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While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have
proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate
immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in ac-
quisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-de-
pendent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from in-
fected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies
to drive phagocytosis and qualitative differences in their FcyR usage profile. We demonstrate that antibodies from controllers
and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with
FcyR2a and FcyR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence im-
mune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regu-
late the immune response by modulating downstream signals following phagocytosis— driving passive degradation of internal-
ized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.

Antibodies are potent determinants of the humoral immune
response and can act not only by direct neutralization of the
pathogen but also via engagement of the cytotoxic Fc receptor
(FcyR)-bearing cells of the innate immune system—providing a
functional link between the innate and adaptive immune systems
(1). The innate immune effector function of an antibody is deter-
mined by its constant, or Fc, domain, which has evolved to possess
a large number of states with regard to potency. These states in-
clude the choice of antibody isotype and IgG subclass (2-5), as
well as the precise glycan structure at a conserved glycosylation site
at position Asn297 on the antibody heavy, or Fc, chain (6, 7),
giving rise to remarkable combinatorial diversity.

Several recent reports have highlighted the possible impor-
tance of antibody Fc effector functions in HIV acquisition and
progression (3, 5, 8-12), offering what may be a tractable handle
for protection mediated by vaccination. While the profile of anti-
bodies required for the induction of natural killer (NK) cell-me-
diated antibody-dependent cellular cytotoxicity (ADCC) has been
elucidated, less is known about the humoral parameters associated
with robust antibody-dependent cellular phagocytosis (ADCP).
Critically, as a potent mechanism of antibody-mediated effector
function, phagocytosis of immune complexes, opsonized virus,
and infected host cells represents an important connection be-
tween the adaptive and innate immune systems, with potential
roles both in priming of the adaptive immune response and in
clearance of virus. Phagocytosis not only may rapidly remove vi-
rus or virally infected cells from the circulation but also could
affect immune complex-induced inflammation, implicated in
driving disease progression.

Importantly, there is evidence that disease susceptibility and
severity in numerous autoimmune diseases and infectious dis-
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eases and responsiveness to monoclonal antibody therapy are im-
pacted by antibody-driven phagocytosis (13-17). FcyR2a, the re-
ceptor implicated in phagocytosis, is expressed on cells capable of
acting as professional phagocytes, including monocytes, macro-
phages, neutrophils, dendritic cells, and mast cells—making
FcyR2a the most widely expressed FcyR (18). Interestingly,
though 95% identical in its extracellular domain, FcyR2b has an
intracellular ITIM motif and acts as an inhibitory receptor, but it
has also been implicated in phagocytosis in the absence of cell
activation (19, 20). Several lines of evidence support the impor-
tance of phagocytosis in HIV infection. First, FcyR2a polymor-
phisms have been found to correlate with disease progression (21)
and susceptibility (22). Second, IgG2 subclass antibodies, in com-
bination with the FcyR2a allele capable of interacting with 1gG2,
are associated with delayed progression (23). Lastly, progressive
infection is associated with decreased expression of FcyR2a, cor-
relating with reduced ability to phagocytose immune complexes
(24).

Accumulating data from clinical and animal model studies
suggest that there are significant differences in the ability of anti-
bodies from HIV™* and vaccinated subjects to elicit the cytotoxic
function of NK cells (ADCC) and complement (2, 5, 8, 25-27),

Received 10 December 2012 Accepted 27 February 2013
Published ahead of print 6 March 2013

Address correspondence to Margaret E. Ackerman,
margaret.e.ackerman@dartmouth.edu.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JV1.03403-12

May 2013 Volume 87 Number 10


http://dx.doi.org/10.1128/JVI.03403-12
http://jvi.asm.org

which may have relevance to disease progression or infection.
However, while HIV-specific antibodies are known to have the
capacity to inhibit virus in the presence of phagocytes (28—-30), less
is known about the natural variability of this capacity to engage
professional phagocytes and process immune complexes. Thus,
we undertook a study to investigate whether differential Fc effec-
tor antibody functions extend to the induction of antibody-de-
pendent phagocytosis, by investigating whether and how antibod-
ies generated in individuals with differential control of infection
exhibited an altered capacity to mediate this effector function. In
this study, we paired biophysical measurements of antibody bind-
ing to FcyR2a and -2b with experimental measurement of im-
mune complex phagocytosis and found that potentiated phago-
cytic activity is associated with antibodies that are able to
preferentially interact with the activating FcyR2a over the inhibi-
tory FcyR2b. Because significant clinical data suggest the involve-
ment of phagocytic Fc receptors in antibody activity, understand-
ing the interplay between these two receptors and the means by
which receptor selectivity can be tuned is likely to be important for
both recombinant therapeutics and vaccine design.

