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Summary
Uncertainty concerning the measurement error properties of self-reported diet has important
implications for the reliability of nutritional epidemiology reports. Biomarkers based on the
urinary recovery of expended nutrients can provide an objective measure of short-term nutrient
consumption for certain nutrients and, when applied to a subset of a study cohort, can be used to
calibrate corresponding self-report nutrient consumption assessments. A non-standard
measurement error model that makes provision for systematic error and subject-specific error,
along with the usual independent random error, is needed for the self-report data. Three estimation
procedures for hazard ratio (Cox model) parameters are extended for application to this more
complex measurement error structure. These procedures are risk set regression calibration,
conditional score, and nonparametric corrected score. An estimator for the cumulative baseline
hazard function is also provided. The performance of each method is assessed in a simulation
study. The methods are then applied to an example from the Women's Health Initiative Dietary
Modification Trial.
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1. Introduction
International reviews of diet and chronic disease data report many possible diet-disease
associations, but few that are firmly established (World Cancer Research Fund/American
Institute for Cancer Research, 2007). Studies of the same association in different
populations, or using differing dietary assessment methods, often yield conflicting results.
There are now cohorts where diet is assessed with both food frequency and food record data.
In these contexts a positive association between dietary fat and breast cancer (Bingham et
al., 2003; Freedman et al., 2006) and an inverse association between dietary fiber and
colorectal cancer (Dahm et al., 2010) were found when food records were used, but these
associations were not apparent when food frequency questionnaire data were substituted.
These reports strongly suggest that the measurement error properties of the dietary
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assessment methods used need to be assessed and accommodated if reliable diet and disease
associations are to be obtained.

Some nutritional epidemiology observational studies have attempted to address the
measurement error issue by using one self-report assessment to calibrate another. However,
a basic requirement for a `reference' estimate to be used to calibrate (or correct) another
assessment is that of independent measurement errors. Since measurement errors for two
self-report assessments instead may be strongly positively correlated, recent efforts have
instead focused on biomarkers of nutrient consumption. For example, a doubly-labeled
water technique (Schoeller, 1988) provides a reliable assessment of short-term total energy
expenditure, while urinary nitrogen yields a good biomarker of short-term protein
expenditure (Bingham and Cummings, 1985). These `recovery biomarkers' (Kaaks, 1997)
also provide estimates of consumption among weight-stable persons. Available biomarker
study data document important systematic bias in relation to body mass index for energy,
protein and percent of energy from protein for self-reported food frequency data (Heitman
and Lissner, 1995; Subar et al., 2003; Neuhouser et al., 2008).

Building on the work of several authors (Prentice, 1996; Carroll et al., 1998; Kipnis et al.,
2001; Jiang et al., 2001), Prentice et al. (2002) proposed a general measurement error model
for self-reported dietary intake which incorporates location and scale bias terms that may
depend on observed covariates. This model also allows the measurement error variance to
depend on observed subject characteristics. Sugar et al. (2007) considered this model for
covariate measurement error and developed methods for odds ratio estimation (logistic
regression model). Many potential applications, however, involve time-to-event outcomes.
Here we consider hazard ratio (Cox model) estimators that accommodate this general error
structure in order to relate nutrient consumption to a time-to-disease outcome.

Several methods have been proposed for Cox regression with mismeasured covariates, under
a classical additive measurement model. These include regression calibration (Prentice,
1982; Wang et al., 1997), risk set regression calibration (Xie et al., 2001), parametric,
semiparametric and nonparametric likelihood procedures (Hu et al., 1998), conditional
scores (Tsiatis and Davidian, 2001), parametric corrected scores (Nakamura, 1992), and
nonparametric corrected scores procedures (Huang and Wang, 2000, 2006; Hu and Lin,
2002, 2004; Gorfine et al., 2004; Song and Huang, 2005). There has also been consideration
of more general error models (Hu and Lin, 2002; Liao et al., 2011) under the assumption
that a `validation' subsample is available where the covariate of interest is precisely
measured. In our setting, the precisely measured covariate is not obtainable.

