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Abstract
Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring
spatial information from an existing dataset (“atlases”) to a previously unseen context (“target”)
through image registration. The method to resolve voxelwise label conflicts between the registered
atlases (“label fusion”) has a substantial impact on segmentation quality. Ideally, statistical fusion
algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to
elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon
accurately modeling the underlying process of how raters err. Despite success on human raters,
current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate
exogenous intensity information into the estimation process. As a result, locally weighted voting
algorithms represent the de facto standard fusion approach in clinical applications. Moreover,
regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and
highly accurate registration as they implicitly assume that the registered atlases form a collectively
unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-
Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means
perspective in order to learn what label an atlas would have observed, given perfect
correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the
estimation process, (2) provides a theoretically consistent model of multi-atlas observation error,
and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We
assess the sensitivity and optimality of the approach and demonstrate significant improvement in
two empirical multi-atlas experiments.
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1. Introduction
Segmentation of anatomical structures on medical images is essential for scientific inquiry
into the complex relationships between biological structure and function as well as clinical
diagnosis, treatment, and assessment. The long-held “gold standard” for highly robust
segmentation has been through expert manual delineation (Crespo-Facorro et al., 1999;
Tsang et al., 2008). Yet, manual delineation is extremely resource consuming and plagued
by inter- and intra-rater variability (e.g., 10–20% by volume (Ashton et al., 2003; Joe et al.,
1999)). Alternatively, fully-automated algorithms often result in robust and accurate
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estimations for specific classes of problems (e.g., brain-tissue classification (Cocosco et al.,
2003; Van Leemput et al., 1999; Wells III et al., 1996), optic nerve segmentation (Noble and
Dawant, 2011)). Unfortunately, the success of automated techniques is often dependent
upon the application, modality, and image quality (Fischl et al., 2002; Heckemann et al.,
2006; Rohlfing et al., 2004a; Yeo et al., 2008).

Atlas-based segmentation methods form a middle-ground between fully-manual and fully-
automatic segmentation approaches (Collins et al., 1995; Gee et al., 1993). In atlas-based
models, spatial information is transferred from an existing dataset (labeled atlas) to a
previously unseen context (target) through deformable registration. Proposed extensions
enable the summary of multiple atlases into a common coordinate system by constructing
(1) unbiased average atlases (Guimond et al., 2000; Joshi et al., 2004) and (2) target-specific
atlases (Commowick et al., 2009; Ericsson et al., 2008). Yet, the accuracy of single-atlas
based methods is limited due to the bias concerns and lack of correspondence to the target
(Ashburner and Friston, 2005; Han and Fischl, 2007). Thus, an alternative strategy that
independently utilizes multiple atlases (i.e., multi-atlas segmentation) has come to represent
the de facto standard baseline for atlas techniques. In multi-atlas segmentation (Heckemann
et al., 2006; Rohlfing et al., 2004b), multiple atlases are separately registered to the target
and the voxelwise label conflicts between the registered atlases are resolved using label
fusion.

Perhaps surprisingly, a majority vote, the simplest fusion strategy, has been shown to result
in highly robust segmentations (Aljabar et al., 2009; Heckemann et al., 2006; Rohlfing et al.,
2004a; Rohlfing and Maurer, 2007). More recently, weighted voting strategies that use
global (Artaechevarria et al., 2009; Chen et al., 2012), local (Isgum et al., 2009; Sabuncu et
al., 2010; Wang et al., 2011), semi-local (Sabuncu et al., 2010; Wang et al., 2012), and non-
local (Coupé et al., 2011) intensity similarity metrics have demonstrated consistent
improvement in segmentation accuracy. Particularly for neurological applications, highly
local weights have provided the most consistent results in segmentation quality
(Artaechevarria et al., 2009; Sabuncu et al., 2010).

In contrast to ad hoc voting, statistical fusion strategies (e.g., Simultaneous Truth and
Performance Level Estimation, STAPLE (Warfield et al., 2004)) directly integrate a
stochastic model of rater behavior into the estimation process. Despite elegant theory and
success on human raters, applications to the multi-atlas context have proven problematic
(Asman and Landman, 2011a; Sabuncu et al., 2010; Wang et al., 2011, 2012). In response, a
myriad of advancements to the STAPLE framework have been proposed to account for (1)
spatially varying task difficulty (Asman and Landman, 2011b; Rohlfing et al., 2004b), (2)
spatially varying rater performance (Asman and Landman, 2011a, 2012a; Commowick et
al., 2012; Weisenfeld and Warfield, 2011), and (3) instabilities in the rater performance level
parameters (Commowick and Warfield, 2010; Landman et al., 2011b). Yet, these advanced
techniques remain inherently models of human observation error as they fail to directly
incorporate the image intensity differences between the atlases and the target. Moreover,
initial attempts to incorporate intensity into the STAPLE framework have relied upon ad hoc
extensions that simply ignore voxels based upon a priori similarity measures (Cardoso et al.,
2011; Weisenfeld and Warfield, 2011).

Regardless of the approach, label fusion models have consistently made an implicit
assumption that the use of multiple atlases results in a voxelwise, collectively unbiased
representation of the target. This assumption is manifested through the fact that nearly all
fusion algorithms determine the optimal label using only directly corresponding intensity
and label information. Ergo, multi-atlas methods are generally dependent upon highly
accurate registration and the use of large numbers of atlases. We are left with several
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problems in multi-atlas segmentation: (1) a dependence on large-scale, high-quality
registrations, (2) voting-based algorithms lack the theoretical underpinning of statistical
fusion observation models and (3) statistical fusion algorithms fail to incorporate intensity
information. Thus, previous approaches have failed to accurately model the stochastic
process of registered atlas observation error.

Meanwhile, a relatively new framework in the field of image analysis, non-local means, has
gained momentum in terms of quantifying complex image characteristics (e.g., noise
structure, spatially varying correspondence). In non-local means, images are deconstructed
into a collection of small volumetric patches and the similarity or correspondence between
these patches is quantified to learn the underlying image structure (Buades et al., 2005). The
non-local means framework has emerged in the context of image de-noising (Buades et al.,
2005; Coupé et al., 2006; Kervrann et al., 2007; Liu et al., 2008; Manjón et al., 2008; Van
De Ville and Kocher, 2009). However, more recent work has demonstrated the applicability
of non-local means to new applications such as synthesizing image contrast (Roy et al.,
2010a), in-painting (Sun and Tappen, 2011), and image segmentation (Coupé et al., 2011;
Roy et al., 2010b).