MATERIALS AND METHODS

Patient antibodies. A total of 109 subjects were recruited for this study,
including 20 healthy HIV-1-negative control subjects, 26 untreated vire-
mic HIV-1-infected subjects with an average viral load of 5.6 X 10* copies
of HIV-1 mRNA per ml of plasma (range, 7,890 to 127,000 copies per ml)
and an average CD4 cell count of 504 cells per mm? (range, 47 to 961 cells
per mm?), 28 HIV-1-infected subjects receiving highly active antiretrovi-
ral therapy (HAART) with undetectable viral loads (<50 copies) for at
least 6 months and an average CD4 cell count of 500 cells per mm? (range,
39 to 1,150 cells per mm?), and 35 elite controllers able to spontaneously
control viral replication below detectable limits (50 copies per ml of
plasma) with an average CD4 cell count of 774 cells per mm? (range, 495
to 1,024 cells per mm?). The study was approved by the Massachusetts
General Hospital Institutional Review Board, and each subject gave writ-
ten informed consent. Antibodies were separated from other serum pro-
teins using Melon gel according to the manufacturer’s instructions
(Thermo Scientific).

THP-1 phagocytosis assay of HIV-specific antibodies. The THP-1
phagocytosis assay was performed as described previously (4) using YU2
gp120. Phagocytic scores represent integrated mean fluorescence inten-
sity (iMFI) values (frequency X MFI). Each antibody sample was tested
over a range of concentrations (0.01 to 100 pg/ml). The concentration of
antibody required for half-maximal phagocytosis (PC5,) was determined
utilizing Prism software.

ADCVI assay. In a modification of previously published protocols
(31), antibody-dependent cellular viral inhibition (ADCVI) was assayed
as follows. CD4™ T cell targets were generated using purified peripheral
blood mononuclear cells (PBMCs) from healthy control donors, by acti-
vating PBMCs with complete RPMI medium supplemented with 50 U/ml
of IL-2 and 0.5 pg/ml of a bispecific CD3 CD8 antibody (Ab) (32). Fol-
lowing 3 days of culture, the CD4™ T cells were infected with JRCSF at a
multiplicity of infection (MOI) of 0.1 for 4 h at 37°C, washed twice, and
plated at 10° cells per well in a 48-well plate containing 100 wl of R10 per
well. Three days later, blood was collected from the same donor for the
generation of autologous monocytes and natural killer cells. Monocytes
were purified following PBMC purification by Ficoll-Hypaque centrifu-
gation using CD14™ magnetic beads (Miltenyi Biotech). NK cells were
enriched directly from whole blood by negative selection using RosetteSep
(Stem Cell Technologies). Effector cells were added to CD4™ T cells at a
10:1 ratio. Purified patient antibodies were then added to experimental
wells at 50 pwg/ml. Furthermore, a well containing medium alone and a
well containing the neutralizing antibody B12 served as controls. The level
of viral replication was then quantified by Gag p24 enzyme-linked immu-
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nosorbent assay (ELISA) (PerkinElmer), and the difference in p24 levels
in wells containing CD4 cells alone and each experimental well was quan-
tified and expressed as percent inhibition.

gp120, lectin, and FcyR ELISA analysis. Binding titers of antibodies
to YU2 gp120 (NIH AIDS reagents) were determined as described previ-
ously (33). Recombinant human mannose-binding protein (MBP; Sino
Biological) was labeled with biotin (Pierce) and used to probe antibody
characteristics by ELISA as previously described (34). ELISA determina-
tions of antibody binding to FcyR were made by coating nickel function-
alized plates (Qiagen) with His -tagged FcyR extracellular domain (R&D
Systems), as described previously (33).

Receptor blocking experiments. Blocking antibodies to FcyR2a (Ab-
cam), FcyR2b (clone 2B6 [35]), and FcyR3a (Sigma) were used according
to the manufacturer’s instructions. Cells were preincubated with blocking
antibodies for at least 1 h prior to being mixed with opsonized beads and
were analyzed as described above. Results are presented as the ratio of
phagocytosis of FcyR blocked to untreated cells for each patient sample.