Here our interest focuses on a study cohort with available self-report data and a biomarker
subsample. Our applications to energy and protein consumption in relation to cancer
(Prentice et al., 2009) and to cardiovascular disease incidence (Prentice et al., 2011) indicate
that these assessments can be much improved by using such study subject characteristics as
body mass index, age and ethnicity to augment the food frequency self-report assessments.
The disease occurrence rates are low (<5%) and censoring rates are high in the context of
these studies, configurations under which bias in the regression calibration estimators is
expected to be negligible. In this paper we extend risk set regression calibration, conditional
score and nonparametric corrected score procedures to the measurement model of Prentice
et al. (2002) that allows for these types of dependencies. We evaluate and compare the
performance of these procedures in simulation study and application.
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2. Methods
Let Xi be the covariate of interest measured with error, a nutritional intake in our setting,
and Zi a vector of precisely measured covariates, for subjects i = 1, … , n. The usual
proportional hazards model for the continuous failure time Ti ≥ 0 is assumed. The hazard

rate λi(t) for individual i at time t is given by , where λ0(t) is an
arbitrary `baseline' hazard function. Assume the right-censoring time C is independent of T
given (X, Z). Let Ni(t) denote the counting process for observed events, Yi(t) = I{Ui =
min(Ti, Ci) ≥ t} be the at-risk indicator at time t, and Δi = I(Ti ≤ Ci). A finite follow-up
interval [0, M] is assumed.

2.1 Measurement Error Model
Instead of observing Xi, ki replicates of a self-reported Qij are observed, where Qij follows
the general measurement error model (Prentice et al., 2002)

(1)

for i = 1, … , n and j = 1, … , ki. Here, ξij is mean-zero random error and γi is a mean-zero
random effect that allows errors in repeat assessments for subject i to be correlated. The δ
parameters determine the systematic bias of the assessment, including scale and location
bias dependent on Zi. A variance of the form aeb′Vi is considered for γi to allow the subject-
specific error variance to depend on Vi, the categorical components of Zi. Note, more
generally that Vi could be a categorical characteristic derived from Zi. For regression
calibration, there may be continuous and discrete components of Zi. For the conditional and
corrected score methods that follow, all components of Zi that impact the scale bias (i.e.
have a nonzero δ3 coefficient) are assumed to be discrete. The error ξij is assumed
independent of the other random variables on the right side of (1).

For i = 1, … , n, we also assume there are κi replicates of an additional covariate Wij, for j =
1, … , κi, a biomarker that obeys the classical measurement error model

(2)

Importantly, the mean-zero error ∊ij is assumed independent of Xi and other terms on the
right side of (1). Typically, due to expense, the biomarker would only be measured on a
random subset of subjects, called the biomarker subset. Let Ri be the indicator that subject i
is in the biomarker subset.

We assume that (Ni, Yi, Xi, Zi, Ri, γi, ki, κi, ∊i1, … , ∊ki, ξi1, … , ξκi) are i.i.d. random
vectors and that (Ri, ki, κi) may depend on observed baseline covariates Zi, but is otherwise
independent of all other random variables in the survival and error models. With the
additional assumptions that P(R = 1) > 0 and P(V = υ) > 0 for all υ ∈ {υ|V = υ}, one has ρ1υ
= P (R = 1, V = υ) > 0 from the independence of R and V. With this result and the SLLN, we
have the necessary regularity that n1υ/n → ρ1υ as n → ∞ for all υ, where n1υ is the number
of individuals with R = 1 and V = υ. If P(R = 1) < 1, similar regularity holds for the non-
biomarker subset (R = 0).

For ease of notation, X and Z are specialized to be univariate, with Z being categorical, and
we assume all n individuals have k replicates of Q and all individuals in the biomarker
subset have κ observations of W. The error model nuisance parameters are estimated
separately using method of moments (Sugar et al., 2007). To ensure identifiability of all
parameters in the measurement error model, it is enough that only a random subset of the
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biomarker cohort has κ > 1 replicates of W and a random subset of the `main' cohort has k >
1 replicates of Q. Importantly, for regression calibration, only single measures of Q and W
are needed. The variance of γ in (1) is assumed to follow the model Σγ = aebZ.

2.2 Risk Set Regression Calibration
In this section, we extend the risk set regression calibration (RRC) estimator of Xie et al.
(2001) to the generalized measurement error model (Section 2.1). For this model, the
unobserved Xi are estimated separately depending on membership in the biomarker subset.

For an observed failure time t, define

(3)

where , , and `^' denotes estimate. Sugar et al (2007)

discuss a class of -consistent estimators for the nuisance parameters pertaining to the same
measurement error model considered here. Explicit moment plug-in estimates for the
nuisance parameters are given in the Supplementary Materials. The nuisance parameters can
also be estimated by performing linear regression of the biomarker on the self-report and
other observed covariates in the measurement error model, as discussed in the appendix of
Neuhouser et al. (2008). This method requires no replicates of the error prone W or Q.