Herein, we propose a novel statistical fusion algorithm (Non-Local STAPLE – NLS) that
reformulates the STAPLE framework from a non-local means perspective. NLS models the
registered atlases as collections of volumetric patches containing both intensity and label
information and uses the non-local criteria (Buades et al., 2005; Coupé et al., 2011) to
resolve imperfect correspondence. Through this reformulation, we seamlessly integrate
exogenous intensity information into the estimation process to provide a theoretically
consistent model of multi-atlas observation error. NLS provides a model in which we learn
which label each atlas would have observed given perfect correspondence with the target.
This presentation is an extension and generalization of a recently published conference
paper (Asman and Landman, 2012b). Herein, we provide additional examples, derivations
and insights that were not part of the original conference publication.

In this manuscript, we begin by deriving the theoretical basis and the parameters for
initialization and convergence governing NLS. Next, we demonstrate significant
improvement over the state-of-the-art fusion algorithms on two distinct datasets: (1)
computed tomography (CT) images for thyroid segmentation and (2) structural magnetic
resonance (MR) images for whole-brain segmentation. For whole-brain segmentation, we
demonstrate that NLS dramatically lessens the need for large-scale and highly accurate non-
rigid registration. Lastly, we provide insight into the sensitivity of NLS to the various model
parameters, assess the optimality of the algorithm, and provide a comparison to a direct
application of non-local voting.

2. Theory
The following presentation provides the theoretical model governing NLS in the commonly
used Expectation–Maximization (EM) framework (Dempster et al., 1977). For clarity and
consistency, the notation closely follows the presentation of the original STAPLE algorithm
(Warfield et al., 2004).

2.1. Problem definition
Consider a target gray-level image represented as a vector, I ∈ ℝN×1. Let T ∈ LN×1 be the
latent representation of the true target segmentation, where L = {0, …,L − 1} is the set of
possible labels that can be assigned to a given voxel. Consider a collection of R registered
atlases with associated intensity values, A ∈ ℝN×R, and label decisions, D ε LN×R. Let θ ∈
ℝR×L×L parameterize the performance level of raters (registered atlases). Each element of θ,
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θjs′s, represents the probability that rater j observes label s′ given that the true label is s at a
given target voxel and the corresponding voxel on the associated atlas—i.e., θjs′s ≡ f (Di*j =
s′, Aj|Ti = s, Ii, θjs′s), where i* is the voxel on atlas j that corresponds to target voxel i.
Throughout, the index variables i, i* and i′ will be used to iterate over the voxels, s and s′
over the labels, and j over the registered atlases.

2.2. The non-local STAPLE algorithm
As with other statistical fusion algorithms, NLS uses EM to estimate the true (latent)
segmentation based on the target intensities, atlas information, and the rater performance
level parameters (see Fig. 1 for a graphical summary of NLS). In traditional EM
terminology, the underlying voxelwise label probabilities represent the hidden data that we
are estimating, and the performance level parameters, θ, represent the hidden model
parameters that help determine the optimal solution for the target segmentation. The
estimation of these parameters is accomplished by iterating between the E-step (i.e., the
estimation of the voxelwise label probabilities) and the M-step (i.e., the estimation of the
performance level parameters that maximize the expected value of the conditional log
likelihood function). Before presenting the derivation of our EM-based approach, we define
our non-local correspondence model, and an approximation of the performance level
parameters that provides a technique for deriving the algorithm.

2.3. Non-local correspondence model
In order to reformulate the traditional STAPLE model of rater behavior from a non-local
means perspective, we need to define an appropriate non-local correspondence model. Given
a voxel on the target image, i, this correspondence model provides a technique for
determining the corresponding voxel on a given atlas, i*. In our model, there are two
primary components that are required to define the non-local correspondence: (1) the
intensity similarity model between a given atlas voxel and the target voxel of interest, and
(2) the spatial compatibility between two voxel locations in the common target image
coordinate system.

First, there are several options that could be used to define the intensity similarity between a
given atlas voxel and the target voxel (e.g., correlation coefficient (Cardoso et al., 2011),
mutual information (Artaechevarria et al., 2009), Gaussian intensity difference (Sabuncu et
al., 2010)). Herein, we use a Gaussian difference model, which, assuming proper intensity
normalization, has been shown to be highly successful, particularly on neurological
applications (Asman and Landman, 2012c; Coupé et al., 2006; Sabuncu et al., 2010).

Second, we need to define a metric for the spatial compatibility between a given atlas voxel
and the target voxel in image space. Traditional non-local means algorithms for image de-
noising (Buades et al., 2005; Coupé et al., 2006; Kervrann et al., 2007; Manjón et al., 2008)
weight all voxels equally, regardless of the distance between the voxels in image space.
However, in order to translate non-local means to segmentation-based applications, limited
search regions are typically defined in order to prevent confusion between structures with
similar intensity profiles (Coupé et al., 2011; Roy et al., 2010b). Here, we employ a
Gaussian window-based model so that highly local voxels are more highly weighted. This
reflects our desire to estimate that the underlying corresponding voxel i* is both similar to
the target voxel and, due to the registration process, generally close in terms of the target
image coordinate system.

Together, we define the probability of correspondence between an atlas voxel and the given
target voxel (i.e., f (Ai′j|Ii)) to be the product of two Gaussian distributions.
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(1)

where the first distribution is the intensity similarity model, the second distribution is the
spatial compatibility model, and Zα is a partition function. In the intensity similarity model,
℘ (·)is the set of intensities in the patch neighborhood of a given intensity location and σi is
the standard deviation of the assumed distribution. In the spatial compatibility model, εii′ is
the Euclidean distance between voxels i and i′ in image space and σd is the corresponding
standard deviation.

Lastly, the partition function, Zα enforces the constraint that

(2)

where (i) is the set of voxels in the search neighborhood of a given target voxel. Through
this constraint, αji′i can be directly interpreted as the probability that voxel i′ on atlas j is the
latent corresponding voxel, i*, to a given target voxel i.

2.4. Approximation of the latent performance level parameters
The following derivation of NLS hinges upon knowledge of the voxel i* on atlas j that
directly corresponds to voxel i on the target image. If the directly corresponding voxel was
known, then the ideal non-local correspondence model would be known and we could
ignore the intensity relationships to use a typical definition of the underlying performance
level parameters.

(3)

Unfortunately, this corresponding voxel, i*, is unknown and we are forced to approximate it
using the previously defined non-local correspondence model. Using the model in Eq. (1),
we can approximate this relationship by taking the expected value of f (Di*j = s′, Aj|Ti = s,
Ii, θjs′s) across the atlas image. Using an assumption of conditional independence between
the labels and intensity, we approximate the desired density function

(4)

where (i) is the set of voxels in the search neighborhood of voxel i, and αji′i is the
previously defined non-local correspondence model (Eq. (1)).