Competition phagocytosis assay. For a subset of 9 individuals, bulk
antibodies were biotinylated (Pierce) and individually used to coat to
saturation 1-pm fluorescent neutravidin functionalized red and green
fluorescent beads (Invitrogen). Excess soluble antibody was removed by
washing, resulting in the generation of both red and green beads equally
coated with antibody from each of the 9 subjects. These antibody-coated
beads were then used to directly compare phagocytosis in competitive-
uptake experiments. Pairwise competition experiments were conducted
between all samples by combining equal numbers of red beads coated with
antibody from a given subject with green beads coated with antibody from
each other subject. As a control, all subjects were also competed against
themselves to verify equivalent uptake of identical antibody samples. The
mixed beads were incubated with monocytic THP-1 cells overnight. Up-
take of beads of each color was determined by flow cytometry. An uptake
ratio (calculated as red bead iMFI/green bead iMFI) was determined in
order to assess differential uptake mediated by each antibody sample.

IgG istopying. Antibody subclasses IgG1, -2, -3, and -4 were quanti-
fied using the Milliplex map immunoglobulin isoptying kit (Millipore)
according to the manufacturer’s instructions on a Bio-Plex 200 (Bio-Rad
Laboratories).

FcyR Biacore analysis. For Biacore experiments, research-grade CM5
plasmon surface resonance chips were coated with FcyR1, -2a, -2b, and
-3aand an irrelevant protein as a negative control. After equilibration, the
chip surface was activated with 30 pl of an equal-volume mixture of N-
hydroxysuccinimide (NHS) (0.1 M in water) and EDC (0.1 M in water).
Then individual cells were coated with 30 .l of a 40-wg/ml solution of the
proteins of interest. Additional protein was injected to reach a minimum
of a 1,000-relative-unit signal following injection. Residual NHS esters
were deactivated by a 30-l injection of 1 M ethanolamine, pH 8.5. In
parallel, patient antibodies were diluted in phosphate-buffered saline
(PBS) to 0.2 mg/ml in 96-well plates and loaded on a Biacore 3000, and
binding was quantified as response units.

Statistical analysis. Differences between subject groups were assessed
by a two-tailed Mann-Whitney or unpaired ¢ tests. Where appropriate,
analyses of variance (ANOVA) with corrections for multiple tests were
performed. All experimental data available were included in each analysis.

RESULTS

Phagocytic activity is enhanced in some subject groups. We
tested whether antibodies from different patient groups exhibited
differential effector functions in assays using primary effector cells
and replicating virus. An antibody-dependent cellular viral inhi-
bition (ADCVI) assay was conducted utilizing monocytes or nat-
ural killer (NK) cells as primary effector cells in the presence of
autologous HIV-infected CD4™ T cells from HIV-negative donors
following incubation with purified plasma IgG. When monocytes
were used as effectors, antibodies from untreated subjects and
controllers exhibited potentiated inhibition of viral replication
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FIG 1 Differential effector function of antibodies from HIV-positive subjects.
(A and B) ADCVI activities of antibodies from different subject groups in
assays utilizing primary monocytes (A) or NK cells (B) as effectors. (C) Bind-
ing titers (ECs, in pg/ml) of anti-envelope antibodies. (D) Antibody neutral-
ization as determined by viral inhibition in the absence of effector cells. **, P <
0.005; ***, P < 0.0005.

relative to antibodies from treated subjects (Fig. 1A). In contrast,
antibodies from treated subjects and controllers suppressed viral
replication most profoundly in the presence of NK cells (Fig. 1B).
These divergent effector function profiles could not be explained
by differences in either titer or neutralization activity, which did
not differ significantly among subject groups (Fig. 1C and D) and
were not correlated with effector function. Collectively, these re-
sults indicate that specific features, such as IgG subclass and/or
glycosylation state, rather than prevalence of HIV-specific anti-
bodies may account for their enhanced activity.

