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Epstein-Barr virus (EBV) infects �95% of the adult population. The factors that confer protection in the remaining �5% remain
unknown. In an exploratory study, we assessed immunogenetic factors and tonsillectomy in a cohort of 17 EBV-negative and 39
EBV-positive healthy individuals aged >60 years. Analyses of HLA genotypes revealed an association between EBV negativity
and the presence of HLA-C-35T/T and/or HLA-Bw4 alleles. In addition, EBV-negative donors presented with a history of tonsil-
lectomy more often than EBV-positive donors.

For most, primary Epstein-Barr virus (EBV) infection occurs
during childhood and is asymptomatic or causes an acute self-

limiting lymphoproliferative disease (infectious mononucleosis).
After acute infection, EBV enters life-long latency, which leaves
the infected individual at risk for viral reactivation and, in rare
cases, the development of EBV-associated malignancy (1). Why
�5% of the adult population remain EBV-seronegative through-
out their lives is not known, yet understanding natural resistance
to EBV infection might provide fundamental insight into the host-
pathogen interaction and pinpoint targets for novel preventive
and/or therapeutic strategies.

Here, after Institutional Review Board (IRB) approval and
written informed consent, 515 consecutive healthy blood donors
aged �60 years who were routinely presenting at the Blood Trans-
fusion Center Basel were serologically tested for EBV by multiplex
microparticle technology (Luminex 200 Technology, Luminex,
Austin, TX, USA). Seventeen of 515 donors were EBV seronega-
tive (median age, 64 years; range, 62 to 70 years; 3 female, 14
male). The seropositive control cohort consisted of 39 individuals
(median age, 64 years; range, 63 to 70 years; 5 female, 34 male). In
the EBV-seronegative cohort, we (i) tested whether EBV seroneg-
ativity reflects the absence of viral genome and of EBV-specific
cellular memory and (ii) searched for specific HLA-B and HLA-C
polymorphisms associated with EBV negativity.

To relate serostatus and the presence of EBV DNA, a sensitive
PCR was performed on DNA extracted from B cells (the primary
target cells of EBV) (2), using a published real-time PCR protocol
(3). The EBV genome was not detected in any of the 17 EBV-
seronegative donors. In contrast, 22/25 EBV-seropositive donors
tested positive [mean, 97 genome equivalents (geq)/(1 � 106) B
cells; range, �3 to 1,072 geq/(1 � 106) B cells] (Fig. 1A). To assess
whether a negative EBV serostatus also indicates the absence of
EBV-specific cellular immunity, we applied a gamma interferon
(IFN-�) enzyme-linked immunosorbent spot (ELISpot) assay as
previously described (4, 5; also data not shown). IFN-� secretion
in bulk peripheral blood mononuclear cells (PBMC) was mea-
sured in response to a pool of peptides consisting of 91 major
histocompatibility complex (MHC) class I-restricted and 33
MHC class II-restricted optimal EBV epitopes, testing for CD8�-
and CD4�-specific reactivity (4, 5). We did not detect responses to
the peptide pools in any of the 17 EBV-seronegative individuals,

whereas PBMC from 13/24 and 19/23 EBV-seropositive donors
secreted IFN-� in response to one or multiple MHC class I- and
class II-restricted EBV peptide pools (Fig. 1B and C). Together,
these data established that neither direct (EBV DNA) nor indirect
(T cell reactivity) evidence for latent EBV infection was present in
any of the 17 EBV-seronegative individuals. The expression of the
EBV receptor CD21 and the coreceptor HLA-DR did not differ
between the cohorts as assessed with fluorescence-activated cell
sorter (FACS) staining. And, importantly, B cells from EBV-sero-
negative donors could readily be infected and transformed in
vitro, excluding host resistance to EBV infection at the target cell
level (data not shown).

Control of established EBV infection depends on functional
cytotoxic CD8� T cells, and yet NK cells (i.e., innate immune
cells) play an important role in shaping the clinical phenotype
of EBV infection as well (6–9). NK cell functionality is largely
determined by a family of receptors that interact with HLA I
molecules, the killer cell immunoglobulin-like receptors
(KIRs) (10–12). HLA and HLA-KIR compound genotypes have
been shown to influence resistance to HIV infection among
highly exposed seronegative individuals (13–16). In chronic
HIV infection, HLA-Bw4 alleles, which interact with the inhib-
itory NK cell receptor KIR3DL1, have been collectively attrib-
uted a protective role, particularly the subset of Bw4 allotypes
containing isoleucine at position 80 (Bw4 80Ile) as opposed to
threonine (Bw4 80Thr) (17). Also of note is an allele variant 35
kb upstream from HLA-C (�35 C), known to be related to
higher HLA-C mRNA expression levels, which has recently
been associated with slower progression to AIDS (18). In EBV
infection, no consistent roles for specific HLA class I and KIR
variants have been reported.
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Against this background, we specifically analyzed �35 C allele
variants (by genotyping the HLA-C rs9264942 single-nucleotide
polymorphism [SNP] using a commercial ABI TaqMan kit [Ap-
plied Biosystems, Branchburg, NJ, USA]) and HLA-Bw4 epitopes
(by sequence-based genotyping [Histogenetics, New York, NY,
USA]). HLA-B alleles were assigned to the Bw4 and HLA-Bw4
80Ile groups according to http://hla.alleles.org/wmda/index.html.
KIR3DL1 and KIR3DS1 genotypes were determined by multiplex
PCR, followed by a reverse sequence-specific oligonucleotide
(rSSO) method according to the manufacturer’s instructions
(One Lambda, Inc., Canoga Park, CA, USA).

