Skip to main content
. Author manuscript; available in PMC: 2013 May 8.
Published in final edited form as: Biometrics. 2011 Oct 17;68(2):397–407. doi: 10.1111/j.1541-0420.2011.01690.x

Table 2.

Simulation results for the general measurement error model with skewed distributions for the model covariates as well as the subject-specific and random error. For 1000 simulated data sets, the mean bias, empirical standard deviation (SD), bootstrap standard deviation (BSD), root mean squared error (RSME) and estimated 95% coverage probability (CP) are given for β = log 1.5, log 3.

Moderate Subject-Specific Bias
Strong Subject-Specific Bias
β = log 1.5 Bias SD BSD RMSE CP Bias SD BSD RMSE CP
True 0.002 0.020 0.020 0.020 94.6 0.002 0.020 0.020 0.020 94.6
Naive −0.082 0.022 0.022 0.085 3.8 −0.072 0.042 0.034 0.083 45.4
RC −0.025 0.099 0.079 0.102 86.9 −0.045 0.089 0.069 0.099 88.7
RRC 0.016 0.096 0.121 0.097 93.7 0.044 0.076 0.071 0.088 82.1
CS B 0.012 0.048 0.050 0.050 94.9 0.012 0.048 0.050 0.050 94.9
CS W 0.028 0.061 0.060 0.067 93.5 0.054 0.075 0.076 0.092 88.4
NP B 0.011 0.057 0.061 0.058 96.2 0.011 0.057 0.061 0.058 96.2
NP W 0.008 0.055 0.061 0.057 96.6 0.009 0.056 0.060 0.057 96.4
β = log 3 Bias SD BSD RMSE CP Bias SD BSD RMSE CP
True 0.003 0.038 0.037 0.038 94.5 0.003 0.038 0.037 0.038 94.5
Naive −0.491 0.032 0.029 0.492 0.0 −0.590 0.051 0.038 0.592 0.0
RC −0.343 0.193 0.152 0.394 44.4 −0.458 0.157 0.122 0.485 0.7
RRC −0.077 0.197 0.201 0.211 94.3 −0.116 0.167 0.161 0.203 90.9
CS B 0.136 0.160 0.184 0.210 99.0 0.136 0.160 0.184 0.210 99.0
CS W 0.138 0.226 0.225 0.265 94.9 0.112 0.231 0.249 0.257 98.0
NP B 0.068 0.210 0.243 0.221 96.6 0.068 0.210 0.242 0.221 96.6
NP W 0.059 0.195 0.234 0.204 97.3 0.064 0.209 0.237 0.219 96.6

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression calibration; CS B: CS from Tsiatis and Davidian (2001) using biomarker W data only; CS W: weighted combination of CS using Q only and W only; NP B: NP equation from Huang and Wang (2000) using only W; NP W: weighted combination of NP using Q only and W only.