To gain deeper insights related to the observed differences in
antibody-mediated monocyte antiviral suppressive activity, we
applied a higher-throughput method, utilizing a flow cytometric
assay that allows the quantitative analysis of HIV-specific anti-
body-mediated phagocytosis (4, 36). Fluorescent beads were
functionalized with gp120 and incubated with various amounts of
purified subject antibody in the presence of monocytic THP-1
cells. Significantly, only antibodies from infected subjects resulted
in bead uptake, and despite exhibiting similar maximal levels of
phagocytosis, there were dramatic differences in the concentra-
tion dependence of phagocytosis among subjects (Fig. 2A to C).
Therefore, as a means to determine phagocytic potency, dose-
response curves were used to calculate the concentration of anti-
body necessary to elicit half-maximal phagocytosis (PCs,). Figure
2D presents a log plot of reciprocal PC,, for each of the HIV-
infected subject groups, demonstrating elevated phagocytic activ-
ity of antibodies from spontaneous controllers and untreated pro-
gressors compared to subjects receiving antiretroviral therapy.

Importantly, despite the substitution of a cell line for primary
cells and antigen-coated beads for virus, the high-throughput
phagocytosis assay demonstrated the same pattern of activity
among subject groups. Furthermore, good agreement was ob-
served between assays (Fig. 2E), indicating that the bead-based
phagocytosis assay may provide a meaningful metric of phago-
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cytic processes relevant to HIV outgrowth and replication in pri-
mary cells. ADCVI assays conducted with NK cells (which express
only FcyRIIIa) as effectors showed no correlation with THP-1
phagocytosis (Fig. 2F), indicating that in combination with differ-
ential expression of FcyR, specific Fc domain characteristics may
have a strong impact on effector function. Thus, both the primary
cell inhibition assay and the high-throughput phagocytic assay
strongly suggested that both controllers and untreated chronic
progressors possess HIV-specific antibodies with an enhanced ca-
pacity to trigger phagocytosis of immune complexes.

Differential reliance on FcyR2a and FcyR2b among subject
groups. We next utilized FcyR-blocking antibodies to directly in-
vestigate the role of individual FcyRs in modulating phagocytosis
driven by HIV-specific antibodies. Immune complex uptake was
determined in the presence and absence of FcyR-blocking anti-
bodies, and the ratio of phagocytosis observed for blocked to
available receptor was determined for each sample. Figure 3A
presents the results of blocking FcyR2a, FcyR2b, and FeyR3a.
Across all subject groups, only FcyR2a blockade was found to
significantly affect phagocytosis. Consistent with previous studies
(37, 38), no effect was observed when FcyR3a, which is not impli-
cated in phagocytosis and is expressed at low levels in THP-1 cells,
was blocked (Fig. 3B). Blocking FcyR2a had a differential effect on
the capacity of antibodies to induce phagocytosis in each class of
subjects, with a profound decrease observed in phagocytosis for
antibodies from controllers (Fig. 3C), indicating an increased re-
liance on this receptor in driving phagocytosis in this patient
group. Interestingly, when the inhibitory FcyR2b was blocked,
there was no effect on phagocytosis for antibodies from chroni-
cally infected patient samples, but a marked increase in phagocy-
tosis was observed in antibodies from controllers (Fig. 3D). While
factors modulating recognition of antibody Fc regions by FcyR2a
and FcyR2b are not well characterized, these surprising data are
consistent with the possibility that antibodies from these subject
groups possess unique capacities to drive phagocytosis via differ-
ential interactions with FcyR2a and FcyR2b.

The phagocytic activity of antibodies from controllers out-
competes antibodies from chronic progressors. Given the sur-
prising results of receptor blocking experiments, and because HIV
infection is known to globally perturb the antibody compartment
(39-41), we next attempted to determine whether the activity dif-
ferences observed in the HIV-specific compartment were general-
ized to the bulk plasma IgG pool. Therefore, competition experi-
ments were performed in which red or green fluorescent beads
were opsonized with biotinylated bulk antibodies from control-
lers, treated chronic progressors, or HIV-negative patients. Red
fluorescent antibody-coated beads from each subject were mixed
with green fluorescent antibody-coated beads from each of the
other subjects and were incubated with monocytic THP-1 cells
overnight in a competitive assay of phagocytic potential. The ratio
of uptake for red to green beads was calculated for each pairwise
comparison, and importantly, when beads of both colors were
opsonized with the same subject sample, equivalent uptakes of red
and green beads were observed, resulting in uptake ratios equal to
1 (data not shown). Similarly, when uptake ratios were calculated
for competition between members of the same class (e.g., HIV-
negative subject A versus HIV-negative subject B), uptake ratios
were more widely distributed, but also centered around 1 (data
not shown).

