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Abstract

A simple cell model consisting of a gene regulatory network with epigenetic feedback regulation is studied to evaluate the
effect of epigenetic dynamics on adaptation and evolution. We find that, the type of epigenetic dynamics considered
enables a cell to adapt to unfamiliar environmental changes, for which no regulatory program has been prepared, through
noise-driven selection of a cellular state with a high growth rate. Furthermore, we demonstrate that the inclusion of
epigenetic regulation promotes evolutionary development of a regulatory network that can respond to environmental
changes in a fast and precise manner. These results strongly suggest that epigenetic feedback regulation in gene expression
dynamics provides a significant increase in fitness by engendering an increase in cellular plasticity during adaptation and
evolution.
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Introduction

Cells adjust their internal states in order to adapt to

environmental and genetic perturbations. Although such adaptive

responses are generally described on the basis of specific if-then-

like regulatory programs, for example, that provided by the lac

operon [1], it is not always possible to account for the flexible

adaptive dynamics observed in actual organisms. Indeed, it has

been shown that microorganism strains with deletions of metabolic

genes [2–4] or rewired regulatory networks [5,6] can adapt to

several environmental conditions, even though they have never

experienced such perturbed conditions. Such adaptive dynamics

displayed in response to unfamiliar environmental changes are

difficult to account for regulatory programs fixed in advance.

Hence, it would appear that there is some sort of generic,

ubiquitous mechanism that enables cells to adapt to ever-changing

environments [7]. Of course, cells can adapt quickly to environ-

mental changes of a type that they have previously experienced

frequently. It is necessary both to identify the mechanism that

allows for adaptation to unfamiliar changes and to elucidate how

this mechanism combines with the mechanism that allows for fast,

precise adaptation to familiar changes.

In this study, we show that the combination of epigenetic

regulation and gene regulatory dynamics enables cells to adapt to

unfamiliar environmental changes and promotes the evolution of a

fast and precise regulatory response. Recently, it has been

demonstrated that epigenetic mechanisms based on several factors,

including DNA methylation, histone modification, and their

interplay with higher-order chromatin structure, play important

roles in regulating and stabilizing the functional states of cells [8,9].

These epigenetic regulation are suggested to form a positive

feedback loop, which, together with gene regulation, may result in

expression memory [10,11]. Here, we introduce a simple model of

such epigenetic feedback regulation(EFR) to investigate the effect

of epigenetic dynamics on adaptation and evolution.

Model

2.1 Expression Dynamics with Epigenetic Feedback
Let us consider a cell with a gene regulatory network consisting

of N genes. The state of this cell can be represented by a vector of

gene expression levels (x1,x2, � � � ,xN ), where xi is the expression

level of the i-th gene. Gene expression refers to the synthesis of the

corresponding protein, which may affect the expression of other

genes, thus giving rise to a gene regulatory network. Noting that

the expression of genes often exhibits on-off switching behavior,

we adopt the following gene expression dynamics.

dxi

dt
~f (

XN

j~1

Wijxjzhi){xi: ð1Þ

The first term on the right-hand side represents the synthesis of

protein, while the second term corresponds to the degradation or

dilution of protein. Here, Wij is the regulatory matrix. Its (i,j)-th

element represents the regulation of the expression of the i-th gene

exercised by the j-th gene. The elements of this matrix take the

values 1, 0, or {1, corresponding to activation, no regulatory

interaction, and repression of the expression of the i-th gene by the

j-th gene, respectively. The synthesis of protein is represented by

the sigmoidal regulation function f (z)~1=(1z exp ({mz)), where

z~(
P

Wijxjzhi) is the total regulatory input, and m is the gain

parameter of the sigmoidal function. If at some time the regulatory
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input for the i-th gene is positive, then, under the dynamics

described by Eq. (1), xi will rapidly increase toward 1 (the state of

full expression), while if it is negative, it will rapidly decrease

toward 0 (the state of non-expression). The regulatory interactions

Wij are chosen randomly from a distribution such that the

probabilities that the i-th gene activates or represses the expression

of the j-th gene are given by some value ra and rr, respectively.

