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Abstract
Purpose—Greater clinical validity and economic feasibility are driving the more widespread use
of multiplex genetic technologies in routine clinical care, especially for pharmacogenomics
applications. Empirical data on the numbers and types of incidental findings generated through
such testing are needed so that policies and practices for their clinical use can be developed. Of
particular importance are disparities in findings relevant to different ancestry groups.

Methods—The Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment
Resource (PREDICT) is an institutional program to implement prospective clinical genotyping of
34 pharmacogenomic-related genes to guide drug selection and dosing. We curated 5566 journal
articles to quantify and characterize the incidental, non-pharmacogenomic genotype-phenotype
associations that could be generated through this clinical genotyping project.

Results—We identified 372 putative incidental genotype-phenotype associations that might be
revealed in patients undergoing clinical genotyping for pharmacogenomic purposes. Of these, 287
associations were supported by at least one study demonstrating an odds ratio ≥2.0 or ≤0.5.
Numbers of potentially relevant findings varied widely by ancestry group.

Conclusions—Rigorous clinical policies for the clinical management of incidental findings are
needed since the sheer number of significant findings could prove overwhelming to healthcare
institutions, providers, and patients.

Keywords
Incidental Findings; Incidentalome; Pharmacogenomics; Disease Susceptibility; Genomics

Corresponding Author: Kyle B. Brothers, MD, Kosair Charities Pediatric Clinical Research Unit, Department of Pediatrics, 231 East
Chestnut Street, N-97, Louisville, KY 40202, Phone: 502-852-2569, Fax: 502-629-5285, kyle.brothers@louisville.edu.

Conflict of Interest Notification Page
All authors report that they have no commercial association that might pose or create a conflict of interest with information presenting
in this manuscript.

NIH Public Access
Author Manuscript
Genet Med. Author manuscript; available in PMC 2013 November 01.

Published in final edited form as:
Genet Med. 2013 May ; 15(5): 325–331. doi:10.1038/gim.2012.147.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



INTRODUCTION
Multiplex technologies, which can detect an array of desired laboratory results pertinent to a
particular clinical issue, often yield other ancillary or incidental findings not related to the
original motivation for testing. Kohane et al coined the term incidentalome in 2006 to refer
to the potentially voluminous collection of ancillary findings that can be generated through
multiplex genetic testing technologies. They predicted that this set of ancillary findings
could pose a threat to the implementation of genomic medicine because the number of
findings generated, particularly through whole genome sequencing, could raise a number of
challenges.1 These authors and others have raised concerns that due to the size of the
incidentalome, follow-up testing to characterize incidentally identified risks could become
very expensive,1,2 especially given the inevitability of false-positive results.1

Even more significant than the challenge of cost, perhaps, is the challenge of scale. The
incidental findings generated by a single-gene genetic test are limited in number and can be
dealt with relatively effectively and efficiently by a clinical geneticist, a genetic counselor,
or another knowledgeable clinician. But the number of results generated by a high-
throughput assay such as a SNP chip covering a range of genes, or even a whole genome
sequence, could become unwieldy for providers to evaluate and validate. The methods for
addressing incidental findings on this larger scale is therefore an issue that must be
addressed in discussions focused on identifying when genetic results are ready for clinical
application. This is especially important given that the time already required for clinicians to
provide routine preventive care is substantial.3

Policies designed to address the challenge of scale will need to be informed by the number
and clinical relevance of incidental findings potentially generated using specific multiplex
genetic technologies. All things being equal, stronger associations are more likely to be
clinically relevant, and most experts agree that findings returned clinically should be
clinically “actionable.” The clinical relevance of a particular association for a specific
patient additionally depends on the patient’s gender, age, past medical history, and health
behaviors. Finally, ancestral origin influences the strength of genetic associations, so the
clinical relevance of an association could vary among ancestral groups. For all of these
reasons, it will be important to examine whether the number of associations varies among
groups of patients.