The RRC estimator is found by solving the following estimating equation for β = (β1, β2)′

(4)

The ordinary regression calibration (RC) estimator is found by a similar equation to (4), only

 is estimated only once (at t = 0) instead of being reestimated for each risk set. The RC
and RRC estimators are generally not consistent for the true β, even if Xi is normally
distributed, as the distribution for Xi|{Yi(t) = 1, Wi·, Qi·, Zi} is not normal typically
(Prentice, 1982). In the classical measurement error setting, regression calibration provides
an estimate for β with little asymptotic bias, provided there is small to moderate β and
failure probabilities are small (Prentice, 1982; Xie et al., 2001). In many settings this simple
estimator substantially eliminates the naive estimator bias and has good efficiency. Issues of
bias will be explored for the proposed RRC estimator using simulation studies. Regularity
conditions sufficient for asymptotic normality are listed in the Supplementary Materials.

2.3 Conditional Score
Stefanski and Carroll (1987) developed the conditional score estimator for generalized linear
models. In the conditional score approach, a joint probability model for the mismeasured
covariates and the response variable Y is assumed, and the unobserved covariates are treated
as parameters. The conditional score estimating equation is obtained by conditioning the
derived estimating equation on the sufficient statistics for the unobserved covariates, the Xi
in our setting. Tsiatis and Davidian (2001) adapted this approach to the partial likelihood
score, assuming the mismeasured covariates follow a linear mixed effects model with
classical normal measurement error. Here, their conditional score method is extended to the
generalized error model described above.
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First consider an individual in the biomarker subset. Assuming normally distributed errors,
one can condition the likelihood of {dNi(t), Qi, Wi} given {Xi, Zi, Yi(t) = 1} on the statistic

where Σ∊i = Σ∊/κ is the variance of the error in Wi· and Σei = var(Qi·|Xi, Zi) = aebZi +Σξ/k.
The resulting conditional intensity

does not depend on the unobserved Xi. Similarly, for a non-member of the biomarker cohort,

conditioning on the statistic  gives the
conditional intensity

As in the classical measurement error case, it can be shown ζi in both cases above is of the

form , where  has mean Xi and variance . For the biomarker cohort,

 is a weighted average of the self-report measure Qi·, recentered and rescaled so that it is
unbiased for Xi at the true value of the nuisance parameters, and the biomarker Wi·, where
the weights are inversely proportional to the error variance in these two variables. For the

non-members of the biomarker cohort,  is simply the recentered and rescaled Qi·. Now

define , where ϕ is the vector of error model
nuisance parameters. Proceeding in a manner similar to Tsiatis and Davidian (2001), the
estimating equation for β1 is given by

(5)

where for the Z = z stratum, nz denotes the number of individuals and subscript zi denotes
the i-th member. This conditional score equation reduces to the ordinary stratified Cox
partial likelihood score equation when there is no measurement error, i.e. when δ = (0, 1, 0,
0) and Σ03BE; = Σ∊ = 0. As discussed in Section 2.1, a plug-in estimate for the vector of the
measurement error nuisance parameters can be estimated separately. Details of this
derivation and regularity conditions for equation (5) are provided in the Supplementary
Materials.

A second estimator  using a conditional score approach can be obtained by taking a
weighted combination of two estimating functions: 1) the conditional score function for β of
Tsiatis and Davidian (2001), which assumes classical measurement error, using only the
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biomarker data Wij, and 2) the left-hand side of the proposed conditional score equation (5),
using only the self-report data Qij. For the latter conditional score, the biomarker data are
still needed to estimate the nuisance parameters. Subject to normality and regularity
conditions, every weighted average of these two conditional score estimating equations
would be consistent for β. One could choose the weight w that minimizes the variance of

. This strategy is evaluated in the simulation study that follows. Note, however, this
approach may not be practical if the biomarker subsample includes few uncensored failure
times.

2.4 Nonparametric Corrected Score
The idea behind the corrected score approach for consistent estimation with mismeasured
covariates is to derive the necessary adjustment to the estimating equation with the error
prone covariate so that it has the same expected value as the desired estimating equation
with the true covariate and outcome of interest. Nakamura (1992) and Buzas (1998)
developed a parametric corrected score for Cox regression. Huang and Wang (2000, 2006)
developed nonparametric corrected scores for Cox regression assuming classical
measurement error. The estimator of Huang and Wang (2006) requires replicate
mismeasured covariates only on a subset and is extended here to the error model in Section
2.1.