As in Sabuncu et al. (2010), we assume conditional independence between the labels and
intensity, which seemingly neglects their complex relationships. However, our assumption is
that the information gained from inclusion of the atlas intensity is related to understanding
the lack of local correspondence between the target and the atlas, which, through the
estimation process, indirectly models the complex label-intensity relationships.
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Additionally, it is important to note that this model of the performance level parameters is
inherently an approximation based upon an assumed a priori distribution (Eq. (1)) governing
the non-local correspondence between the target and the atlases. Ideally, the non-local
correspondence parameters would be treated as additional model parameters that are
iteratively updated in the M-step of the subsequent EM algorithm. Unfortunately, there are
two primary limitations that prevent the construction of this type of idealized model. First,
this model makes solving the M-step of the algorithm mathematically difficult as we would
be forced to simultaneously estimate the raters’ performance and the voxel(s) that represent
the true underlying correspondence. Second, it dramatically increases the number of
parameters that we would be attempting to estimate. To illustrate, given a non-local search
neighborhood consisting of K voxels, the number of augmented model parameters would be
approximately K × N × R which leaves an underdetermined system given the amount of data
that is available to estimate these parameters. Regardless, despite these limitations, the
proposed model approximation captures many of the same benefits that would likely be
achieved assuming the “ideal” approach were possible to construct.

2.5. E-step: estimation of the voxelwise label probabilities

Let W ∈ ℝL×N, where  represents the probability that the true label associated with
voxel i is label s at iteration k of the algorithm given the provided information and model
parameters

(5)

Using a Bayesian expansion and the assumed conditional independence between the
registered atlas observations, Eq. (5) can be rewritten as

(6)

where f(Ti = s) is a voxelwise a priori distribution of the underlying segmentation, and Di*j
is the label decision by atlas j at the atlas image voxel i* that corresponds to voxel i on the
target image. Note that the denominator of Eq. (6) is simply the solution for the partition
function that enables W to be a valid probability mass function (i.e., ΣsWsi = 1).

As previously noted, we do not know the corresponding atlas voxel. Thus, using the non-
local correspondence model (Eq. (1)) and the provided approximation (Eq. (4)), we can
approximate the final solution for the voxelwise label probabilities

(7)

where, it is assumed that Di′j = s′.

2.6. M-step: estimation of the performance level parameters
The estimate of the performance level parameters (M-step) is obtained by finding the
parameters that maximize the expected value of the conditional log likelihood function (i.e.,
using the result in Eq. (7)).
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(8)

Noting the constraint that each row of the rater performance level parameters must sum to

unity to be a valid probability mass function (i.e., ), we can maximize the
performance level parameters for each element by using a Lagrange Multiplier (λ)
(Bellman, 1956) to formulate the constrained optimization problem. Following this
procedure, we obtain

(9)

However, in order to solve for θ js′s we have to utilize the approximation presented in Eq.

(4). The density function of interest, , appears in both the
numerator and the denominator. In the denominator, we see the exact density function that
we are trying to maximize; thus, we substitute the direct definition of the performance level
parameters presented in Eq. (3). In the numerator, however, we need to take the derivative of
this density function with respect to the current element of the performance level parameters
(and the dependence structure is not apparent in Eq. (3)). To capture the inherent noise and
lack of local correspondence between the target and the atlases, we use the approximation of
this density function (i.e., Eq. (4)) in the numerator. Using these substitutions and some
straightforward algebraic manipulation we obtain

(10)

Finally, solving for the Lagrange Multiplier leaves the final solution for each element of the
performance level parameters

(11)
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2.7. Initialization, model parameters, and detection of convergence
As with all of the algorithms that have been presented in the STAPLE family, NLS can be
initialized using either an initial estimate of the performance level parameters or the
voxelwise label probabilities. For all of the presented experiments, NLS was initialized with
performance parameters equal to 0.95 along the diagonal and randomly setting the off-
diagonal elements to fulfill the required constraints. Note that initializing NLS in this way is
essentially the same as initializing the voxelwise label probabilities to that of a majority
vote.

For all presented experiments, the voxelwise label prior, f(Ti = s), was initialized using the
label probabilities from a “weak” log-odds majority vote (i.e., decay coefficient set to 0.5
voxels) (Sabuncu et al., 2010). We found that initializing in this manner provided enough
spatial information for NLS to consistently converge to a desired optimum, without being
too spatially restrictive. Alternative approaches could be to (1) initialize using a global prior
(i.e., the same probabilities for every voxel), or (2) use the output of another segmentation
algorithm.

There are several parameters in the non-local correspondence model that need to be set in
order to efficiently utilize NLS. First, there are two neighborhood parameters that need to be
initialized: the search neighborhood, (i), and the patch neighborhood, ℘ (·). Both of these
parameters are functions of the input data (e.g., the resolution of the images, the quality of
registration). For all of the presented experiments we used a search neighborhood of size 11
× 11 × 11 voxels centered at the target voxel of interest. We found that inter-subject
registrations were of a high enough quality that a search neighborhood of this size was able
to consistently capture the underlying non-local correspondence. For the patch
neighborhood, several potential sizes are considered (all of which are centered at the voxel
of interest) and the benefits and detriments of varying this value are discussed later in this
manuscript. The two standard deviation parameters that need to be set are σi and σd, which
control the impact of the intensity difference and the Euclidean distance-based decay,
respectively. In general, σi is a function of the intensity normalization process and, thus,
spread of intensity values. The parameter σd can be thought of as a proxy for the search
neighborhood. Unless otherwise noted, these values were set to 0.1 and 2, for σi and σd,
respectively. These “default” values were obtained during the coding implementation of the
proposed algorithm and were tested on a single whole-brain volume in order to obtain
reasonable results. Note that this is a non-ideal approach for determining these parameters as
it (1) slightly biases the presentation of results, and (2) does not guarantee the optimality of
the parameters (as indicated in Fig. 8). For future applications, where distinct and
independent testing and training data are available, it would be more appropriate to
determine the optimal parameter values using the training data only (i.e., the available
atlases).

Convergence of NLS was detected by monitoring the change in the performance level
parameters between consecutive iterations. As with the original STAPLE algorithm, we
considered the algorithm to have converged when the average change in the on-diagonal
elements of the performance level parameters fell below 10−4. For all presented
experiments, convergence occurred in fewer than 10 iterations.