In this manuscript we provide an empirical assessment of the incidentalome, taking a
clinical pharmacogenomics project as a test case. Vanderbilt University Medical Center
recently designed and built a gene-agnostic and pharmaceutical-agnostic infrastructure to
support the integration of pharmacogenomic variants into routine clinical care.4 This project,
named the Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment
(PREDICT), currently utilizes Illumina’s VeraCode ADME Core Panel (Illumina, Inc., San
Diego, CA) as its genotyping platform. This single nucleotide polymorphism (SNP) based
platform interrogates 184 SNPs in 34 genes selected due to their importance in
pharmacogenomics. They thus represent especially well-studied targets. In addition to their
importance in pharmacogenomics, however, many have implications for other components
of clinical care. Since this panel covers only a small fraction of human genes, and thus only
a small slice of the incidentalome, it provides a manageable case study to examine the
incidentalome-related challenges that will arise as multiplex genetic testing technologies
become more widespread.

In this paper we report on the first attempt to “map” the subset of the incidentalome that
could be generated by a multi-gene SNP test intended for pharmacogenomic use, using the
VeraCode ADME Core Panel as a case study. We conducted a systematic review of
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published articles to quantify and characterize the total number of ancillary findings
associated with the genes included in this panel in order to provide the data necessary to
inform practices on reporting incidental findings. These practices should ensure that the
aims of efficiency and efficacy envisioned for Personalized Medicine can be attained, while
managing the effect of an incidentalome that could be overwhelming or distracting for
patients and providers.

MATERIALS & METHODS
Initial Article Database

We performed a comprehensive literature review of all articles available in PubMed as of
June 22, 2011 referencing at least one of the 34 genes included in the VeraCode ADME
Core Panel (Figure 1). We used the Genopedia tool, an online database of genomics-related
articles designed and maintained by the Human Genome Epidemiology Network
(HuGENet), to generate our initial panel of articles.5

Inclusion and Exclusion Criteria
A genotype-phenotype association was included in our database if the gene being studied
was one of the 34 genes included in the VeraCode ADME Core Panel and the phenotype
was a medical condition or characteristic with clinical significance. Excluded phenotypes
were (1) those not usually evaluated in the clinical setting (e.g. DNA damage, chromosomal
aberrations), and (2) complications of diseases or therapies (e.g. transplant rejection or
survival after treatment). Pharmacogenomic associations and associations with non-
pharmacological treatment outcomes were also excluded, since these are the primary
purpose for the genetic test in the PREDICT program, not “incidental” findings. Genome-
wide association studies and manuscripts for which no abstract or text in English was
available were also excluded. An association was considered statistically significant if the
95% confidence interval for at least one reported odds ratio (OR) did not cross 1.0 or
another valid statistic indicated significance at the 95% confidence level.

Database Curation
Our initial database of published articles included reports on potential genotype-phenotype
associations, as well as other studies referencing our genes of interests. We first excluded all
articles that were not focused on identifying an association between at least one gene of
interest and a clinically relevant phenotype. Next, we determined for each gene of interest
referenced whether the study produced a statistically significant (positive) finding or a
statistically nonsignificant (negative) finding.

We applied our inclusion and exclusion criteria in two stages. First, we used a computerized
algorithm to identify articles that were excluded because they did not report on relevant
genotype-phenotype associations (Figure S1A). Second, we hand-curated remaining articles
to record positive and negative genotype-phenotype associations and to identify additional
articles that should be excluded (Figure S1B).

Computerized Curation
Computerized curation proceeded in two stages. First, we utilized MedEx, a tool originally
designed to extract medical information from full-text clinical narratives, to identify articles
whose titles refer explicitly to medications.6 These articles were classified as
pharmacogenomic in focus and were excluded from this study. Second, additional search
criteria were used to identify articles meeting other exclusion criteria. For example, articles
whose titles contained the text “DNA damage” were excluded because this indicated a focus
on a biomarker not usually evaluated in the clinical setting (Figure S1).
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The computerized algorithm was refined to minimize the number of articles that would
require hand curation while also minimizing the number of articles incorrectly excluded
from review. Random samples of 100 included and excluded articles were reviewed to
determine whether articles were mislabeled as qualified or disqualified by the computerized
algorithm. The algorithm was then revised iteratively until 100% specificity was attained.