Define  to be the `main' instrument Qi· recentered and rescaled by the nuisance parameters
δ = (δ0, δ1, δ2, δ3) from the error model in equation (1), i.e.

. At the true parameter value δ0 = (δ00, δ10, δ20, δ30), the

variable  is composed of Xi plus an error term. That is

, where νi given Zi = z has zero mean and variance

(Σγi· + Σξi·)/(δ10 + δ30z)2. With this transformed covariate , one can adapt the corrected
score approach of Huang and Wang (2006). For consistent estimation, the method of Huang
and Wang (2000, 2006) requires there to be individuals with at least two `error prone'
measures observed which are conditionally independent given Xi and whose errors are

independent of Xi and the at-risk process. The distribution of the error in  depends on Zi so
if Zi, either through correlation with Xi or independently, is associated with the hazard, then
the error νi will be correlated with both Xi and I{Yi(t) = 1}. Assuming discreteness and
conditioning on the value of Zi, νi is independent of Xi, the failure time, and ∊i. Thus by
stratifying the partial likelihood score on Z, a technique similar to Huang and Wang (2006)
can be applied to achieve consistency.

To derive the corrected score, first note at δ = δ0 the solution to the following estimating
equation based only on individuals in the biomarker subset:

is consistent for β1; where for the Z = z stratum, nz denotes the number of individuals and
subscript zi denotes the i-th member. This equation can be rewritten as
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This suggests the following corrected score equation based on the entire cohort:

(6)

where

and θ = (β1, δ). The estimate of Dz(θ, t) is a nonparametric moment estimator using data
from individuals in the biomarker sub-cohort with Zi = z. If the value of the nuisance
parameter δ is not known, a separate moment estimator can again be used as a plug-in.
Notably, a subset of individuals with at least one measure of both W and Q at risk at time t is

all that is necessary to estimate . The solution  to equation (6) is referred to as the
nonparametric corrected score estimator.

As was done for the conditional score approach in Section 2.3, a second potentially more

efficient nonparametric estimator  can be obtained by taking a weighted average of the
above score equation (6) and the nonparametric score equation for classical measurement
error (Huang and Wang, 2000, 2006) based on the biomarker data alone. The weight w can

be chosen to minimize the sample variance of .

3. Estimation of Cumulative Baseline Hazard Function
For the assumed Cox model, the Breslow estimator for the cumulative baseline hazard is

Huang and Wang (2000) provided a nonparametric consistent estimator for Λ0 under
classical measurement error using a representation of this estimator as a functional of

empirical processes. This estimator, unlike their , requires additional assumptions of mean
zero and symmetric error. Making these assumptions for ∊ only in (2), we extend their
estimator to accommodate error model (1). We adopt their notation, using  to denote the
sample empirical mean and I(U = min(T, C) ≥ u) in place of Y (u) to highlight the
connection between their estimator and equation (7) below. For notational simplicity,
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assume two repeat measures of Q on everyone (ki = 2). One approach to estimating Λ0
involves stratifying on values of Z, so that approximately λz0(t) = λ0(t)exp(β2Z), where Z
denotes a `representative' Z-value in stratum z. A consistent estimator for Λz0(t) for stratum
Z = z is

(7)

where  is the solution to (6). Stratification is useful, as in (6), because the error in 
depends on values of Z. For the RC and RRC estimators, this also leads to the convenient

overall estimator of , where nz(u) and
n(u) denote the risk set size in stratum Z = z and the overall risk set size, respectively, at
time u. Equation (7) relies only on  derived from the error model and a suitable estimate of
β, and it can be used in conjunction with any of the hazard ratio estimators described above.
Details showing consistency are provided in the Supplementary Materials.

4. Simulation Study
Through simulation, the relative performance of the risk set regression calibration (RRC),
conditional store (CS), and nonparametric corrected score (NP) are studied. Properties of
these estimators will be compared to the `true' method, Cox regression on the unobserved
true exposure Xi; the naive method, Cox regression on the error prone Qi·; and ordinary
regression calibration (RC). For the CS and NP methods, we examine the performance of
the weighted estimator described in Sections 2.3 and 2.4 compared with the classical
measurement error versions of these estimators based on the biomarker data alone. We
compare performance for different scenarios that vary the magnitude of the relative risk
parameter β, the random-and systematic subject-specific measurement error nuisance
parameters, and the assumed covariate and error distributions. We also consider versions of
these estimators that ignore the dependence of subject-specific error variance on the
observed covariate Z. Standard errors for the error-correction estimators are estimated using
a bootstrap procedure.