The variable hi represents the epigenetic control of the

expression of the i-th gene. A positive value of hi promotes the

expression of the i-th gene, while a negative value represses it. In

this study, we assume that the change in the epigenetic control

factor hi is determined by the expression level of the corresponding

gene: The tendency for hi to increase (decrease) becomes stronger

as xi increases (decreases), i.e., positive feedback between the

expression levels and the epigenetic control arises. We also assume

that this EFR depends on the cellular activity, such as metabolic

activity and protein synthesis activity, or individual cellular growth

rate. The variable vg represents such growth activity. Furthermore,

we assume that the dynamics of the epigenetic factors are noisy,

due to their dependence on chemical reactions with a small

number of molecules. Based on these assumptions, the time

evolution of the i-th epigenetic factor is modeled as follows:

dhi

dt
~fa(xi{0:5){higvgzgi: ð2Þ

The parameter a is a positive constant representing the strength

of the epigenetic feedback control. The quantity gi represents the

stochastic part of the epigenetic dynamics and is assumed to be

Gaussian white noise of amplitude s. The cellular growth rate vg is

assumed to be determined by the distance of the expression levels

of xi of a subset of MvN genes from a given target expression

pattern Xi(i~1, � � � ,M):

vg~vmax
g expf{b

XM
i~1

(xi{Xi)
2g, ð3Þ

where Xi is the target expression level of the i-th gene, b is a

constant parameter, and vmax
g represents the maximal growth rate.

The idea is that these M genes are directly involved in cellular

activity, whereas the remaining N{M genes have only regulatory

function.

2.2 Evolutionary Simulation of Regulatory Networks
We carried out evolution simulation of regulatory networks in

which those exhibiting higher growth rates under k environments

were selected. The target expression pattern of the i-th gene in the

k-th environment, X k
i , determined the growth rate. This target

pattern was chosen randomly in the simulation. First, we prepared

n randomly generated regulatory networks as the parent networks.

From each parent network, L mutant networks were generated by

randomly replacing a single reaction path to the parent network.

Then, by using these mutant networks, the growth rates under k
environmental conditions were calculated. Among such networks

the top n networks with regard to the geometric average of growth

rate vg were selected as the parent networks for the next

generation. By iterating this process, networks with high fitness

values were obtained, i.e., networks that exhibited with higher

growth rates under multiple environments. In this simulation, a

common expression pattern determined randomly is used as the

initial expression pattern in each environment and each genera-

tion.

Results

3.1 Noise-driven Adaptation with EFR
We carried out numerical simulations with the model described

above using several sets of parameter values and thousands of

randomly generated regulatory networks, and found that adapta-

tion dynamics that result in an actively growing state generally

emerge with the aid of EFR. Fig. 1 depicts a typical example of

such an adaptation process with the noise amplitude s~1. Time

series of the expression levels of arbitrarily chosen genes, their

epigenetic control factors, hi, and the growth rate, vg, are plotted

in Figs.1(a)–(c), respectively. In this example, the cell is initially

placed in a state with a low growth rate, where the time evolution

of the hi is characterized by large-amplitude fluctuations, due to

the noise term in Eq. (2), and with this fluctuation of hi, the

expression levels exhibit switching dynamics between 0 and 1

(tv5 in Fig. 1). However, after itinerating among various

expression patterns, the cell eventually settles into a state with a

high growth rate, which is maintained over time (tw5 in Fig. 1).