Lastly, while not necessarily a model parameter, “consensus voxels” (i.e., voxels where all
raters agree) were ignored during the estimation process. Due to the non-local nature of the
algorithm, consensus voxels were determined in two subsequent steps. First, an initial
“consensus voxels” estimate was obtained by finding all voxels for which maxs f(Ti = s) >
0.95. Second, this initial estimate was post-processed to include a safety margin around the
estimated non-consensus voxels that is defined by the search neighborhood (i.e., all voxels
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within the search neighborhood of a non-consensus voxel were determined to be non-
consensus as well). This accomplishes two tasks: (1) it improves the runtime of the
algorithm and (2) it prevents the performance level parameters from being unnecessarily
biased due to the inclusion of highly “consensus” regions (Asman and Landman, 2011b;
Rohlfing et al., 2004b).

3. Methods and results
An implementation of the Non-Local STAPLE algorithm is available as part of the Java
Image Science Toolkit (JIST, www.nitrc.org/projects/jist).

3.1. Baseline algorithms
Our first baseline algorithm is a log-odds majority vote (MV) (Sabuncu et al., 2010). For all
presented experiments the decay coefficient was set to unity, as suggested in (Sabuncu et al.,
2010). Our second baseline is a locally weighted vote (LWV) (Artaechevarria et al., 2009;
Isgum et al., 2009; Sabuncu et al., 2010). LWV procedures have come to represent the state-
of-the-art fusion strategy as they provide consistent improvement over both MV and
globally-weighted approaches. The implementation presented here is the same as suggested
in Sabuncu et al. (2010). Note that a LWV has a parameter that is essentially identical to the
σi parameter in NLS (see Eq. (1)). For fairness of comparison, this parameter was initialized
to the same value (herein, 0.1) for both algorithms. Our next baseline is the original
STAPLE algorithm (Warfield et al., 2004). Due to the amount of overlap between STAPLE
and NLS the same parameter values were used when applicable. Thus, the algorithms were
equivalently initialized, the same values were used for the voxelwise label prior, f(Ti = s),
“consensus voxels” were ignored using the same discriminant criteria, and convergence was
detected using the same threshold.

Our last baseline algorithm is Spatial STAPLE (Asman and Landman, 2011a, 2012a;
Commowick et al., 2012). Spatial STAPLE represents an extension to the traditional
STAPLE framework that allows for the estimation of a smooth spatially-varying
performance level field instead of global performance level parameters and has been shown
to provide robust and accurate multi-atlas segmentations. Where applicable, Spatial
STAPLE was utilized using identical parameters to NLS and STAPLE. In addition, the
performance level parameters were calculated on a voxelwise basis using a half-window size
of 10 mm in all cardinal directions. Note that Spatial STAPLE is very similar to another
recently proposed algorithm – Local STAPLE MAP (Commowick et al., 2012). The primary
difference is the way in which the performance level parameters are kept stable. Here,
Spatial STAPLE uses a non-parametric distribution governed by an initial estimate from the
original STAPLE algorithm as opposed to the parametric beta distribution that is proposed
in Local STAPLE MAP. Investigation into the optimal way to maintain performance level
stability is outside of the scope of this manuscript.

3.2. Motivating simulation
Before presenting the empirical results, we present a toy simulation to demonstrate the
limitations of the traditional STAPLE model of rater behavior (Fig. 2). A single 2D slice
(144 × 191 voxels) from a manually labeled whole-brain dataset was used as the basis for
the presented simulation models (see the “Empirical Evaluation” section for details on the
dataset). The presented slice has four non-background labels (left/right cerebral gray matter
and left/right cerebral white matter) and the accuracy of the presented algorithms is
presented in terms of the mean Dice Similarity Coefficient (Dice, 1945) across these labels.
For each presented example, eight label observations were simulated per fusion estimate. In
Fig. 2 we present three different models of rater observation behavior:
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• The first observation model represents a “voxelwise random rater model” (Asman
and Landman, 2011b; Landman et al., 2011b; Warfield et al., 2004) in which
simulated confusion matrices are constructed for each rater. Simulated observations
are generated through Monte Carlo sampling of these confusion matrices given the
true segmentation. Here, confusion matrices were randomly constructed with
constant on-diagonal values linearly distributed between 0.5 and 0.9.

• The second observation model represents a “boundary random rater model”
(Asman and Landman, 2011a,b; Landman et al., 2011a,b) in which the boundary
voxels on the true segmentation are randomly shifted. The shift amount was
randomly sampled from a zero-mean Gaussian distribution that is unique to each
rater. The standard deviation values of these distributions were linearly distributed
between 0.5 and 2.

• The last observation model represents a “simulated deformation field model” in
which simulated deformation fields are applied to the true labels by sampling a
sixth-order Chebyshev polynomial with random coefficients unique to each rater.
These coefficients were randomly sampled from a zero-mean Gaussian distribution
with standard deviation equal to unity.

The first two examples are typical simulated models of human rater observation behavior,
and, in both cases, STAPLE provides substantial improvement over a MV. To contrast, the
third example simulates a typical multi-atlas observation model, in which random
deformations are applied to a target image. In this case, STAPLE is slightly outperformed by
a MV, which highlights the lack of applicability of STAPLE’s observations model to a
multi-atlas context. Additionally, using the intensity images of the simulated “atlases” in the
third simulation model, we show that a LWV and NLS provide substantial improvement
over the traditional “human rater” fusion models (i.e., MV and STAPLE) that ignore the
target-atlas intensity relationships.

3.3. Empirical evaluation
We consider two distinct empirical datasets. Our first dataset is a collection of 15 CT head
and neck atlases used for thyroid segmentation. The images used in this experiment were
collected from consenting patients who underwent intensity-modulated radiation therapy.
The patients were injected with 80 mL of Optiray 320, a 68% iversol-based nonionic
contrast agent. Each image has a voxel size of 1 × 1 × 3mm3. The expert labels were
obtained from a local expert radiologist and verified by multiple experienced human raters.
Note that 5 of the 15 patients in this data set underwent a surgical procedure that split their
thyroid into two distinct sections.

Our second dataset is a collection of 15 Magnetic Resonance (MR) images of the brain as
part of the Open Access Series of Imaging Studies (OASIS) (Marcus et al., 2007) dataset.
This data was expertly labeled courtesy of Neuromorphometrics, Inc. (Somerville, MA) and
provided under a non-disclosure agreement. A refined dataset (using the OASIS brains and a
subtly revised labeling protocol) has recently been made available as part of the MICCAI
2012 workshop on multi-atlas labeling. This data is available at the following URL: https://
masi.vuse.vanderbilt.edu/workshop2012/ or directly from Neuromorphometrics. For each
atlas, a collection of 26 labels (including background) were considered: ranging from large
structures (e.g., cortical gray matter) to smaller deep brain structures (see Fig. 5 for a list of
all labels). Note that all of the cortical surface labels were combined to form left and right
cortical gray matter labels. All images are 1 mm isotropic resolution and, for ease of
analysis, the brain region was extracted.
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Note that, while all baseline algorithms were considered, the STAPLE results are not shown
for the whole-brain segmentation problem as it has been demonstrated to be consistently
outperformed by a LWV for whole-brain segmentation (Artaechevarria et al., 2009; Asman
and Landman, 2011a; Isgum et al., 2009; Sabuncu et al., 2010). Nevertheless, the MV
results are shown in order to provide a reference baseline for registration performance and
segmentation accuracy.