For this simulation study, the cohort size is set at 1000 and the randomly selected biomarker
subset at 250. Individuals have two copies of the main instrument Qij; biomarker cohort
members have two copies of the biomarker Wij. Let η = (δ0, δ1, δ2, δ3, a, b), from the
measurement error model (1). The scenario η = (0, 0.9, −0.2, −0.3, 0.5, log 2) represents a
moderate amount of subject-specific error, with 10% scale bias for Zi = 0 and 40% for Zi =
1. The variance for γi, the subject-specific random effect term in (1), is allowed to vary
between 0.5 (Zi = 0) and 1 (Zi = 1), while the variances of ∊ij and ξij are fixed at 0.5. The
scenario η = (0, 0.5, −0.2, −0.2, 0.5, log 2) represents strong subject-specific bias, with 50%
scale bias for Zi = 0 and 70% for Zi = 1; variances for error terms γi, ∊ij and ξij are kept as
before. Results are presented for β = log 1.5, log 3. Note that log 3 is quite extreme, with a
hazard ratio of 3 for a unit increase in a standard normal exposure variable. It is included
here because the regression calibration estimator is known to perform less well in Cox
regression for large β (Xie et al., 2001). Survival data are generated with an exponential
distribution with unit rate and a fixed censoring time of t0 = 1, resulting in roughly 40%
censoring. Much larger censoring rates, with associated smaller biases for regression
calibration procedures, attend the type of application that motivated this research.
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Mean bias, bootstrap standard deviation, empirical standard deviation (across simulations),
root mean squared error, and empirical coverage probability for the bootstrap 95%
confidence intervals are provided. Bootstrap estimates are based on 100 bootstrap samples
and the empirical results are based on 1000 simulations.

Table 1 presents the results under normal covariate and error distributions. Xi and Zi are
generated from a bivariate normal with zero mean, unit variance, and ρ = 0.5. Zi is converted
to a binary indicator variate for being above the median. The upper left of Table 1 shows the
results for β = log 1.5 and moderate systematic error. The naive estimate has a bias of
−0.217 (54% reduction from target) and a smaller standard error than for the estimate based
on the true exposure, leading to 0% coverage for a nominal 95% confidence interval. For
this scenario, with moderate error and β = log 1.5, all of the measurement error corrected
methods had small biases and came close to the nominal 95% coverage. The nonparametric
estimators had the largest sample standard error. For the strong systematic error scenario and
β = log 1.5 (top right), results were similar. The bias for the RRC is somewhat lower than
for RC, but the RC estimator had the smallest mean-squared error of all the methods.

The lower half of Table 1 shows the results for the same error settings, with β = log 3. As
expected, bias of the regression calibration estimators increased, but RRC had less bias and
better RMSE than RC. For the larger β, CS had the smallest bias, good nominal coverage,
and nearly the same RMSE as RRC. The RRC estimator had the lowest mean squared error
for the large β for both subject-specific error scenarios, though it had appreciable bias and
poorer coverage for the larger value of β than either the CS or NP estimator.

The CS and NP estimators had variances that were appreciably larger than the other
estimators. It is noteworthy for this setting, with relatively large error in Qij compared to Wij
and a substantial number of events observed in the biomarker subset, the NP and CS
estimators based on the complete data had modest to no gain in efficiency over their
counterparts, CS B and NP B, based on the biomarker subset alone. Sugar et al. (2007) also
observed the CS estimator in the context of logistic regression with the same general
measurement error model was highly variable, particularly in presence of strong subject-
specific bias. For classical measurement error, the nonparametric corrected estimator has
been observed to have numerical instability and problems due to multiple roots (Song and
Huang, 2005; Carroll et al., 2006), with these problems getting worse as the measurement
error variance increases (Song and Huang, 2005). In the case of multiple roots, the root
closest to the RC estimate was selected. These simulations suggest that for a similar setting
of moderate sample sizes, potentially large and normal error, the RRC and conditional score
methods perform better overall, with conditional score preferred for very extreme β values.

