GH5 proteins by function-
specific peptide lists

Peptide
length
(amino
acids)

No. of
peptides

% correct
predictionsa

%
proteins
predictedb

%
proteins
correctly
predictedb P valuec

2 400 39 98 38 10�35

3 8 � 103 93 98 91 10�57

4 1.6 � 105 94 98 92 7 � 10�60

5 3.2 � 106 96 93 89 8 � 10�59

6 6.4 � 107 99 89 88 6 � 10�62

8 2.6 � 1010 98 81 79 2 � 10�53

10 5.1 � 1011 100 75 75 3 � 10�54

a Percentage of all predictions.
b Percentage of all proteins.
c P values for correctly predicted proteins were calculated by combinatorics.
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To test whether the conserved sequences could be used to de-
sign efficient degenerate primers, we designed degenerate primers
for subfamily 1 (see Table S1 in the supplemental material). As the
two most conserved hexapeptides (occurring in 80 and 78% of the
proteins) could be used for the design of reverse primers, we did
not find it necessary to design a third reverse primer. Three for-
ward primers were designed. One of the hexapeptides used for
forward primer design (SHHGPV) contained one serine residue
that is encoded by 6 different codons at the N terminus and does
not contribute significantly to specificity. Therefore, this primer
was made by reverse translation of the peptide HHGPV. In in silico

PCR, the three forward and two reverse primers were able to am-
plify 85 of the 130 proteins classified as belonging to subfamily 1,
1 protein classified as belonging to subfamily 4, and none of the
other 657 GH61 proteins. This suggested that the peptide patterns
were suitable for designing subfamily-specific primers.

The primers were used in all six possible combinations for PCR
of DNA from 14 fungi from three different orders of ascomycota;
at least one of the primer sets gave an amplification product with
the expected size, and for some fungi, all the primer sets gave a
positive product (Fig. 6). For each fungus, the longest amplicon
that had the expected size was sequenced and analyzed for open

FIG 3 Correlation between PPR subfamilies and CAZy subfamilies of 5,457 GH13 proteins. Shown is a cross comparison of the proteins in the PPR subfamilies
with the same proteins in CAZy subfamilies. The PPR subfamilies were arranged to give the highest number of shared proteins between subfamilies along the
diagonal of the diagram.
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reading frames. All the amplicons yielded a sequence that encoded
a novel, putative GH61 family protein. Although the sequences are
only partial, it was possible to classify all except one as belonging to
subfamily 1 (Fig. 7). The unassigned sequence (from Chaetomium
senegalense) was the shortest of the sequences (37 amino acids) but
was 78% identical to the new sequence from Remersonia thermo-
phila, indicating that this GH61 protein from C. senegalense also
belongs to subfamily 1 (Fig. 7).

DISCUSSION

Sequence analysis by identification of short, conserved sequence
motifs is efficient for predicting protein function, structure, and
distant relationships. The simplicity allows for making subgroup-
ings of GH families much faster than was previously possible, as
shown for the GH13 family in the present study.

We investigated two different approaches to use short, con-
served sequence motifs to recognize functionally identical pro-
teins and compared them by predicting the function of GH5 pro-
teins. The highest level of accuracy in prediction was obtained by
using the subfamilies obtained by a PPR analysis to assign func-
tions to the proteins. This finding is in agreement with the notion

that it is difficult to find a common pattern of peptides for all GH5
proteins with the same function, and it therefore makes sense to
divide each enzymatic function into subgroups. Nevertheless, the
simple approach of making lists of all the peptides that were found
in enzymes of a given type and using these lists to predict function
could correctly predict the function of over 90% of the enzymes.
Therefore, this method may be useful for some applications, al-
though it does not provide subfamilies of proteins with related
sequences.

Functional prediction of the eukaryotic GH5 proteins can also
be inferred by building a phylogenetic tree with ClustalW. There-
fore, identification of short, conserved peptides does not perform
better than standard methods for elucidating the function of this
small number of proteins. However, alignment-based analysis be-
comes more difficult when many highly divergent sequences are
used as the input and requires many hours of manual curation by
experts in the field to yield good results (9, 25, 29). Although the
search for short, conserved sequences was performed by the com-
puter algorithm PPR, our results show that the subfamilies gener-
ated by this approach correlated to a large extent with the subfam-
ilies generated by alignment-based methods by the team at CAZy
(25). Glycoside hydrolases can be classified with the PFAM sys-
tem, but CAZy is generally used as a reference because it is con-
sidered to be the most precise classification system (3). Improve-
ments of glycoside hydrolase classification have focused on
exploiting PFAM for automatic annotation of proteins into CAZy
families, thereby pinpointing the importance of CAZy as the state
of the art (30, 31) and as the classification system that PPR should
be compared to.