Hand Curation
Five authors then hand-curated remaining articles. Articles were assigned to reviewers at
random, and one author (KBB) reviewed a subset of each reviewer’s inclusions and
exclusions to ensure accuracy and consistency. Articles reporting incomplete or ambiguous
results were subjected to a secondary review. If an article reported on the association
between a gene and more than one phenotype, each genotype-phenotype association was
recorded and analyzed separately. Records were managed through the online research
database tool REDCap.7

For putative genotype-phenotype associations that qualified for inclusion, we recorded the
phenotype tested and the population studied. Phenotypes were grouped according to clinical
and pathophysiological relationships. For example, angina, acute coronary syndrome, and
myocardial infarction were grouped as one phenotype; aerodigestive tract cancers of the
head and neck were grouped as another (Figure S2). Populations were grouped at the level
of nation-state (Brazil, China, Finland) or region (Eastern Europe), except where the article
was explicit that research participants came from a diversity of ethnic or national origins. To
facilitate an analysis focused on the largest US ancestral origin groups, findings for
European Americans were combined with those from Western and Central Europe, and
findings for African Americans were combined with those from Western and Sub-Saharan
Africa (Table S1).

For statistically significant findings, we recorded the OR and 95% confidence interval from
the strongest association, in terms of magnitude of the odds ratio, reported. We also recorded
whether the study examined other factors that could influence the clinical significance of the
association including interactions with health behaviors, environmental exposures,
occupational exposures, and other gene markers.

Analysis of Clinical Relevance
In order to account for some of the factors that influence the clinical relevance of incidental
genotype-phenotype associations, we constructed tables of genotype-phenotype associations
relevant to two hypothetical patients living in the US. We did not define or apply criteria for
clinical actionability, but instead focused on validity, for which criteria are less stringent.
Specifically, we defined an association as “strong” if at least one publication reported an OR
for that association to be ≥2.0 or ≤0.5.8–10 Associations were considered “replicated” if
more than one publication reported a positive finding and no publications reported a
negative finding. Finally, a finding was considered “clinically relevant” for a hypothetical
patient if the association had been demonstrated to have a strong correlation in at least one
study conducted with participants from that patient’s ancestral group. Our two case studies
involved tallying the number of findings meeting this criterion for a healthy female of
European ancestry and for an otherwise identical patient of African ancestry.
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RESULTS
Excluded Articles

In all, we reviewed 5566 unique articles. A small number of articles (94) could not be
evaluated because an abstract was not available through PubMed and the full text of the
article could not be obtained in English.

In total, 3850 articles were excluded: 2391 by the computerized filter and 1459 through hand
curation. Examples of excluded articles are systematic reviews, articles reporting on the
frequency of genetic variants in populations, and articles reporting novel gene mutations.
Among excluded articles, 2277 were found to report only pharmacogenomic findings and
166 were found to report only associations with complications of diseases or treatments.

Genotype-Phenotype Associations
After exclusions, 1715 studies were found to have tested associations between at least one
gene of interest and a qualifying phenotype. These studies included single-gene studies,
small candidate gene studies, and large pathway-based studies, with an average of 2.0 (SD
1.4) genes of interest examined per article. 26 of the 34 genes included on the VeraCode
ADME Core Panel were found to have at least one qualified genotype-phenotype
association.

Altogether, we examined 806 putative genotype-phenotype associations, of which 434 had
been tested but never supported by a statistically significant finding. 91 putative associations
were supported by only one positive study with no published attempts at replication, and 14
had been replicated in at least 2 studies with no published negative findings. There was
mixed evidence on most putative genotype-phenotype associations; 267 associations were
found to be statistically significant in at least one study and statistically nonsignificant in at
least one study (Table 1).