To explore robustness, a similar set of simulations were repeated with skewed distributions.
The systematic and random error terms in Wij and Qij were generated from a unit
exponential distribution, reflected about zero to create left skewness and offset by its mean
to create mean-zero errors. The same bivariate normal distribution was used to create X and
Z as above, and then both were exponentiated to create skewed lognormal random variables.
Results are shown in Table 2. As expected, the regression calibration estimators, which rely
on approximate normality, have more bias particularly for the larger β. For the extreme β,
however, the RRC estimator was much less affected. The conditional score methods, which
rely on Gaussian error for consistency, had noticeably larger bias and relatively larger
variance. The weighted CS estimator did not improve on the CS estimator based on the
biomarker alone, likely due to the larger amount of error and skewness in Q. The displayed
CS W estimator had a weight of 0.1 for the score using information from Q, having the
smallest variance among the (nontrivial) decile weights. The skewness had a larger impact
on the relative performance of the RC, RRC, and CS estimators (in terms of bias and
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variance) for the larger β. The performance of the NP estimator, as expected, was unaffected
by the skewness in the distributions, with little small sample bias, good nominal coverage,
and nearly or the smallest RMSE for all scenarios. The RRC estimator, even with large β
and strong systematic error, had reasonable coverage and bias less than 15%.

Table 3 compares the proposed estimators to those incorrectly based on the error model (1)
without dependence of var(γi) on Zi. Scenarios are the same as in Table 1, except the impact
of Z in var(γi) was increased with b = log 4. It is interesting to note that the misspecified RC
and RRC estimators have similar bias but increased standard errors compared to their
correctly specified versions. The misspecified CS estimator contains increased bias and
standard errors, with similar coverage. The NP estimator, because it uses rescaling by Zi,
induces and adjusts for error variance that depends on Z; so misspecification is not possible.

5. WHI Example
The Women's Health Initiative (WHI) Dietary Modification (DM) trial followed 48,835
women for an average of 8.1 years and examined whether a low-fat dietary pattern
intervention could lower the risk of breast and colorectal cancer (Women's Health Initiative
Study Group, 1998; Prentice et al., 2006). Prentice et al. (2006) reported a nonsignificant
reduction in breast cancer of 9% (logrank p=0.07) for the intervention compared to the
control (usual diet) arm. There was no suggested reduction for colorectal cancer (Beresford
et al., 2006). An important question is whether the equivocal breast cancer finding is from a
lack of efficacy or a lack of adherence to the diet, but actual diet is not obtainable. Instead,
the primary tool for measuring diet was a self-reported food frequency questionnaire (FFQ),
an instrument known to be subject to both random and subject-specific reporting errors.

The DM trial included a Nutritional Biomarker Substudy (NBS) which collected self-
reported intake along with several objective biomarkers on 544 weight-stable women
randomly selected at a representative set of 12 of the 40 participating clinical centers. The
NBS protocol included the doubly-labeled water recovery marker for total energy
consumption (Schoeller, 1988). There were 110 women recruited from early NBS enrollees
who had repeat biomarker measures, allowing the general measurement error model to be
identifiable. Further details of the NBS study and an analysis of the measurement error in
the WHI dietary instruments were reported by Neuhouser et al. (2008), who found BMI to a
strong determinant of subject-specific bias in this cohort. In this illustrative example, we fit
the measurement error in equation (1) with possible dependence on obesity status (BMI ≥
30) and apply the developed methods to provide error-adjusted estimates of the risk of breast
cancer associated with total energy consumption. Because the baseline FFQ was used to
determine eligibility in the DM trial by requiring a minimum of 32% estimated calories from
fat, the baseline for this analysis was taken as one year after enrollment, at which time
another FFQ was obtained. We analyze data from the usual diet (control) arm.

5.1 Results
There were 25803 women in the DM control group included in this analysis, 884 of whom
developed breast cancer following the 1-year FFQ collection. The estimate (95% confidence
interval (CI)) for the breast cancer hazard ratio associated with a 20% increase in energy
intake was: 1.00 (0.97, 1.04) for the naive estimate, 1.24 (1.03, 1.48) for RC, 1.23 (1.03,
1.48) for RRC, 1.30 (0.80, 2.10) for CS and 1.43 (0.95, 2.15) for NP. Note the hazard ratio
for a fractional increase in intake is constant under the Cox model applied, since the log-
hazard ratio was assumed to be a linear function of log consumption. A 20% increase is
roughly the difference between the third and first quartile of energy consumption, as
measured by the recovery biomarker (2268 versus 1869 calories). The RC and RRC
estimates are nearly identical, since for this relatively rare disease with most censoring at the
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planned study termination, the distribution for E(X|W, Q, Z) changes very little across risk
sets. The NP hazard ratio estimate is slightly larger than the regression calibration estimates,
and its 95% confidence interval is much wider. The CS estimate is the most variable of the
error-corrected estimates and had some numerical problems, with skewness in the bootstrap
estimates and more than 4% of the bootstrap iterations failing to find a root to the score
equation.