3.4. Pre-processing and analysis
All pairwise registrations were performed using an initial affine registration (Jenkinson and
Smith, 2001), and, when noted, all pairwise non-rigid registrations were performed using the
Vectorized Adaptive Bases Registration Algorithm (VABRA) (Rohde et al., 2003). After
registration, the images were (1) cropped so that excess background was removed, and (2)
intensity normalized such that the 25th and 75th percentiles of the range of the non-
background intensity values were set to 0 and 1, respectively. Quantitative accuracy was
assessed using the Dice Similarity Coefficient (DSC) (Dice, 1945), Hausdorff distance
(Huttenlocher et al., 1993), and mean surface distance. The surface distance metrics were
computed unidirectionally in terms of the distance from the expert labels to the estimated
segmentation.

3.5. Thyroid segmentation results
Our first experiment analyzes the fusion accuracy for segmentation of the thyroid. In
addition to the benchmarks, NLS was run using various patch neighborhood, ℘ (·), sizes (1 ×
1 × 1, 3 × 3 × 3, 5 × 5 × 3, and 7 × 7 × 3 voxels), all of which were centered at the voxel of
interest. Due to the slice thickness of 3 mm, the third dimension of the patch neighborhoods
were not increased beyond three voxels. We performed a leave-one-out cross-validation
experiment (i.e., 14 atlases per segmentation estimate) to assess fusion accuracy. The results
of this experiment are presented in Fig. 3.

The quantitative results, in terms of the spread across the 15 atlases, can be seen in Fig. 3A.
The NLS based approaches provide significant improvement (p < 0.01, paired t-test) over all
of the considered baseline algorithms in terms of the DSC, Hausdorff distance and mean
surface distance. NLS using a 3 × 3 × 3 (voxels) patch neighborhood size was the most
consistent performer as it significantly outperformed (p < 0.01, paired t-test) the other NLS
based approaches in terms of the DSC and the mean surface distance. The median DSC
performance was improved by 0.05 over a LWV and 0.08 over STAPLE. Only the NLS
based approaches achieved submillimetric accuracy in terms of the mean surface distance
between the expert labels and the segmentation estimates. Additionally, NLS using a 3 × 3 ×
3 (voxels) patch neighborhood provided over 1 mm improvement over a LWV and over 2
mm improvement over STAPLE and Spatial STAPLE in terms of the Hausdorff distance.

Qualitative results are presented in Fig. 3B, where, for all considered algorithms a
representative slice and a 3D rendering of the point-wise surface distance error is presented.
Example results are presented for a representative patient that underwent a surgery to bisect
the thyroid (subject type 1) and a representative subject that did not (subject type 2). The
segmentations from NLS are all qualitatively superior to the other baseline algorithms as
they more accurately estimated the underlying shape and size and resulted in substantial
reductions in point-wise surface distance error. For small patch neighborhoods (e.g., 1 × 1 ×
1 – a single voxel) it is evident that high quality boundaries are estimated, but “speckle
noise” is more likely to be apparent. Alternatively, for larger windows, estimations are
smoother but sacrifice the high quality boundary estimation. Note that only the NLS based
approaches correctly estimated the connected topography of the second subject.
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3.6. Whole-brain segmentation results
Our second experiment analyzes fusion accuracy for whole-brain segmentation. For this
experiment, NLS was run using both 1 × 1 × 1 (voxel) and 3 × 3 × 3 (voxel) patch
neighborhoods. The results of this experiment are presented using a pairwise non-rigid
registration procedure and a pairwise affine registration procedure. For both registration
procedures, the overall accuracy (in terms of mean DSC) was assessed using a cross-
validation experiment with between 5 and 14 atlases per target. Additionally, the per-label
accuracy was assessed using five atlases per target.

The results of the overall accuracy comparison for both registration procedures are
summarized in Fig. 4. The results indicate that, for both the pairwise non-rigid registration
(Fig. 4A) and the pairwise affine registration (Fig. 4B), NLS demonstrates significant
improvement (p < 0.001, paired t-test) over MV, LWV and Spatial STAPLE regardless of
the number of atlases fused. For the non-rigid registration, NLS using a single voxel patch
neighborhood provided a small, yet consistent, improvement over the larger 3 × 3 × 3
(voxels) patch neighborhood. Interestingly, the opposite was true for the affine registration,
where the larger neighborhood provided consistent improvement over the single voxel
neighborhood. This difference indicates the importance of using larger patch neighborhoods
when the quality of registration is diminished, and the expected correspondence is highly
non-local. Additionally, for both registration procedures, NLS using only five atlases
exhibited significant improvement (p < 0.05) over a LWV using all 14 available atlases.
Note that, unlike (Commowick et al., 2012), Spatial STAPLE is consistently outperformed
by a LWV. This disparity is primarily due to the fact that the structures presented here are
highly dependent upon their intensity characteristics. In (Commowick et al., 2012), they
focus on cortical segmentation – a problem in which intensity information provides little
benefit in terms of distinguishing between adjacent labels.

The per-label results for the non-rigid (Fig. 5) and affine (Fig. 6) registration procedures
demonstrate consistent improvement over a LWV regardless of label size, location and
shape. For the non-rigid results, NLS using a single voxel patch neighborhood resulted in
significantly superior (p < 0.05) results over LWV on 23 out of 25 labels and for 16 out of
25 labels over NLS using a 3 × 3 × 3 (voxels) patch neighborhood. For the affine results,
NLS using a 3 × 3 × 3 (voxels) patch neighborhood resulted in significant improvement (p <
0.05) over LWV on all considered labels and for 20 out of 25 labels over NLS using a single
voxel patch neighborhood. For both registration procedures, none of the baseline algorithms
were significantly superior to either NLS approach for any label.