On average, each gene carried statistically significant associations with 10.9 phenotypes,
strong associations with 8.4 phenotypes, and strong associations that had been replicated
with 0.4 phenotypes (Table 2). The median number of articles examining each genotype-
phenotype association was 2. The most studied genotype-phenotype association was a
possible association between GSTM1 and lung cancer. This association was examined in 83
articles, 28% of which reported statistically significant findings.

Ancestral Origin
158 associations were reported in studies relevant to European Americans while 14
associations were reported in studies relevant to African Americans. We identified only one
study conducted in a US population explicitly described as white Hispanic. 72 associations
were identified in participants living in the US from multiple ancestry groups (Table S1).

Clinical Relevance
287 genotype-phenotype associations were supported by at least one study demonstrating a
strong correlation (Table 1). 103 of these associations were supported by more than one such
study. The subset of these strong genotype-phenotype associations that could be identified in
a healthy female patient of European ancestry are shown in Table 3. In all, genotyping on
the VeraCode ADME Core Panel could identify 100 clinically relevant genotype-phenotype
associations in a female patient of European ancestry, of which 39 have been replicated. By
comparison, the same genotyping could identify 9 clinically relevant genotype-phenotype
associations in a female patient of African ancestry, of which only 1 has been replicated
(Table 4).
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DISCUSSION
Only two previous studies have sought to characterize the incidental findings that could be
generated through multiplex genetic tests. In 2002, Hirschhorn et al. reported all gene-
disease associations that had been identified to that point, excluding genes of known
monogenic disorders and associations with HLA markers and blood group antigens.11

Multiplex genetic tests were not being used clinically at that time, so the results from this
study were not framed in terms of incidental findings. However, had genome-wide SNP
chips been in clinical use at that time, polymorphisms in 268 genes would have generated
incidental findings across 133 common diseases and traits. Only 166 genotype-phenotype
associations had been examined in at least three studies, and only 6 of those were
reproduced in 75% or more of the relevant studies. At that time, the portion of the
incidentalome that had been characterized was quite small.

In 2007, Henrikson et al. reviewed 555 article abstracts looking for associations between
genetic variants relevant to pharmacogenomics and at least one condition.12 They found that
among 42 pharmacogenomic variants, only 22 (52.4%) had been found to be associated with
a disease in more than one study, and only 7 (16.7%) had been associated with multiple
conditions in two or more studies. We studied a group of 34 genes that overlapped
significantly with those studied by Henrickson et al. We found that 20 (58.8%) had been
associated with at least one disease in more than one study, and 14 (41.2%) had been
associated with multiple conditions in two or more studies.

This study confirmed that replicated ancillary findings are generated through
pharmacogenetic tests, but it was not comprehensive enough to quantify the number of
results that may be generated. In addition, the relevant science has advanced in the past 5
years. Our study provides an updated and more comprehensive account of the number of
genotype-phenotype associations generated through pharmacogenomics testing.

The Incidentalome at the System Level
Our study indicates at least two ways the number of potential genotype-phenotype
associations will be important to institutions implementing clinical genotyping. First, the
process of identifying the full set of relevant incidental findings was very time intensive.
Even with informatics tools, classifying genotype-phenotype associations required a
significant amount of time, care, and specialized knowledge. We estimate that, even with the
use of a computerized algorithm that excluded approximately 40% of articles, our hand
curation of articles required 800 person-hours. Our review did not even consider sample size
and power, quality of study design, or the possibility of translating results across different
genotyping technologies, nor did we directly evaluate clinical actionability. Given that these
more detailed evaluations will take even more time, effort, and expertise, our experience
highlights the importance of efforts such as the Human Genome Epidemiology (HuGE)
network and the EGAPP initiative to combine efforts across institutions to evaluate the
quality of data on genotype-phenotype associations and their readiness for use in clinical
practice.13–15