In contrast, bulk plasma antibodies from HIV-infected patient
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FIG 2 Differential phagocytic function measured at high throughput. (A and B) Representative histograms of bead uptake by THP-1 cells for antibody samples
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and F) Correlation of viral inhibition in primary monocytes (E) or NK cells (F) with phagocytic potential (1/PCs,) determined by the THP-1 phagocytosis assay.

**, P <0.005; ***, P < 0.0005.

populations drove elevated bead uptake compared to bulk plasma
antibodies derived from healthy controls (Fig. 4A to D), indicating
that antibodies from HIV-positive subjects possess an enhanced
capacity to drive phagocytosis. Among HIV-infected subjects,
bulk plasma antibodies from controllers induced significantly
higher levels of bead uptake than did antibodies from all other
subject groups (Fig. 4E). Together, these data suggest that global
inflammatory cues associated with infection and viral replication
may lead to global alterations in antibody composition or charac-
teristics that enhance phagocytic activity.

Global IgG features which may account for enhanced phago-
cytic activity. HIV infection is known to drive substantial IgG1
hypergammaglobulinemia and variance in bulk plasma antibody
glycosylation (39, 40), offering tractable mechanisms that may
underlie differences in phagocytic activity. Thus, to determine
whether altered induction of any specific IgG subclass might ac-
count for differential phagocytic activity, we compared the global
plasma distributions of IgG subclasses among subject groups. In-
creased IgG1 prevalence was observed in chronically infected sub-
jects (P < 0.05), but not spontaneous controllers, compared to
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HIV-negative controls (Fig. 5A). The prevalence of IgG2, the sec-
ond most abundant subclass, was found to decrease significantly
in all HIV-infected subjects, including controllers (P < 0.05 for all
comparisons) (Fig. 5B). No significant perturbations in the levels
of IgG3 and IgG4, minor components of plasma IgG, were ob-
served (Fig. 5C and D). Similarly, antibody binding to Aleutia
aurantia lectin (AAL), a lectin which recognizes fucose, did not
differ among subjects (Fig. 5E). Mannose-binding protein (MBP),
a plasma lectin which functions in the complement cascade and
recognizes terminal mannose residues, was enriched in all HIV-
infected subjects, but at a reduced level in controllers (Fig. 5F).
Thus, while skewing of both IgG subclass and glycosylation was
apparent in bulk plasma IgG from all HIV-infected subject
groups, the skewing observed was not consistent with the differ-
ences observed in phagocytic activity.

Changes in Fc receptor binding are associated with differen-
tial antibody-mediated phagocytic activity. Thus, to determine
whether specific changes occurred within the antibody pool
among populations resulting in differing capacities to engage Fc
receptors, we next assessed the ability of antibodies from different
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HIV™ subject populations to bind to FcyR, using biophysical and
analytical experiments. Interestingly, HIV-infected patient popu-
lations exhibited elevated binding to FcyR2a compared to that for
healthy controls by both ELISA and Biacore analysis (data not
shown). Because the inflammatory activity of antibodies can be
tempered by their ability to bind to the inhibitory FcyR2b recep-
tor, also expressed on some phagocytes, some investigators have

A B

IgG1 B 10 19gG2

1.00{ 4 - .

- PR 0.751™ 3 B
0.7 . - :AA: A2 ~ . vy
05 . %— _‘5- % 05 %_ l-. . ;v
. ‘?_ﬂ-. L) A y, 0.2 o® % N "%‘
0.25{ * ™ } o~ T
0.004— . . . 0.004— . . .

C 4 IgG3 D 1 IgG4
01 - 0.1 '. .
ooy % - T W oo -

oootl4—m o 0000l e—e—ee———

E 1 AAL F 5 MBL ,

) 4

R o 3"

0 ,%Vv *'. Aﬁ“‘ o’ (o] 2 v I: Aﬁ‘ :0.
0. vy LT ) MY 1 iy ';E- ‘A ::*;:
0.04— ; , . ol— , . .