To help interpret the above estimates, a simulation study was built on the observed WHI
data. The simulation cohort had 25000 individuals, with 540 in the biomarker sample and
110 in its reliability subset (both randomly selected). The self-reported and biomarker values
for log-energy were well approximated by Gaussian distributions in the NBS (Figure 1,
Supplementary Materials). BMI and X were generated as multivariate normal variates on the
log scale. Roughly 25% of the simulated cohort were obese. In the fitted error model (1), δ3
was estimated to be nearly zero, so the model was applied without this term. The variance of
∊ was 30% of the total variance in W. The variance of the subject-specific bias plus random
error terms was extreme, about 95% the total variance of Q. Survival time was generated
according to a proportional hazards model dependent on log energy consumption with
baseline survival an exponential distribution with overall event rate of about 3%.

Table 4 shows results for β = 0 and 1.25; i.e. the β for which a 20% increase in consumption
leads to a hazard ratio of 1 and 1.26, respectively. None of the estimators showed evidence
of bias under the null. The naive estimator under β = 1.25 had extreme bias, nearly 95% of
the true value, and small standard error, leading to 0% empirical coverage. The RC and RRC
estimators performed well for β = 1.25, having no detectable bias. There were some
numerical problems for the CS and NP estimators, with more than 15% of the simulations
failing to find a solution. These estimators were quite variable and had some small sample
bias, though the coverage probabilities were close to the nominal 95%. Using the empirical
mean and SD across simulations, the estimated hazard ratio (empirical 95% CI) for a 20%
increase in intake is: 1.01 (0.98, 1.05) for the naive method, 1.25 (0.98, 1.60) for RC, 1.25
(0.98, 1.60) for RRC, 1.18 (0.69, 2.03) for CS, 1.23 (0.73, 2.08) for NP. The confidence
intervals for the regression calibration estimators are considerably narrower than for the
other two error-corrected estimators. The CS estimator had the largest variance. This
simulation study suggests for this example, where there was a sizable biomarker subset, that
each error correction method is providing approximately unbiased estimates of the risk
associated with energy intake, with RC or RRC preferred due to their comparatively better
efficiency. Another advantage of regression calibration is that standard software can be used
to find the parameter estimates and replicates of neither the biomarker nor self-report are
required.

6. Discussion
In this work, three methods for hazard ratio estimation were extended for the setting where
the exposure of interest was measured with subject-specific bias and random error in the
main cohort and additionally with classical measurement error on a subset. We also
provided an estimator of the cumulative baseline hazard function. This error model is more
flexible than others considered previously for these methods and does not rely on a
validation subset. The extensions provided here allow for a more flexible error structure and
also accommodate sources of intake assessment errors that vary across individuals.

The relocation and scaling parameters (the δ's in (1)) are crucial measurement model
generalizations; the allowance for correlation between replicate error prone measurements
(Q) is also important for some of the estimation procedures (conditional and nonparametric
scores), while allowing the random effect variance to depend on Z may often be less
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important (Table 3). The risk set regression calibration estimator is a straightforward
adaption of its counterpart for classical measurement error. The conditional and
nonparametric scores required more detailed calculations and rely on a subtle, but necessary,
stratification of the Cox model for proper error correction. Risk set regression calibration is
an approximate method that typically incorporates some asymptotic bias. For consistency,
the proposed conditional score estimator relies on a normality assumption for the error
terms, but does not need a distributional assumption for unobserved true covariate. The
nonparametric score method made no distributional assumptions for the error terms or the
unobserved covariate.

Despite its lack of technical consistency, risk set regression calibration had the smallest
mean-squared error in nearly all simulation scenarios considered, often by a considerable
margin. Bias for both regression calibration estimators was more noticeable for extreme β,
particularly when covariates and error terms had skewed distributions; however, risk set
regression reduced the bias considerably. Under Gaussian error, the conditional score
method had little small sample bias, maintained nominal 95% coverage, and with large β
and stronger subject-specific error, had close to the smallest mean-squared error amongst the
estimators. The conditional score estimator however was not robust to departures from
normality, with bias in the presence of skewness increasing for larger β. The nonparametric
method was robust to departures from normality with little small sample bias and good
nominal coverage, and this was true for the more extreme β and subject-specific bias.
Typically, however, the nonparametric estimates had substantially larger variance than
regression calibration.