The advantage of using a one-step approach such as PPR com-
pared to a multistep procedure that needs much hands-on time
and the use of techniques to guide the result in the right direction
is obvious. Moreover, PPR did not have any problems in handling
the more than 8,000 GH13 proteins in the CAZy database today,
where the limit for the alignment-based method was judged to be
around 2,000 protein sequences (25). Due to its computational
simplicity, PPR is well suited for analysis of large numbers of se-
quences. This is a major strength of this approach compared to
sequence alignment and makes it especially suitable for handling
the GH families that often comprise large numbers of divergent
sequences.

The ability of PPR to accept unrelated protein sequences as an
input contributes significantly to the ease of analysis. Unrelated
proteins are separated into groups of similar proteins that can be
described by short, conserved peptides. Not only different pro-
teins but also different parts of the input will be separated, as
demonstrated for the GH61 proteins, where only a few conserved
peptides mapped to the variable C-terminal half (26, 32). In prac-
tical protein analyses, the exclusion of irrelevant proteins and se-
quence trimming often present a significant preanalytical effort
and are subject to errors.

The GH61 family is a large gene family with low sequence sim-
ilarity, but PPR divided the family into manageable subfamilies
with conserved peptides useful for analysis of the subfamilies. De-
spite the interest in GH61 proteins, only a few have been charac-
terized enzymatically. In analogy to the GH5 analysis, the 16 sub-
families of GH61 proteins probably reflect significantly fewer
different substrate affinities and enzymatic activities. However,
the division of GH61 proteins into subfamilies provides a plat-

FIG 4 Cross comparison and distribution of the conserved hexapeptides in
the GH61 sequences. The distribution of hexapeptides for each subfamily was
calculated as the number of hexapeptides mapping to each 20-amino-acid
interval, as described in Materials and Methods. The accumulated hexapeptide
frequency (vertical axis) was calculated as the sum of the distribution of all the
subfamilies in each 20-amino-acid interval. The horizontal axis designates the
amino acid intervals.
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form for functional and structural analysis of this interesting fam-
ily of copper monooxygenases.

Although sequence similarity is low, the homology between
known GH61 structures and the structure of the bacterial homo-
logue CBM33 is rather high (15, 26, 32, 33). In this context, it is
interesting that the conserved peptides for the GH61 subfamilies
included a number of conserved amino acids in the GH61 pro-
teins on the copper-binding surface and on two other surface areas
of the GH61 proteins. All 16 GH61 subfamilies had conserved
amino acids within each subfamily in these regions, indicating
that they may be important for function. Interestingly, some of the

residues were not conserved between subfamilies and may indi-
cate different functions or substrate preferences for some of the
subfamilies. However, the functionally characterized GH61 pro-
teins belong to only 6 of the 16 subfamilies, and much additional
work is necessary to investigate the enzymatic activity of the GH61
proteins from all 16 subfamilies.

Interestingly, PPR classified GH5 and GH13 proteins into
groups of proteins with the same enzymatic activity when using
the same parameters as those used for constructing the GH61
subfamilies. For both the GH5 and the GH13 subfamilies, proteins
with the same function were found in several subfamilies. This can
be explained by the hypothesis that the same function can evolve
in phylogenetically distant sequences (8). In analogy to the other
two GH families, the 16 groups of GH61 proteins probably reflect
significantly fewer different functions.

Expression of the 10 GH61 genes from the white-rot fungus
Heterobasidion irregulare on lignocellulose showed that expres-
sion of some of these proteins is induced by growth on a lignocel-
lulosic substrate compared to a substrate with malt extract (34).
The most induced of the GH61 proteins (GH61H) belongs to
subfamily 5, as does one of the characterized GH61 proteins with
polysaccharide monooxygenase activity (14), indicating that sub-
family 5 is induced during lignocellulose degradation. However,
only the relative expression levels between growth on lignocellu-
lose and growth on malt substrate have been reported for the 10
GH61 proteins from H. irregulare (34). This makes it difficult to
draw any conclusions about the absolute level of expression of the

FIG 5 Mapping of conserved amino acid residues on the surface of GH61E (Protein Data Bank [PDB] accession number 3EII). Conserved amino acids in GH61
subfamily 3 mapping to the surface of the GH61E structure (12) are indicated in yellow. Shown is an alignment of GH61E and the conserved amino acid residues
of the GH61 subfamilies in the regions depicted on the surface of the GH61E structure. Residues that are highly conserved between subfamilies are indicated in
red. Numbering above the alignment indicates amino acid positions relative to the start residue in GH61E.