& 5 5 & F
3
& ¥ & & & ¢ & S

FIG 5 Plasma antibody subclass and glycosylation. (A to D) Fraction of
plasma IgG of the IgG1 (A), IgG2 (B), IgG3 (C), and IgG4 (D) subclasses. (E
and F) Plasma IgG glycosylation as determined by ELISA for fucose (E) or
terminal mannose (F). OD, optical density. *, P < 0.05; **, P < 0.005; ***, P <
0.0005.

considered determination of a ratio of recognition by activating
relative to inhibitory receptors the most accurate means of char-
acterizing effector activity (42). Accordingly, ratios of FcyR2a to
FcyR2b were evaluated, and they demonstrated that HIV-infected
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subjects exhibited preferential binding to FcyR2a over the inhib-
itory FcyR2b relative to healthy controls (Fig. 6A), with control-
lers exhibiting the highest activating potential. This trend toward
increasing recognition by an activating receptor indicates a greater
inflammatory potential, consistent with the results of phagocytic
competition experiments, and may therefore account for the dif-
ferences observed in antibody-mediated phagocytic activity be-
tween subject populations.

FcyR2a/FcyR2b binding ratio predicts phagocytic activity.
Lastly, to determine whether FcyR2a/FcyR2b activity predicted
the potency of antibody-mediated phagocytosis, the ratio of
FcyR2a to FeyR2b binding was compared to the phagocytic po-
tency for each sample tested. Figure 6B presents the positive cor-
relation observed between the ratio of binding to receptor 2a to 2b
and phagocytic potency (1/PCs,). Significantly, 2a/2b ratios from
both Biacore and ELISA measurements were correlated with
phagocytic potency. Thus, these results are consistent with a
mechanism whereby antibodies that preferentially bind to FcyR2a
relative to FcyR2b have a superior ability to induce phagocytosis
of immune complexes.

DISCUSSION

Fc-mediated antibody effector functions serve as a mechanism
whereby antibodies can provide therapeutic benefit. In HIV, ge-
netic evidence has been split as to the role of antibody engagement
of innate immunity in protection from or after infection. High-
affinity polymorphisms of FcyR3a, while protective in monoclo-
nal antibody therapy of cancer, have been associated with HIV
progression (43). Similarly, the allele of FcyR2a with improved
recognition of IgG2 subclass antibodies has been found to be a risk
factor in neonatal HIV transmission (22), whereas it has been
associated with protection from progression in adults (21). Yet
passive-transfer studies of both neutralizing monoclonal and vac-
cine-induced nonneutralizing antibodies have implicated anti-
body effector functions in protection (9, 44, 45). More recently,
there has been speculation that the modest degree of protection
observed in the RV144 trial may have been due to antibody effec-
tor mechanisms (46).

Here we show that antibodies from controllers exhibit en-
hanced humoral phagocytic potential and that this potentiation is
related to the natural induction of antibodies with a propensity to
bind the activating FcyR2a over its inhibitory FcyR2b counter-
part. Given their high degree of sequence similarity, we were sur-
prised to observe differential binding of antibodies to these recep-
tors. Specificity to the activating or inhibitory receptor can be
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mediated by amino acid point mutations in the antibody Fc do-
main (47), and differences in binding to FcyR2a and FcyR2b
among IgG subclasses have also been noted (1), supporting the
possibility that these Fc receptors display some unique specificity
for their antibody ligands. Receptor blocking experiments like-
wise demonstrated distinct mechanistic differences in FcyR usage
from each subject group. These data strongly suggest that the im-
mune system is able to tune the antibody effector profile to natu-
rally produce antibodies with specific effector functions. While
strong glycan-based modulations of interactions with FcyR3a
have been described, glycan modifications that differentially mod-
ulate FcyR2a and FcyR2b binding have yet to be described. Care-
ful dissection of the antibody profiles among subjects may provide
new opportunities to define the specific glycan profiles that mod-
ulate binding to FcyR2a relative to FcyR2Db, potentially providing
critical information to drive the production of antibodies poten-
tiated for this particular effector function.

Perhaps surprisingly, the phagocytic activity of antibodies
from controllers was most similar to that of untreated subjects, in
whom circulating virus, inflammation, and immune activation
are high. Interestingly, while controllers durably maintain viral
replication to undetectable levels in plasma, recent reports suggest
that these individuals have elevated blood levels of microbial
products, indicating that they may have residual viral replication
within their gut (48). Residual replication may induce low-grade
inflammation driving hypergammaglobulinemia, the production
of antibodies with an inflammatory glycan, and the skewed inter-
actions with FcyR2a and FcyR2b associated with potentiated ca-
pacity to induce phagocytosis observed in this study. While the
subclass skewing in controllers was more subtle than in other
HIV-positive subject classes, the presence of (i) high antibody
titers, (ii) decreased plasma IgG2 levels and a trend toward ele-
vated IgG1, and (iii) increased binding of plasma IgG to the com-
plement protein MBP are marks of inflammation and stimulation
even in the absence of detectable viral replication in this patient
population.