When vg is small, the deterministic part in the dynamics of hi is

small, and thus the stochastic part in Eq. (2) dominates the

epigenetic dynamics, resulting fluctuating dynamics of both gene

expression and epigenetic factors. By contrast, when the expres-

sion pattern approaches the target pattern through such fluctua-

tions, and thus vg becomes large, the epigenetic feedback

mechanism begins to regulate the expression dynamics. Then, if

xiw0:5, hi will converge to some positive value, and xi converges

to 1, while if xiv0:5, hi will converge to some negative value, and

xi converges to 0. In either case, the resulting states of xi and hi

are mutually stabilizing. With this growth-dependent feedback

control of expression levels through the dynamics of hi, the

expression pattern is ’’memorized’’ by the values of the epigenetic

factors, but only when vg is large. Consequently, the network

spontaneously converges to an expression pattern characterized by

a high growth rate. Fig. 1(d) shows how the noise amplitude

determines the average growth rate. There, we plotted the

geometric mean of the asymptotically realized growth rates as

functions of the noise amplitude, obtained from 10,000 simulations

employing randomly generated regulatory networks. It is seen that

for a small noise amplitude, the growth rate remains at the value

realized through random selection of the cellular state, because a

cell cannot escape from the attracting state that it first reached.

Contrastingly, when the noise amplitude is very large (s*10), the

growth rate is small, because the cellular state continues to

itinerate due to the influence of the noise, settling into no

attracting state. In the intermediate range, cells realize relatively

high growth rates, through EFR and noise. We confirmed that the

results are independent of the choice of the initial condition (i.e.,

gene expression levels and epigenetic factors). Fig. 2 shows how the

growth rate depends on the strength of epigenetic feedback control

a. We confirmed that the noise-driven adaptation is observed

when aw0.

3.2 An Alternative Model: EFR without Growth
Dependency

In the model presented above, we assumed that the EFR

depends on the growth rate (activity) vg. However, this assumption

is not necessary for the adaptive dynamics with the aid of EFR. To

demonstrate it, here we have constructed an alternative model

with EFR in which only the gene expression dynamics depends on

growth activity, vg, and expression noise, while the epigenetic

factor h depends only on the levels of itself and corresponding gene

expression. As a specific example, we studied the following model:

Epigenetic Feedback for Adaptation and Evolution
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dxi

dt
~(f (

XN

j~1

Wijxjzhi){xi)vgzgi, ð4Þ

dhi

dt
~a(xi{0:5){hi: ð5Þ

where xi is the expression level of the i-th gene, hi represents the

epigenetic control for it, gi is Gaussian white noise, and Wij is

regulation matrix, as in Eq. (1). Eq.(4) with fixed hi is almost

identical to our previous model [7]. Here, when the growth rate is

small, the stochastic part in Eq.(4) is dominant in the expression

dynamics to enable a cell to search a variety of expression states.

Then, when the expression dynamics falls into an attractor with

active growth, the deterministic part (the first term of the left-hand

side in Eq. (4)) starts to be dominant in the expression dynamics by

which the actively growing state is maintained. In this mechanism,

when there is no epigenetic feedback (h is fixed to zero), the

expression dynamics itself need to prepare a large number of

attractors to maintain the adaptive dynamics, as discussed in our

previous study. In contrast, by introducing epigenetic feedback

(Eq.(5)), the selection of an actively growing state is possible even

when the expression dynamics themselves possess a small number

of attractors. In Fig. 3, we present how the noise amplitude

determines the average growth rate in this model. Here, EFR

supports to stabilize the expression states with a high growth rate

vg. Here, EFR stabilizes expression states of a high growth rate, vg.

It should also be stressed that this result demonstrates the

generality and robustness of adaptive dynamics with our proposed

EFR. In fact, we tested several models with EFR, and found that

the selection of an actively growing state is possible in all.