The qualitative results (Fig. 7) support the quantitative improvement exhibited by NLS over
previous algorithms (Figs. 4–6). Fig. 7 shows four different subjects (two for non-rigid and
two for affine) with the associated expert labels and cropped estimates from the considered
baseline algorithms using 5 atlases per estimate. Spatial STAPLE is not shown as it was
consistently outperformed by LWV for all considered target images. For reference, MV
estimates are provided in order to provide important insight into the quality of the
registration. For each presented estimate, the mean DSC value on the presented subject is
available below the image. Each example demonstrates the type of improvement exhibited
by NLS over voting-based algorithms. NLS provides consistent improvement in terms of
shape, size and location of the various labels. Additionally, through the process of finding
non-local correspondence, NLS results in segmentation estimates that are qualitatively more
consistent in terms of the associated intensity profile, and less dependent upon using high-
quality non-rigid registration with large numbers of atlases.
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3.7. Sensitivity to model parameters
The sensitivity of an algorithm to the model parameters plays a critical role in determining
the robustness and applicability of the approach to new problem spaces. The sensitivity of
NLS to patch window sizes, quality of registration, and the number of atlases has been
presented throughout Figs. 3–7. Here, we assess the sensitivity of NLS to the two standard
deviation parameters, σi and σd (see Eq. (1)). First, σi is the standard deviation of the
Gaussian intensity difference model and controls how selective the non-local approach is in
determining the correspondence between the various voxels. Second, σd is the standard
deviation of the Gaussian distance model and it weights voxels based upon their distance to
the current target voxel of interest. The parameter σd can be thought of as a proxy for the
size of the search neighborhood (i.e., as the value of σd decreases the impact of the extreme
elements in the search neighborhood approaches zero). Note, due to this relationship,
alternative values for the search neighborhood are not considered. Here, we utilize NLS with
a single voxel patch neighborhood on the non-rigidly registered whole-brain data set. Unless
the parameter values are being explicitly modified, the previously discussed default
parameter values are used.

The results of this sensitivity test (Fig. 8) demonstrate that NLS is not particularly sensitive
to the standard deviation parameters, and continues to exhibit consistent improvement over
LWV across a large range of parameter values. Fig. 8A demonstrates the NLS sensitivity to
the σi parameter with associated qualitative estimates for various parameter values shown to
the right. For values of σi that are too small, NLS results in noisy estimates that contain
undesired “holes” in the segmentation. On the other hand, large values result in
segmentations that are overly smooth and fail to accurately model the underlying intensity
profile. While not shown, one important case for this parameter is when σi = ∞ (i.e.,
ignoring intensity characteristics and only incorporating registration uncertainty via spatial
locality). If we set σi to ∞ then the algorithm converges to a mean overall accuracy of
0.8746 – an accuracy level statistically indistinguishable from Spatial STAPLE. This
provides two important insights (1): it highlights the need of incorporating intensity
information into the estimation framework for this particular application, and (2) it
demonstrates that, despite using global performance level parameters, NLS is able to
overcome some of the inherent registration uncertainty without directly utilizing the image
intensity characteristics. Fig. 8B shows the sensitivity to the σd parameter. In this case,
values that are too small cause NLS to use too few voxels to capture the non-local
correspondence between the atlases and the target. Values that are too high result in the
inclusion of regions of the image that are not anatomically indicative of the label of interest.
The gray bars on Fig. 8 indicate the default values used in the previous experiments.

3.8. Model optimality
Like STAPLE, NLS is derived in an EM framework in which parameters are iteratively
computed in order to estimate the optimal solution for the underlying segmentation. While
EM algorithms are guaranteed to converge to a local optimum, convergence to a global
optimum is not guaranteed. Thus, it is important to assess the ability of NLS to converge to a
reasonable local optimum. Given the true segmentation and a provided nonlocal
correspondence model, it is straightforward to calculate the globally ideal performance level
parameters for NLS by replacing the voxelwise label probabilities (i.e., Wsi) with the true
segmentation in Eq. (11)
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(12)

where  represents the globally ideal performance level parameters, Ti is the true
segmentation at voxel i and, δ(Ti, s) is the Kronecker delta function which is equal 1 if Ti =
s and 0 otherwise. For the traditional STAPLE model, the globally ideal performance level
parameters can be calculated in a similar manner:

(13)

Here, for both STAPLE and NLS, we compare the results of the converged algorithm to the
results of the algorithm using the globally ideal performance level parameters. We
enumerate ideal STAPLE and ideal NLS to indicate the results of the algorithms using the
globally ideal performance level parameters. We assess the results across the 15 whole-brain
images using five non-rigidly registered atlases per estimate and a single voxel patch
neighborhood.

The results of this experiment (Fig. 9) demonstrate multiple important concepts. The
converged NLS estimate is nearly identical to the accuracy of the ideal NLS estimate, which
is an indication that, despite using only five atlases, NLS is able to converge to an estimate
that is very close to the global optimum. To contrast, the converged STAPLE estimate is
significantly lower than the ideal STAPLE estimate, which indicates a strong need for using
larger numbers of atlases. Additionally, the ideal STAPLE estimate is only slightly better
than the MV estimate. Thus, regardless of converging to the global optimum or not, the
STAPLE model of rater behavior does not accurately model the observation behavior
exhibited in this multi-atlas context. While perhaps surprising, these results are supported by
the literature, where, even when large numbers of atlases are used (i.e., the probability of
converging to global optimum is increased), STAPLE is, at best, slightly better than a MV in
a multi-atlas context (Artaechevarria et al., 2009; Asman and Landman, 2011a; Sabuncu et
al., 2010; Wang et al., 2011).

3.9. Comparison to non-local voting
Heretofore, we have limited our comparisons to the algorithms that represent the state-of-the
art label fusion algorithms (i.e., the algorithms that are most commonly utilized in the label
fusion literature). However, like NLS, recent techniques have been proposed that integrate a
non-local correspondence model into a votingbased fusion approach (Coupé et al., 2011;
Roy et al., 2010b). In order to more fully characterize the performance of NLS to premier
segmentation approaches, we compare the results of NLS to a straightforward non-local
voting-based procedure (Coupé et al., 2011) for the affine registration whole-brain
segmentation problem using 5 atlases per target. For fairness of comparison, identical values
were used for NLS and the non-local voting-based approach where applicable (i.e., search
neighborhood set to 11 × 11 × 11 voxels, patch neighborhood set to 3 × 3 × 3 voxels, and σi
set to 0.1).

The results of this comparison (Fig. 10) indicate that NLS provides significant improvement
over non-local voting approaches, particularly when estimating small and more complex
deep brain structures. First, a per-label comparison (Fig. 10A) demonstrates that NLS
provides significant improvement (p < 0.05, paired t-test) over the non-local voting
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approach on 18 out of the 25 considered labels. For the larger labels that are more easily
distinguishable from the surrounding structures (e.g., CSF, cerebral/cerebellar white and
gray matter), NLS and the non-local voting approaches are statistically indistinguishable.
However, for the smaller, more complex deep-brain structures (e.g., hippocampus, thalamus,
and putamen) NLS provides consistent and significant improvement. The qualitative results
(Fig. 10B) support the quantitative improvement. Here, a representative example from the
two approaches is visually presented and NLS is qualitatively superior to the non-local
voting approach.