While this study focused on antibody-driven phagocytosis,
striking differences in viral suppression mediated by the same an-
tibody samples were observed depending on the effector cell type
utilized. Indeed, complex antibody functions do not necessarily
correlate with titer or among different effector cell populations
(49, 50). The observation that antibody titer does not predict ef-
fector function indicates that there are qualitative antibody fea-
tures that can disparately affect function in different cellular as-
says; the “active” fraction of antibody may be only a component of
the total antibody measured, and this fraction may vary among
subjects. In this study, NK cell ADCVI activity differed signifi-
cantly from monocyte ADCVI activity. Despite the fact that IgG1
and IgG3 antibodies are implicated as being important to both NK
ADCC and phagocytosis, there are a number of differences be-
tween these effector cell types that may account for their differen-
tial engagement by antibody.

First, NK cells express only FcyR3a (51), and this receptor is
sensitive to Fc domain fucosylation (52). Phagocytes can express
FcyR3a but typically do so at lower levels, relying primarily on
FcyR2a, which may also bind to a broader array of subclasses, but
is insensitive to Fc domain fucosylation, for activity (18, 53). Thus,
differences in IgG subclass distribution and glycosylation among
or even within subclasses (particularly IgG1 and IgG3) within the
broader pool of HIV-specific antibodies present in each patient
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population may lead to altered recruitment of innate immune cell
subsets expressing different FcyRs, resulting in the differential
antiviral clearance observed in this study. Consistent with the
striking differences observed between effector cell types here, in a
previous study IgG fucosylation was found to have opposing im-
pacts on polymorphonuclear leukocyte (PMN) and mononuclear
cell ADCC activity even in the context of a monoclonal antibody
(50). Future in-depth analysis of glycosylation of HIV-specific an-
tibodies may provide key insights into these divergent functional
profiles.

Larger questions pertain to defining the humoral mechanism
that may afford the greatest level of protection in HIV, and evi-
dence as to the possible importance of phagocytosis in contribut-
ing to slower HIV disease progression has been accumulating (21,
23, 54). Moreover, often in the in vivo data in which ADCC or
ADCVT has been implicated in protection, it has been difficult to
separate whether distinct FcyR-based mechanisms, such as ADCC
or phagocytosis or a combination of these and other effector ac-
tivities, are involved in the protection observed. Studies aimed at
defining the role of NK cells within the gut have demonstrated that
these cells are found at relatively low frequencies, and a neutraliz-
ing antibody with potentiated NK effector function did not pro-
vide improved protection, suggesting that other Fc receptor-bear-
ing innate immune cells may play a more central role in antiviral
containment at this site (27, 55). In contrast, the gut and other
mucosal membranes are abundantly lined with phagocytes. Thus,
it is plausible that the activity difference observed in this in vitro
study may have an impact in vivo. Furthermore, phagocytosis may
be important not only in the rapid removal of inflammatory im-
mune complexes or infectious particles but also in driving and
regulating the adaptive immune response via phagocytic antigen-
presenting cells (56, 57).

In this study, we have shown that antibodies from controllers
and untreated chronic progressors exhibit increased phagocytic
activity relative to antibodies from treated progressors. Beyond
differences in phagocytic uptake, antibodies from controllers ex-
hibited differential interactions with the activating FcyR2a and
the inhibitory FcyR2b compared to chronic progressors, exhibit-
ing a preference for the FcyR2a yet greater inhibition of phagocy-
tosis driven by FcyR2b. Because the route of phagocytosis and
receptors involved have been shown to alter downstream process-
ing and cross-presentation of pathogens (58—60), patterns of re-
ceptor usage may dramatically impact the rate, downstream sig-
naling, and outcome of immune complex clearance via this
mechanism. Further elucidation of the role of these receptors in
different cellular subsets will be critical to understanding their
impact on HIV acquisition and progression. Continued research
to define the properties that may provide specificity for FcyR2a
over FcyR2b will be important for the design of potential mono-
clonal therapeutics for passive transfer as well as vaccines that can
specifically induce these types of humoral immune responses. In
HIV, however, defining specific features of the antibody Fc do-
main and effector mechanisms that may provide robust protec-
tion against or after infection remains a critical goal.
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