The mean-variance tradeoff between robust nonparametric or semiparametric methods and
efficiency of parametric approaches is a familiar one for estimation. In light of the relative
success of regression calibration, it is of interest to consider other approximate methods for
this setting. Hu et al. (1998) presented a semiparametric likelihood approach for Cox
regression with classical covariate measurement error that uses flexible distributional
assumptions on the unobserved covariate and in some settings performed better than
regression calibration. Alternatively, increasing the number of moments used for regression
calibration and transforming data to improve the normal approximation could also be useful,
and computationally less burdensome than the available likelihood approaches. As
illustrated above, simulation studies can guide the practitioner's choice of an appropriate
method.

In the WHI example, the association under study appeared moderate in size, the disease
relatively rare, the measurement error substantial, and the number of disease events fairly
large. The simulations based on this example suggests these methods provide quite adequate
estimates of the hazard ratio. These simulations also demonstrated that for the naive
analysis, the error in the self-reported data was large enough to cause extreme bias and
obscure a clinically relevant association between caloric intake and disease incidence. This
finding is consistent with Prentice et al. (2009) who reported for this cohort that several
cancer endpoints had no association with self-reported energy intake, whereas with
calibrated energy intake there were associations of public health importance. Variation in the
self-report intake variable was largely due to measurement error in this setting. This likely
contributed to the numerical problems seen for conditional and nonparametric score
estimators.

Because of the large number of nuisance parameters in the measurement error model, it is
difficult to do an exhaustive exploration of the relative performance of these methods. For
settings with error properties much different than those studied here, further study may be
needed to understand which method is most appropriate. Some interpretational challenges

SHAW and PRENTICE Page 12

Biometrics. Author manuscript; available in PMC 2013 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



arise with any of the estimation procedures considered here if one or more covariates (Zi)
determining the subject-specific bias in (1) are also important mediators of the association
between Xi and the hazard ratio. See Prentice and Huang (2011) for further discussion of
this issue, and for data analysis options. The censoring mechanism could also impact the
relative performance of the methods. Regression calibration methods work best when
censoring times tend to be short, as longer follow-up will lead to X-distributions that depart
more extensively from baseline in risk sets at later failure times. Conditional score and
nonparametric estimators on the other hand, which do not rely on distributional assumptions
for the unobserved covariate X, are unlikely to be much affected by variations in the
censoring distributions. The development of estimation procedures that can accommodate
departures from independent censoring, for example through inverse censoring probability
weighting, would also be of interest in the context of our measurement model.

The bootstrap variance estimator was studied for the proposed estimators. Robust variance
estimators have been developed in the case of classical measurement error for each of the
methods studied (Wang, 1999; Xie et al., 2001; Tsiatis and Davidian, 2001; Huang and
Wang, 2006) and a similar approach could be taken for the proposed methods. A general
discussion of sandwich estimators in the context of measurement error is provided by
Carroll et al. (2006, Appendix A.6). For ease of implementation, the bootstrap estimator is
preferred.

Across all scenarios studied, the nonparametric score method typically maintained the
smallest bias and best nominal coverage. The risk set regression estimator had good relative
performance, in terms of maintaining the smallest mean-squared error. The numerical
stability and ease of implementation in standard software makes regression calibration
attractive for settings with substantial measurement error. In settings where a very large
hazard ratio is expected, along with potentially skewed distributions for the involved
covariates, the nonparametric score estimator may be preferred. Simulation can be used to
explore properties of the estimators for the data structure in a given application, and in
particular, explore which method has the best numerical performance given the observed
error structure in the data and the expected size of the hazard ratio for the exposure of
interest.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 4

Results of simulations designed to emulate hazard ratio estimation for energy in relation to breast cancer in the
Women's Health Initiative, using 500 simulated data sets. The mean bias, empirical standard deviation (SD),
root mean squared error (RSME), type I error (α) for β = 0, and estimated 95% coverage probability (CP) for
β = 1.25 are given.

β = 0 Bias SD RMSE α β = 1.25 Bias SD RMSE CP

True 0.004 0.296 0.296 0.046 True 0.006 0.302 0.302 95.4

Naive −0.008 0.105 0.105 0.056 Naive −1.181 0.106 1.189 0.0

RC −0.005 0.709 0.709 0.050 RC −0.006 0.691 0.691 96.2

RRC −0.005 0.709 0.709 0.050 RRC −0.006 0.690 0.691 96.2

CS −0.052 1.507 1.507 0.052 CS −0.318 1.510 1.543 93.1

NP 0.014 1.528 1.528 0.042 NP −0.217 1.471 1.487 95.0

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression
calibration; CS: conditional score; NP: nonparametric corrected score.
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