FIG 6 Amplification of a GH61 protein with subfamily 1-specific primers.
PCR was performed with the 6 possible combinations of the 5 primers con-
structed for GH61 subfamily 1 on Chaetomium thermophilum DNA, and the
product was analyzed on a 2% agarose gel. Numbers and bars to the right of the
gel indicate the migration of the bands in the DNA size marker, and numbers
above the lanes indicate the combination of primers.
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genes and, thus, about the importance of the individual GH61
proteins for lignocellulose degradation. For example, a highly and
constitutively expressed GH61 protein can contribute more to
substrate degradation than a protein that is highly induced from a
low level of basal expression. Nevertheless, the expression and
upregulation of several GH61 proteins from H. irregulare on a
lignocellulosic substrate point out that several GH61 subfamilies
take part in lignocellulose degradation (34). The H. irregulare
GH61 proteins can be classified as subfamilies 2, 4, 5, 13, and 15.

New GH61 genes, assigned to specific protein subfamilies, can
be identified by performing an in silico search for genes encoding
proteins that contain the conserved peptides from one or all of the
GH61 subfamily-specific peptide lists, or the peptides can be used
to design probes or primers for finding new GH61 proteins, as
demonstrated in the present study. In addition to providing a
means to find new GH61 proteins, it is also possible to use the
peptide lists to focus exclusively on new GH61 proteins belonging
to a specific subfamily. Such a search can be done on assembled
genomes, transcriptomes, or unassembled sequencing data, e.g.,
from metatranscriptomic analyses.

Another way to use the list of conserved peptides is to pinpoint
amino acids that are important for function. The nickel-binding
surface of the GH61 proteins is important for substrate interac-
tions, and differences in the amino acid residues mapping to this
surface may reflect interactions with different substrates (11, 15,
16, 32, 35). The PPR analysis pinpointed a number of conserved
amino acids in the GH61 proteins on the nickel-binding surface

and on two other surface areas of the GH61 proteins. All 16 GH61
subfamilies had conserved amino acids in these regions, indicat-
ing that they may be important for function. However, some of the
residues were not conserved between subfamilies and may indi-
cate different functions or substrate preferences for some of the
subfamilies.

Identification of short, conserved sequence motifs that occur
once within each sequence (e.g., by PPR) is a new approach to
sequence analysis. It should not be confounded with alignment-
independent approaches based on word frequency methods, as
used in text analyses (36). These methods look for short sequences
(words) within a protein sequence and count the number of times
each word is repeated in the sequence. The similarity between two
or more sequences is calculated by comparing the frequency of
each word within each sequence (37, 38).

Variations include dividing the sequences into subsequences
with different chemical properties (for example, hydrophilic and
hydrophobic) (39). These methods require less computation than
alignment and can be used for comparison of distantly related
sequences (36) but will often overlook short amino acid motifs
conserved in proteins with the same function, because such motifs
normally occur only once within each protein, e.g., a conserved
motif forming an active site, and do not have a high weight in word
frequency methods (10). In contrast, the present method and the
PPR algorithm were developed exactly to find such motifs by giv-
ing a high level of importance to sequences found in many pro-
teins but ignoring the number of times each motif occurs within a

species\subfamily 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Chateomium senegalense (S) - - - - - - - - - - - - - - - - 

Chateomium  thermophilum (S) 12 - - - - - - - - 1 - - - - - - 

Corynascus thermophilus (S) 12 - - - - - - - - - - - - - - - 

Melanocarpus albomyces (S) 7 - - - - - - 1 - 1 - - - - - 1 

Talaromyces byssochlamydoides  (E) 4 - - - - - - - - - - - - - - - 

Talaromyces leycettanus (E) 3 - - - - - - - - - - - - - - - 

Talaromyces emersonii (E) 9 - - - - - - - - - - - - - - 1 

Talaromyces thermophilus (E) 1 - - - - - - - - - - - 1 - - 1 

Thermoascus aurantiacus (E) 8 - - - - - - - - - - - - - - - 

Malbranchea cinnamomea (O) 15 - 1 3 - - - - - 4 - - 1 - - 1 

Remersonia thermophila (S) 8 - - - - - - - - 2 - - - - - - 

Scytalidium indonesiacum (S) 4 - - - - - - - - 1 - - - - - - 

Scytalidium thermophilum (S) 3 1 - - - - - - - - - - - - - 1 

Thermomyces lanuginosus (E) 2 - - - - - - - - - - - 1 - - - 

          10        20        30        40        50        60        70        80        90       100       110 
     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 
C_senegalense ..............................................................LEFFKIDEVGLVDGANAPGFWGSDQLIANNAAWMVQIP.EDIAP........... 