4. Discussion
Non-Local STAPLE represents the first statistical fusion algorithm that seamlessly
incorporates intensity into the estimation process and creates a cohesive theoretical model
specifically targeting registered atlas observation behavior. Additionally, NLS largely
overcomes several of the current obstacles that plague multi-atlas segmentation including
the need for high-quality non-rigid registration and large numbers of atlases. These goals are
accomplished through the reformulation of the STAPLE algorithm from a non-local means
perspective and the integration of the concept of non-local correspondence into the
estimation process. Intriguingly, despite this reformulation, the interpretation of the NLS
rater model remains straightforward. In words, using a model of non-local correspondence,
NLS provides a weighted sum over the non-local search neighborhood to determine what
labels would have been observed given perfect correspondence between the target and the
atlases. Herein, we demonstrated superior performance over state-of-the-art fusion
algorithms on two empirical datasets. For thyroid segmentation (Fig. 3), significant
improvement was shown in terms of the DSC, Hausdorff distance, and mean surface
distance. For whole-brain segmentation, significant improvement was demonstrated in terms
of overall accuracy (Fig. 4), per-label accuracy (Figs. 5 and 6) and qualitative assessment
(Fig. 7).

The sensitivity of the NLS approach was demonstrated with respect to the various model
and multi-atlas parameters. In terms of the multi-atlas parameters, NLS is significantly less
dependent upon the number of atlases (Fig. 4) and the quality of the registration (Figs. 4–7).
In terms of the NLS model parameters, the size of the patch neighborhood seems to be
particularly dependent upon the quality of registration. For both the thyroid (Fig. 3) and the
pairwise affine whole-brain results (Fig. 6), where the registration is relatively poor
compared to the non-rigid whole-brain registration, patch neighborhoods greater than a
single voxel provided significant improvement over smaller patch neighborhoods.
Additionally, NLS is fairly insensitive to the two standard deviation parameters in the non-
local correspondence model, which further demonstrates the stability of the approach (Fig.
8). Lastly, and importantly, despite using only 5 atlases, NLS consistently converged to an
estimate that is very close to the global optimum (Fig. 9). While not a definitive proof, this
is a strong indication of the optimality of the NLS model of multi-atlas observation
behavior.

While the primary focus of this paper is to investigate the theoretical advancements provided
by NLS when compared to the state-of-the-art fusion algorithms, we also demonstrate
significant improvement over a recently proposed non-local voting-based approach (Fig.
10). The results of this comparison highlight the benefits of the proposed framework. First,
the observed performance increase by NLS is a strong indication that the proposed model of
multi-atlas observation error accurately captures empirically observed atlas performance.
Second, it indicates a need for the inclusion of a cohesive rater model into the estimation
framework so that informed judgment can be made about the applicability of a given atlas to
the label estimates, particularly when estimating the complex relationships between easily
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confused structures. Moreover, while NLS and non-local voting-based approaches similarly
include non-local correspondence models, there are stark contrasts in the way in which these
techniques estimate the underlying segmentation. In NLS, the non-local correspondence
model is used to learn which label an atlas would have observed given perfect
correspondence. As a result, all atlases have an equal opportunity to contribute at all
considered voxels, and the quality of an atlas observation is captured by the rater
performance parameters. To contrast, in non-local voting, atlases can be completely
deweighted from the estimation process if their intensity characteristics are too different
from the target intensity characteristics. As a result, non-local voting-based procedures are
susceptible to being biased towards particular atlases and labels as they are more dependent
upon accurate intensity normalization and highly representative atlas intensity profiles.

Despite the promise of the NLS fusion model, several questions still persist in order to
understand the optimality of the algorithm. For example, the effect of using an alternative
similarity metric (e.g., normalized correlation coefficient, mutual information) to the
assumed Gaussian difference model presented here (Eq. (1)) needs to be investigated.
Alternative similarity measures may dramatically lessen the potential impact of noise and
the need for accurate intensity normalization between the target and the atlases.
Additionally, the procedure for determining the optimal parameter values for a given
problem remains primarily ad hoc. Statistically driven maximum likelihood and maximum a
posteriori models to estimate the optimal parameter values through (1) the use of the training
data, or (2) direct integration into the estimation model, would provide valuable
advancements for the applicability of NLS to new problem spaces.

Herein, we have restricted our comparisons to algorithms that strictly perform a label fusion
task. As a result, meta-analysis algorithms that (1) use the label fusion results as a prior for a
more complex segmentation procedure (Gholipour et al., 2012; Lotjonen et al., 2010; Sdika,
2010), (2) append a Markov Random Field (MRF) to the estimation model (Sabuncu et al.,
2010; Warfield et al., 2004), or (3) perform either global or local atlas pre-selection (Aljabar
et al., 2009; Cardoso et al., 2011; Weisenfeld and Warfield, 2011) are not considered here.
In general, these types of advancements provide practical, real-world benefits that are
widely applicable to the field of label fusion and not necessarily specific to a particular
fusion algorithm. As a result, we feel that inclusion of these types of approaches would only
obfuscate the presentation of results. Nevertheless, these meta-analysis approaches could
easily utilize the NLS fusion model and, potentially, see improved segmentation results.
Further investigation into the applicability of NLS to these meta-analysis approaches (e.g.,
determination of an optimal MRF) is certainly warranted.

Additionally, other than Spatial STAPLE, notably absent from the list of considered baseline
algorithms are some of the more recent advancements to the STAPLE algorithm. There are
two primary reasons for not directly comparing to these extensions. First, it is
straightforward to illustrate that NLS is a direct extension of the original STAPLE
algorithm. NLS can be thought of as a family of algorithms governed by the non-local
correspondence model. From this perspective, the original STAPLE algorithm can be seen
as simply a special case of the proposed NLS framework. To illustrate, consider a non-local
correspondence model where αji′i = 1 if and only if i = i′ and, otherwise, αji′i = 0. In this
case, the E- and M-steps (Eqs. (7) and (11), respectively) simplify to the original STAPLE
algorithm. Second, we propose that NLS is not mutually exclusive to these proposed
advancements. For example, (1) incorporations of spatially varying performance level
estimates (Asman and Landman, 2011a, 2012a; Commowick et al., 2012; Weisenfeld and
Warfield, 2011), (2) capturing task difficulty through the augmentation of the E-step with
“consensus levels” (Asman and Landman, 2011b), (3) locally ignoring atlas voxels based
upon a priori intensity characteristics (Cardoso et al., 2011; Weisenfeld and Warfield, 2011),
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and (4) models for stabilizing the performance level parameters (Commowick and Warfield,
2010; Landman et al., 2011b) could all be seamlessly integrated into the NLS framework. In
particular, the recent advancements that allow for local spatially-varying performance level
parameters within the STAPLE framework (e.g., Spatial STAPLE and Local STAPLE
MAP) represent fascinating potential improvements to the NLS framework. Despite the fact
that NLS uses local intensity information in order to reformulate the rater performance
model, it remains an inherently global approach as, like the original STAPLE algorithm, the
performance level parameters describe global atlas performance. A reformulation of this
type of approach to allow for both local intensity characteristics and local performance level
parameters could potentially provide significant benefit in terms of overall accuracy and
robustness. Continued investigation into the integration of the proposed STAPLE
advancements represents fascinating avenues of continued research into rater performance
model optimality.