Second, our findings make it clear that institutions seeking to translate incidental genotype-
phenotype associations into clinical care will need to develop robust informatics systems for
delivering this information to providers and patients. In our panel of 34 relatively well-
studied genes, the mean number of strong associations (OR ≥2.0 or ≤0.5) generated for each
gene was 8.4 phenotypes. Given the pleiotropy of these genes, reporting genotype
information alone to providers will not be sufficient. Patients and providers will need more
sophisticated reports organizing and synthesizing data on the relevant disease risks and the
quality of the data supporting such assessments.
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The Incidentalome at the Patient Level
Even if patients and providers are provided with interpreted reports on genotype-phenotype
associations, there will still be need for contextualization and prioritization at the patient
level. While the size of the incidentalome is large, the number of clinically significant
genotype-phenotype associations identified in each patient will vary. Some patients will face
an overwhelming number of incidental findings. For example, patients with certain variants
in GSTM1 could carry significantly elevated risks for over 40 different phenotypes. Other
patients may carry no high-risk variants in the 34 genes probed in such a panel.

One solution to this challenge would be to prioritize results. Healthcare institutions,
following the lead of direct-to-consumer genomic testing companies, may choose to make
all results available to patients through tools such as a web portal. This approach is
consistent with the commonly reported (but not unanimous) patient preference to have
access to “everything” there is to know from their genetic testing.16–18 But for patients with
large numbers of incidental findings, clinic visits will need to focus on only the 5 or 10 most
significant results, or the results the provider judges to be most important given the patient’s
current medical situation. As long as patients are able to access “everything” through
another mechanism, clinical efforts to focus on only the most important results may be well
received by patients.

Such an approach may raise concerns with healthcare providers who fear liability for failure
to address all potential results.19–21 This study demonstrates that clinical approaches that
treat all genotype-phenotype associations as laboratory “results” in need of clinical attention
will be unworkable. Multiplex genetic technologies have the potential in some patients to
generate too many incidental findings for their providers to address them all meaningfully.22

Standards of care related to addressing lab findings will need to be reframed to limit the
responsibility of providers to only those results that meet appropriate standards of relevance,
utility, and quality. The necessity, and even wisdom, in such an approach is supported by
efforts in other fields to prioritize clinical time and attention.23

Prioritizing Results
Berg et al. have proposed a “binning system” by which genetic variants can be “triaged” in
the clinical, diagnostic setting according to specific reporting criteria.24 These authors
identify three “bins” into which genotype-phenotype associations may be categorized. Bin 1
would contain clinically valid results that also carry clinical utility according to current
literature. Bin 2 would contain clinically valid results that are not considered to be
actionable. This bin is further stratified into bins 2A, 2B, and 2C. Bin 2A would hold results
that are unlikely to cause patients distress (such as risks for common diseases) while Bin 2B
and 2C would hold results that patients are more likely to find distressing (such as risks for
Alzheimer’s Disease or Huntington’s Disease). Bin 3 would contain results with unknown
clinical implications, and would thus hold the majority of incidental findings. The authors
argue that such a binning system, when used appropriately, would lead to relatively few
results falling into the “Clinical Utility” bin (Bin 1), and would thus allow patients and
providers to focus on those results that are most likely to be useful.

Our study supports the assessment that such an approach to prioritizing results will be
needed if incidental findings are to be incorporated into clinical care. However, it also
highlights that the “devil is in the details.” The valid results generated by the VeraCode
ADME core panel could range from 12 associations meeting very strict criteria (replicated
findings with at least one study showing a “strong” correlation, and no negative findings) to
105 associations meeting less stringent criteria (findings demonstrated in at least positive
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study, and no negative findings). Criteria to identify which of those are also clinically useful
should be balanced to ensure that the number of results in Bin 1 remains manageable.

Our work also indicates that national and international collaborations such as the HuGE
network and the EGAPP initiative will be important in addressing the daunting task of
identifying the proper bin for specific findings. Currently available online databases,
although useful for a range of applications, do not provide the information needed for
clinical applications. For example, the Genopedia interface for the HuGE Navigator (used to
generate the initial dataset for our study) greatly overestimates the relevant genotype-
phenotype associations. It catalogs the gene names and MeSH terms that are referenced
together in publications,25 but it has not been curated to identify articles that demonstrate
clinically relevant associations. On the other hand, the NHGRI Catalog of Genome-Wide
Association (GWA) Studies underestimates the number of valid genotype-phenotype
associations, since it catalogs only studies utilizing genome-wide methodologies.26,27 For
example, of the 287 strong genotype-phenotype associations we identified in this study, only
6 were found in the NHGRI GWA catalog (data not shown).