3.3 Acceleration of Network Evolution by EFR
The effectiveness of the mechanism of adaptation discussed

above requires no fine-tuning of the parameters and the regulatory

networks, and allows the cell to adapt to environmental changes

that it has not experienced in the course of evolution. Of course,

there are demerits to this mechanism, too. Most significantly, it is

inefficient; that is, the time required for adaptation, in comparison

with the unit time in Eq.(1), is relatively long. Fig. 4 shows the

distribution of search time needed for the expression dynamics to

reach a steady state by starting from random initial condition,

where the median of search time is at around 3.9 unit time. This
Figure 1. An example of adaptation process with EFR. (a) Time
series of expression levels xi . Eight of the 40 gene expression levels are
displayed. (b) Time series of the epigenetic factors hi that correspond to
the expression levels displayed in (a). (c) Change in the growth rate vg .
(d) (inset of (c))The relationship between the noise amplitude s and the
growth rate vg . The geometric mean of the growth rates attained by
randomly generated regulatory networks and initial conditions is
plotted as a function of the noise amplitude s. The error bars represent
the geometric standard deviation. The blue dotted line indicates the
growth rate in the case of a random selection of the state, where the
expression level xi takes the values 0 and 1 with equal probability. The
growth rate was significantly higher than the random expression
pattern, for example pv10{16 when s~1 (the number of data was
10000; determined by U-test). The parameter values used here are
N~40, m~10, ra~rr~0:05, a~5, b~2:3, vmax~103 , M~10, and
s~1. The target expression patterns Xi used in the growth rate
calculation were determined randomly. Unless otherwise mentioned,
these values were used throughout all the figures. The presented
results were independent of specific model parameters, and were
observed in a wide range of parameter values. We selected above
parameter values to present general features of this model.
doi:10.1371/journal.pone.0061251.g001

Figure 2. The relationship between the noise amplitude s and
the growth rate vg with various feedback strengths. The
geometric mean of the growth rates attained by randomly generated
regulatory networks is plotted as a function of the noise amplitude s.
The growth rates for different values of a are superimposed by using
different colors. The black line indicates the growth rate in the case of a
random selection of the state, where the expression level xi takes
randomly the values 0 and 1 with equal probability.
doi:10.1371/journal.pone.0061251.g002
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indicated that, before settling into a stable expression pattern with

a high growth rate, the cell generally need to search more than one

hundred on-off expression patterns. This inefficiency, however, is

due to the randomly generated nature of the regulatory networks.

The regulatory networks of actual organisms have been organized

through evolution. These networks allow for quick, precise

responses to environmental changes of types already experienced.

Hence, we study the evolutionary dynamics of regulatory

networks in order to investigate how this evolution is affected by

the presence of EFR, by using the model described by Eq.(1) and

(2). For this purpose, we define the fitness of a cell to be the

geometric mean of the cell’s growth rates in multiple environments

realized after a relatively short period (one unit time in Fig. 1).

Fig. 5 shows the increase in the highest fitness (i.e., average growth

rate under multiple environments) among the mutant networks

averaged over 100 independent evolutionary simulations with and

without EFR (s~0 and 1). In this simulation, there is no

environmental signal except for the change of the target expression

patterns. Therefore, the cells without EFR cannot respond to the

environmental changes and the fitness level is kept relatively low.

In contrast, with EFR, the fitness levels increase with the evolution

of the regulatory networks, regardless of the addition of noise. In

such cases, the cell falls into an actively growing state under a

given environmental condition without searching many on-off

expression patterns as in Fig. 1(a), through the positive feedback of

the epigenetic factors and the growth activity. Since EFR allows

the cell to sense the environmental conditions, the evolutionary

process then accelerates environmental adaptation through growth

regulation, even without the aid of noise or environmental signals.

It should be noted that, when environment-specific input signals

are included appropriately, the fitness level increases even without

EFR, but not so much unless the signal is very strong. The results

indicate that, with the aid of EFR, the regulatory networks after

evolution with a moderate noise level (e.g., s~1) possess two

advantageous properties, i.e., fast adaptation to known environ-

ments to which they are tuned, and noise-based adaptation to

unknown environments.