Lastly, one problem with the current implementation of NLS is the excessive runtime. As
the number of voxels, number of raters, number of labels, and size of the neighborhood
parameters increase, so does the runtime of NLS. For relatively small datasets with minimal
numbers of labels (e.g., the thyroid example), NLS typically converged in approximately
one minute for a single 3 GHz CPU core with an implementation in Java. Yet, when applied
to the multi-label whole-brain segmentation problem, NLS took upwards of 6 h to converge.
Nevertheless, this algorithm is highly parallelizable, as each voxel can effectively be
computed independently. Thus, a multi-core implementation or other advancements such as
a graphics processing unit (GPU) implementation (Huang et al., 2009; Huhle et al., 2008), or
other proposed non-local means optimizations (Coupé et al., 2006; Liu et al., 2008) should
be applicable in this context.

5. Conclusions
We have derived and investigated Non-Local STAPLE, a new statistical fusion algorithm
for multi-atlas segmentation. Through a reformulation from a non-local means perspective,
NLS represents the first statistical fusion algorithm that (1) creates a cohesive theoretical
model specifically targeting registered atlas observation behavior, and (2) seamlessly
incorporates intensity into the core of the STAPLE estimation framework. As a result, NLS
largely overcomes the need for high-quality non-rigid registration and large numbers of
atlases. Herein, we have demonstrated significant improvement over state-of-the-art
algorithms for both CT thyroid segmentation and MR whole-brain segmentation. Further,
we have assessed the sensitivity of the approach to the quality of registration, the number of
fused atlases, and the various non-local correspondence model parameters and shown that
NLS is able to consistently converge to segmentations that are very close to the global
optimum. Lastly, we have demonstrated that NLS provides significant improvement over
recently proposed non-local voting- based fusion which further validates the usefulness of
the proposed theoretically-consistent model of multi-atlas observation error.
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Fig. 1.
Flowchart of the Non-Local STAPLE (NLS) algorithm. NLS integrates a non-local
correspondence model (using the atlas-target intensity relationships) into the estimation
process. Point-wise correspondence is constructed in a traditional non-local means approach.
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Fig. 2.
Simulated models of rater behavior and their impact on fusion performance. The first two
examples present traditional models of human observation behavior, and, for both models,
STAPLE substantially outperforms a majority voting based approach. In contrast, the third
example simulates a typical multi-atlas observation model. In this case, STAPLE is
outperformed by a majority vote. Additionally, the multi-atlas fusion approaches that utilize
the target-atlas intensity relationships (e.g., locally weighted vote and the proposed Non-
Local STAPLE) provide substantial improvement.
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Fig. 3.
Results of the empirical multi-atlas segmentation of the thyroid. The quantitative results (A)
show that NLS provides significant improvement in terms of the DSC, Hausdorff distance,
and mean surface distance, with a 3 × 3 × 3 patch neighborhood as the most consistent
performer. The qualitative results (B) support the quantitative improvement and demonstrate
that NLS provides substantial improvement in shape, boundary, and point-wise surface
distance error. Note that “Subject Type 1” underwent a surgery to surgically bisect the
thyroid.
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Fig. 4.
Overall accuracy, in terms of mean DSC, comparison for whole-brain segmentation. For
both pairwise non-rigid and pairwise affine registration procedures, NLS provides
significant improvement over traditional fusion approaches.
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Fig. 5.
Per-label accuracy comparison on the whole-brain segmentation problem using a pairwise
non-rigid registration procedure. NLS provides consistent improvement over locally
weighted voting. In this case, NLS using a single voxel patch neighborhood consistently
outperformed a larger (3 × 3 × 3) patch neighborhood.
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Fig. 6.
Per-label accuracy comparison on the whole-brain segmentation problem using a pairwise
affine registration procedure. As in Fig. 5, NLS provides consistent improvement over
locally weighted voting. In this case, NLS using a larger (3 × 3 × 3) patch neighborhood
consistently outperformed a single voxel patch neighborhood.
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Fig. 7.
Qualitative comparison between the various fusion algorithms for whole-brain segmentation
using 5 atlases. For both registration procedures, the qualitative results support the
quantitative improvement demonstrated by NLS in Figs. 4–6. The NLS results are
qualitatively superior to alternative voting-based procedures in terms of overall shape, size,
location and appearance. Note that the mean DSC labels indicate the mean observed DSC
for all labels for the corresponding subject (row) and algorithm (column).
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Fig. 8.
Sensitivity to NLS model parameters. The sensitivity of NLS to σi (A) and σd (B)
demonstrate degraded performance for values that are either too small or too large.
Regardless, consistent improvement over a locally weighted vote is achieved. Gray outlines
indicate the values used in the previously presented experiments. The qualitative results
demonstrate the benefits and detriments of optimal and sub-optimal model parameter values.
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Fig. 9.
Assessment of the model optimality of the NLS approach. The results using ideal STAPLE
and ideal NLS represent the estimates using the globally ideal performance level parameters
with 5 atlases per estimate. NLS consistently converged to an estimate that is very close to
“ideal” NLS (i.e., the global optimum). On the other hand, STAPLE consistently converged
to a value significantly less than the global optimum. Additionally, the results of the “Ideal
STAPLE” approach are only slightly better than a MV, which indicates the non-optimality
of the traditional STAPLE observation model.
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Fig. 10.
Comparison to non-local voting fusion. NLS provided consistent improvement over non-
local voting, particularly for the smaller deep brain structures (A). NLS provided significant
improvement on 18 of the 25 considered labels. Particularly for the smaller labels, the
benefits of the proposed multi-atlas rater model are evident. The qualitative comparison (B)
supports the per-label comparison and demonstrates the type of improvement achieved by
NLS.
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