Disparities in the Incidentalome
This study also demonstrates that the racial and ethnic disparities in genomic science
observed in GWA studies are recapitulated among case-control studies.28–30 We identified
45 phenotypes whose risk could be assessed at a clinically relevant level among European-
American women, but only 6 phenotypes that could be assessed among African-American
women. If we accept that genotype-phenotype associations need to be replicated within an
ancestral group before they are implemented in medical care for members of that group, then
it is clear that a great deal more scientific work will be required before the benefits made
possible through genome-based Personalized Medicine can be provided equitably across
racial and ethnic groups.

Limitations
The primary limitation of this study is that we did not assess quality of study design,
adequacy of sample size, or power of each study. We also did not differentiate between
different variants within genes; different variants within genes may carry different risks. In
addition, we did not assess the clinical actionability of identified genotype-phenotype
associations. Because of these factors, our estimate of the number of genotype-phenotype
associations relevant to the medical care of patients is likely an over-estimate. However, the
associations that could be eliminated using more strict criteria are likely to be replaced over
time by novel associations and new confirmatory findings, both of which are being reported
at an increasing rate.

The complex relationships among race, ethnicity, and genetic ancestry also posed significant
challenges. The vast majority of studies we reviewed treated place of residence or self-
identified race/ethnicity as an analogue for genetic ancestry. While current data supports the
generalization that genetic ancestry and self- or observer-reported race/ethnicity are
correlated,31–34 the appropriate methods for operationalizing genetic ancestry in the clinical
application of genetic test findings remain unresolved. In particular, we have speculated that
findings generated in Western or Central Europe will be relevant to the health of European
Americans while findings generated in West and Sub-Saharan Africa will be relevant to
African Americans. This is an assumption that will require more careful analysis prior to
clinical application of findings, perhaps on a study-by-study basis.
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CONCLUSIONS
As this quantitative literature review has shown, the sheer number of potential incidental
findings generated through whole genome sequencing is likely to pose an information
management challenge, both for informatics systems and for health care providers and
patients. Managing and categorizing all of the genotype-phenotype associations generated
through clinical genotyping is likely to overwhelm the resources of individual institutions.
Collaborations through national or international networks will be required. Likewise, the
amount of time a health care provider would need to address the number of findings
generated through such testing for some patients is likely to exceed the practical limitations
of most clinic settings. That such a large number of findings can be generated through a
relatively small panel of 34 relatively well-studied genes implies that the “incidentalome”
generated through whole genome sequencing will raise even more significant challenges.
The development of relatively stringent policies for “binning” results is an important pre-
requisite for the effective use of incidental genomic findings in clinical care.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genes Included in Illumina’s VeraCode ADME Core Panel
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Table 1

Putative genotype-phenotype associations

Evidence Category Genotype-Phenotype Associations

All Strong
Correlation*

At Least 1 Positive Finding 372 287

   Replicated (≥2 positive findings, 0 negative finding) 14 12

   No Replication Attempts (1 positive finding, 0 negative findings) 91 66

   Mixed Evidence (≥1 positive finding, ≥1 negative finding) 267 209

*
At least one positive finding demonstrated OR ≥ 2.0 or ≤ 0.5
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Table 2