The HLA-C variant with TT at position �35, which is associ-
ated with lower HLA-C levels, was significantly underrepresented
in the EBV-negative cohort (15/35 EBV-positive donors were ho-
mozygous for the �35 T allele, compared to only 2/17 EBV-neg-
ative donors [P � 0.03]) (Fig. 2A). In contrast, the frequency of
HLA-Bw4 epitopes was significantly higher among the EBV-
negative group, with 16/17 donors carrying at least one HLA-
Bw4 epitope, versus 26/39 among the EBV-positive control co-
hort (P � 0.04) (Fig. 2B). Eight of 17 EBV-negative donors
were homozygous for HLA-Bw4, compared to only 4/39 EBV-
positive donors (P � 0.004), and individuals homozygous for
HLA-Bw4 80Ile were significantly overrepresented among the
EBV-negative cohort (P � 0.003) (Fig. 2B). In chronic HIV
infection, the protective effect of HLA-Bw4 is thought to be
mediated through interaction with KIR3DL1 and/or KIR3DS1
(19, 20). In our hands, the combined genotype of HLA-Bw4
homozygous and KIR3DL1 homozygous (KIR3DL1 homozy-

gous equals the absence of KIR3DS1) was present significantly
more often in the EBV-negative cohort (4/17 [24%]) than in
the EBV-positive cohort (2/38 [5%]; P � 0.045). No significant
association was found between HLA-Bw4 alleles and KIR3DS1
(data not shown).

The oropharyngeal lymphatic tissue represents the entry site
for EBV (1). Reduction of oropharyngeal lymphoid tissue, thereby
removing substrate that can be infected by EBV, may affect an
individual’s risk to become infected. In addition to the genetic
makeup, we therefore assessed how tonsillectomy, ethnicity, and
socioeconomic status influence susceptibility to infection. No dif-
ferences were found in ethnicity and socioeconomic status (data
not shown). Intriguingly, 17/39 (44%) EBV-positive versus 13/17
(76%) EBV-negative individuals had a history of tonsillectomy
(P � 0.023) (Fig. 2C). No significant difference in median age at
tonsillectomy was found between the two groups (EBV negative,
age 7 at tonsillectomy, versus EBV positive, age 9.5; P � 0.75). Of
note, tonsillectomy and protective genetic variants in HLA-B al-
leles did not cocluster among long-term EBV-negative individuals
(data not shown).

In summary, our preliminary study for the first time provides a
genetic/anatomic signature capturing long-term protection from
EBV. Genetic studies suggest a model whereby inhibition of NK
cells is weaker by specific KIR-HLA combinations than by others,
with weaker inhibition resulting in a more pronounced activation
of NK cells and, therefore, better control of viral infections (21).
However, more analyses of KIR/HLA combined genotypes are
required to interpret the between-group differences in HLA-Bw4

FIG 1 EBV genome content of B cells and EBV-specific T cell reactivity. (A) The number of viral genome equivalents in 17 EBV-seronegative and 25
EBV-seropositive individuals was assessed by BALF5 (DNA polymerase catalytic subunit) reverse transcription (RT)-PCR using DNA extracted from 1 � 106 B
cells (2 	g). For each donor, the RT-PCR was run twice from the same DNA stock. (B) Ex vivo CD8� T cell reactivity to EBV-derived latent and lytic epitopes was
assessed by IFN-� ELISpot. Whereas 13/24 (54%) EBV-positive donors displayed IFN-� secretion in response to at least one HLA-restricted EBV-derived
epitope, no IFN-� secretion could be detected in EBV-negative donors. The inset on the right shows the magnitude of CD8� T cell responses of the 13 reactive
study subjects to the individual peptide (some responding to more than one peptide). (C) IFN-� secretion in response to MHC class II-restricted EBV peptides
as measured by ELISpot. None of the 17 EBV-seronegative donors reacted in response to a pool of 33 MHC class II-restricted EBV peptides. In contrast, 19/23
EBV-seropositive donors displayed IFN-� secretion when tested with the same peptide pool [mean, 39 spot-forming cells (SFC)/(1 � 106) PBMC; standard
deviation, 
9 SFC/(1 � 106) PBMC; P � 0.001].
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and HLA-Bw4 80Ile-homozygous genotypes in the context of
EBV infection observed here.
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