R_thermophila .DI QQSATNAGGYAVVAAGDKVYIQWDQ..WP..ESHHGPVIDYLASCGSTGCDAVNKADLELFKIGEVGLIDGRQAPGFWGSDQLIANNAGWLVQIP.SDLA............ I QQIC
S_indonesiacum ....CHNQATNAGGHAVVAAGDKIWIQWDQ..WP..ESHHGPVLDYLASCGSSGCESVNKLDLKFFKIGEKGLIDGSSAPGRWASDELIANNAGWLVQIP.ADIAP........... 
C_thermophilus ...ICHKSATNAGGHAVVAAGDKISIQWDT..WP..ESHHGPVIDYLADCGDAGCEKVDKTTLEFFKISEKGLIDGSSAPGRWASDELIANNNSWLVQIP.PDIAPA.......... 

C_thermophilum ..HICHKSATNAKGHAVIKAGDSVYIQWDT..WP..ESHHGPVIDYLASCGSAGCETVDKTQLEFFKIAEAGLIDGSQAPGKWAADQLIAQNNSWLVTIP.ENIKP........... 

T_byssochlamydoides ......................................HHGPVINYLANCGDS.CETVDKTTLKFFKIDGVGLVDDTTVPGTWGADQLISNNNSWLVEIP.PTLRRN.......... 

T_leycettanus ......................................HHGPVISYLANCGAS.CETVDKTTLQFFKIDNIGFIDDSSPPGIWAADQLEANNNTWLVEIPRPSL............. 

M_albomyces ...ICHKSATPGGGHATVAAGDKISLVWTPE.WP..ESHIGPVIDYMAACNGD.CETVNKESLRWFKIDGAGYDSSK...GQWAADALRENGNSWLVQIP.SDLAPGNYVLRHEIML 

T_thermophilus DDIICHKNAKPAPNKAQIQAGDKVRLEWSP..WPGPPDHQGPIINYLASCNGP.CSSVQKESLKWAKIDETGLFPN....GTWATDVLRSNGNTWDVKIP.SDLL............ 

T_lanuginosus .DIICHKEATPARGHVSVKAGDKIYIQWQPNPWP..DSHHGPVLDYLAPCNGP.CESVDKTSLRFFKIDGVGLIDGSSPPGKWADDELHANGNGWLVQIP.EDIKP........... 

M_cinnamomea ..................................................HGD.CSSVDKTSLKFFKISEAGLNDGSNAPGQWASDDLIANNNSWTVTIP.KSIAPGNYVLRHEIIA 

S_thermophilum ..............................................................LEFFKIDAAGFED.....GKWASDKLIANNNTWTVTVP.DSIAPGQYVLRHEIM. 

T_emersonii ......................................HHGPVITYLANCNGN.CSTVDKTQLEFFKIDQSGLINDTDPPGTWASDNLIANNNSWTVTIP.STLEPGNYVLRHET.. 

T_aurantiacus ....CHKGAEPGALSAKVAAGGTVELQWTD..WP..ESHKGPVIDYLAACNGN.CSTVDKTKLEFFKIDESGLIDGSSAPGTWASDNLIANNNSWTVTIP.STMLP........... 

FIG 7 Characterization of the PCR products from 14 fungi. The number of conserved peptides from the GH61 subfamily was counted in each PCR product from
the 14 fungi from the orders Sordariales (S), Helotiales (H), and Eurotiales (E). Furthermore, all the sequences were aligned. Sequences originating from the
primers were discarded before analysis.
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single sequence. This makes PPR fundamentally different from
traditional word frequency methods.

Identification of short, conserved sequence motifs is not the
only alignment-independent method for sequence analysis.
Chaos game representation is a method that creates a picture for
each biological sequence and compares the resulting pictures (40).
However, this method can accommodate only four different
words and is therefore suitable for nucleotide sequence compari-
son but difficult to adapt to protein sequences made up of 20
different words/amino acids (38, 41).

In conclusion, the present report presents a new, alignment-
independent method for comparison and analysis of glycoside
hydrolases. The potency of the method was demonstrated by the
ability to predict glycoside hydrolase function, to identify func-
tionally relevant subfamilies, and to pinpoint conserved se-
quences in large numbers of highly divergent proteins. Although
the present study is focused on glycoside hydrolases, identification
of short, conserved motifs may also be a useful approach for elu-
cidation of structure-function relationships in other protein fam-
ilies with the same characteristics and may be applicable at the
DNA and RNA levels.
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