Statistically-significant genotype-phenotype associations by gene

Gene Associated Phenotypes

All Strong Correlation* Strong Correlation,
Replicated**

ABCB1 12 9 1

ABCC2 3 2 0

ABCG2 3 2 0

CYP1A1 40 31 2

CYP1A2 16 10 1

CYP2A6 6 6 1

CYP2B6 2 2 0

CYP2C19 8 6 0

CYP2C8 1 0 0

CYP2C9 7 6 0

CYP2D6 9 7 0

CYP2E1 24 18 0

CYP3A4 7 7 0

CYP3A5 7 4 0

DPYD 0 0 0

GSTM1 60 49 3

GSTP1 42 31 2

GSTT1 55 45 0

NAT1 7 3 1

NAT2 34 31 0

SLC15A2 0 0 0

SLC22A1 0 0 0

SLC22A2 0 0 0

SLC22A6 0 0 0

SLCO1B1 3 1 0

SLCO1B3 0 0 0

SLCO2B1 0 0 0

SULT1A1 11 9 1

TPMT 0 0 0

UGT1A1 7 4 0

UGT2B15 1 1 0

UGT2B17 3 2 0

UGT2B7 1 1 0

VKORC1 3 0 0

*
At least one study indicated at least one gene variant conferred risk with OR ≥ 2.0 or ≤ 0.5

**
Findings replicated in more than one publication, at least one of which demonstrated a correlation at the OR ≥ 2.0 or ≤ 0.5 level, with no

negative findings
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Table 3

Selected strong (OR ≥ 2.0 or ≤ 0.5) genotype-phenotype associations relevant to a female patient of European
ancestry

Gene Selected* Phenotypes with Strong (OR ≥ 2.0 or ≤ 0.5) Association

ABCB1 Breast Cancer, Colorectal Cancer, Inflammatory Bowel Disease

ABCG2 Gout

CYP1A1 Breast Cancer, Colorectal Cancer, Coronary Artery Disease, Endometrial Cancer, Head and Neck Cancer, Leukemia, Lung
Cancer, Ovarian Cancer, Psoriasis, Type 2 Diabetes

CYP1A2 Colorectal Cancer, Endometrial Cancer, Hypertension, Ovarian Cancer

CYP2C9 Mood Disorder

CYP2D6 Colorectal Cancer, Lung Cancer, Parkinson's Disease, Scleroderma

CYP2E1 Colorectal Cancer, Gastric Cancer, Head and Neck Cancer, Lung Cancer, Scleroderma

CYP3A4 Lung Cancer

CYP3A5 Hypertension

GSTM1 Alcoholic Pancreatitis, Asthma, Basal Cell or Squamous Cell Carcinoma, Breast Cancer, Esophageal Cancer, Head and Neck
Cancer, Hypertension, Lung Cancer, Ovarian Cancer, Renal Cancer, Rheumatoid Arthritis, Urinary Tract Cancer

GSTP1 Breast Cancer, Colorectal Cancer, Gastric Cancer, Hodgkin's Lymphoma, Lung Cancer, Parkinson's Disease, Urinary Tract
Cancer

GSTT1 Asthma, Breast Cancer, Colorectal Cancer, Coronary Artery Disease, Esophageal Cancer, Gastric Cancer, Head and Neck Cancer,
Leukemia, Lung Cancer, Melanoma, Non-Hodgkin's Lymphoma, Renal Cancer, Urinary Tract Cancer

NAT1 Asthma, Lung Cancer

NAT2 Breast Cancer, Cervical Cancer, Endometriosis, Gastric Cancer, Head and Neck Cancer, Lung Cancer, Ovarian Cancer, Urinary
Tract Cancer

SULT1A1 Breast Cancer, Colorectal Cancer, Endometrial Cancer, Gastric Cancer, Head and Neck Cancer, Urinary Tract Cancer

UGT1A1 Endometrial Cancer

*
Relatively minor or rare phenotypes omitted
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Table 4

Strong (OR ≥ 2.0 or ≤ 0.5) genotype-phenotype associations relevant to a female patient of African ancestry

Gene Phenotypes with Strong (OR ≥ 2.0 or ≤ 0.5) Association

ABCG2 Coronary Artery Disease

CYP1A1 Breast Cancer

GSTM1 Asthma, Liver Cancer, Lung Cancer

GSTP1 Asthma, Esophageal Cancer, Lung Cancer

GSTT1 Breast Cancer
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