It is worth noting that the evolved networks obtained under

specific environmental conditions exhibit higher growth rates in

unfamiliar environments than the random network, as shown in

Fig. 6. This is presumably due to the increase of sensitivity to

perturbations, such as slight changes in regulatory inputs and

expression noise, in the expression dynamics of evolved networks.

To evaluate the sensitivity to perturbations in the expression

dynamics, we calculated the Euclidean distance between two

expression profiles D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i (xi{x

0
i)

2
q

, where xi and x
0
i represent

expression levels at steady states obtained by adding constant

perturbations to the total regulatory input z, i.e., with addition of

Gaussian noise with amplitude 0.001. The average distances over

100 evolved and random networks are 4:5|10{2 for the evolved

networks and 8:1|10{3 for random networks, respectively,

suggesting a higher sensitivity to perturbations in the evolved

networks than the random networks. This higher sensitivity

maintained in the evolved networks can accelerate the noise-

Figure 3. The relationship between the noise amplitude s and
the growth rate vg obtained by the alternative model without
the growth-dependence on EFR. The geometric mean of the
growth rates attained by randomly generated regulatory networks is
plotted as a function of the noise amplitude s. The growth rates for
different values of a are superimposed by using different colors. In the
intermediate range of the noise amplitude 10{2

vsv100 , the average
growth rates obtained in the cases with aw0 are significantly higher
than the case without EFR (a~0), due to the selection of actively
growing state by noise.
doi:10.1371/journal.pone.0061251.g003

Figure 4. The distribution of search time. Starting from random
initial condition, the time to reach a steady expression pattern was
calculated. For 4.1% of trials, the search time was larger than 25 unit
time. The model and parameter values were identical to those in Fig. 1.
doi:10.1371/journal.pone.0061251.g004

Figure 5. Evolution of the highest fitness as a function of the
generation. 100 independent evolutionary simulations were per-
formed, and the average of the highest fitness value in each generation
is plotted along with the standard deviation. The fitness of a regulatory
network is defined as the geometric average of the growth rate, vg , in
k~10 different environments. For the cases with EFR, the noise
amplitude, s, was set to 0 and 1, respectively. For each generation, the
number of parent networks n was set to 25, while for each parent
network L~20 mutant networks were generated by randomly
replacing a regulatory path. The total number of regulatory paths
was fixed to 400. In the cases without EFR, the epigenetic factor hi was
fixed to 0.
doi:10.1371/journal.pone.0061251.g005
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driven search for a higher-growth state. Also, we confirmed that

the average time required to reach a steady state in unfamiliar

environments is significantly shorter in the evolved networks than

the random networks. This is another reason why the evolved

networks achieve higher fitness in unfamiliar environments.

Discussions

In this study, we have proposed a model describing the

dynamics of gene regulatory networks possessing EFR. We have

shown that the existence of EFR enables cells to adapt to

unfamiliar environmental changes through a stochastic selection of

expression patterns that support a high growth rate. Under the

presence of EFR, evolution to achieve quick and precise

adaptation to multiple environments is realized without environ-

ment-specific signals. We emphasize that the results presented

herein are valid over a broad class of models, as long as there exist

the following three characteristics. First, gene expression levels and

corresponding epigenetic regulations form positive feedback loops.

That is, when the expression level of a gene becomes high, the

epigenetic feedback regulation is activated which further activates

the expression, and vice versa. Second, the activity of EFR (and=)

or gene expression dynamics somehow depends on the cellular

activity as the growth rate. In the model represented by Eqs.(1)

and (2), this growth dependency is included by assuming the

change of the epigenetic factor h over time is proportional to the

growth rate vg. Alternatively, the feedback from the growth rate to

gene expression dynamics allow for the present adaptation. In the

model represented by Eqs. (4) and (5), the feedback is included by

assuming that the protein synthesis and degradation rate are

proportional to the growth rate. Finally, the dynamics of EFR

(and=) or gene expression dynamics are noisy, due to their

dependence on chemical reactions with a small number of

molecules. The noise can be introduced to the dynamics of

epigenetic factor as in Eq.(2), or to the gene expression dynamics

as in Eq.(4), or both. We have tested several models with the above

characteristics, and confirmed that the noise-driven adaptation by

EFR is generally observed. For example, we have confirmed that

the noise-based adaptation we proposed also emerges when the

cellular growth has a more complex dependency on the expression

profile as adopted in [7], instead of the simple additive fitness

function in Eq. (3). Furthermore, we have confirmed that the

model with a Hill function form of gene regulation also exhibit the

noise-driven adaptation. Indeed, these results suggested the

generality of the adaptive dynamics with the aid of EFR. We

also studied the relevance of the noise-driven adaptation with EFR

under fluctuating environments. Numerically, the change of

environmental conditions was introduced as the change of the

target expression levels in Eq.(3) per some generations. When the

time scale of environmental switches was longer than time

required for adaptation, the cells maintained high growth rates if

there existed appropriate level of the EFR (e.g. a~4 and s~3 in

Eqs. (1)(2)). The noise-driven adaptation works under continuously

fluctuating environments.

Now we discuss molecular basis of EFR we proposed here. First,

there are several studies that suggest the existence of feedback

regulation in epigenetic dynamics. For example in bacterial cells, it

is suggested that methylation of genomic DNA acts as an

epigenetic mechanism with positive feedback regulation, which

enables inheritance of DNA methylation patterns [12]. DNA

supercoiling in bacterial genome is also known as an epigenetic

factor which control the gene expression profile with positive

feedback regulation. It is suggested that, the binding of RNA

polymerase to genomic DNA promote the formation of negative

supercoiling, while the formation of supercoiling accelerates the

RNA polymerase binding [13]. Here, a positive feedback

regulation of the transcription and formation of supercoiling

arises, which results highly transcribed regions in the genome

mainly corresponding to rRNA synthesis. It is natural to expect

that such positive feedback regulation in DNA structure and

transcription can maintain heritable epigenetic state. For examples

of epigenetic feedbacks in eukaryote, a polycomb-based epigenetic

switch in arabidopsis analyzed experimentally by [14] agreed with

the theoretical model for positive feedback regulation presented by

[10,11]. Indeed, there are a number of studies addressing

’’epigenetic memory" including one that shows gene expression

is memorized by epigenetic mechanisms such as DNA and histone

modifications [9,15,16]. To generate and maintain such memory,

a positive feedback between gene expression and epigenetic

mechanisms are expected to exist. Also, it may be that epigenetic

feedback can be accelerated by an increase in the growth rate,

because the numbers of RNA polymerase and other proteins

involved in the epigenetic dynamics per cell are positively

correlated with the growth rate [17]. In fact, in E.coli cells, the

formation of highly transcribed regions by the positive feedback

via DNA supercoiling is positively correlated with the cellular

growth rate [13]. Furthermore, epigenetic dynamics contain noise,

because gene expressions and other chemical reactions are

inherently stochastic [18–21]. In fact, there are experiments

supporting the notion that switches between epigenetic states are

stochastic [22,23]. Along with the results presented here, these

previous reports lead us to hypothesize that the epigenetic

feedback mechanism underlies the flexible and robust dynamics

of adaptation and evolution exhibited by living organisms.
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Figure 6. The distributions of growth rates in a novel
environment for evolved networks and random networks.
100 evolved networks obtained after 100 generations with EFR (s~1;
see Fig. 2) and 100 random networks were used for the calculations. For
each network, the growth rates were calculated using 50 randomly
chosen target expression patterns that were not used for the
evolutionary simulations. For all simulations in this figure, s is set to
1 and EFR is incorporated in the expression dynamics. The difference in
the growth rates was statistically significant (pv10{10; determined by
U-test).
doi:10.1371/journal.pone.0061251.g006
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