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Genetic markers can be used as instrumental variables, in an analogous way to randomization in a
clinical trial, to estimate the causal relationship between a phenotype and an outcome variable.
Our purpose is to extend the existing methods for such Mendelian randomization studies to the
context of multiple genetic markers measured in multiple studies, based on the analysis of
individual participant data. First, for a single genetic marker in one study, we show that the usual
ratio of coefficients approach can be reformulated as a regression with heterogeneous error in the
explanatory variable. This can be implemented using a Bayesian approach, which is next extended
to include multiple genetic markers. We then propose a hierarchical model for undertaking a meta-
analysis of multiple studies, in which it is not necessary that the same genetic markers are
measured in each study. This provides an overall estimate of the causal relationship between the
phenotype and the outcome, and an assessment of its heterogeneity across studies. As an example,
we estimate the causal relationship of blood concentrations of C-reactive protein on fibrinogen
levels using data from 11 studies. These methods provide a flexible framework for efficient
estimation of causal relationships derived from multiple studies. Issues discussed include weak
instrument bias, analysis of binary outcome data such as disease risk, missing genetic data, and the
use of haplotypes.

Keywords
Mendelian randomization; instrumental variables; causal association; meta-analysis; Bayesian
methods

1. Introduction
In traditional observational epidemiological studies, associations between a risk factor or
phenotype (X) and outcome (Y) are often biased by unmeasured confounders or reverse
causation. Mendelian randomization [1] is a technique for using genetic markers (G) as
instrumental variables (IV) to assess the true causal association without direct experiment. It
uses the random allocation of genes at conception in an analogous way to treatment
assignment in a randomized control trial [2]. By finding genetic markers associated with the
levels of the phenotype, the different genotypes give rise to groups which, under certain
assumptions, are randomly assigned and so are independent of measured and unmeasured
confounders (U) and the effects of reverse causation. The assumptions underlying an IV
analysis are depicted in the directed acyclic graph (DAG) in Figure 1. An IV is a variable G,
which is [3]

a. independent of any possible confounders (i.e. G⫫U),

b. associated with the phenotype (i.e. G¬⫫X), and

c. independent of the outcome given the phenotype and confounders (i.e. G⫫Y|X,U).

There are many ways in which these assumptions may be violated [4], some of which we
return to in the discussion.

We consider the case where the outcome Y is continuous, and defer the issues relating to
binary outcomes to the discussion. If the phenotype X and all confounders U are exactly
measured, the causal association between X and Y (β1 in Figure 1) can be estimated using
standard multiple regression of Y on X and U. In a study where G, X, and Y are measured,
but some confounders U are not, several IV-based methods are available to estimate the
causal association between X and Y. The most basic, the ratio of coefficients method [3, 5],
can be used when there is one instrument, for example a single nucleotide polymorphism
(SNP), providing genetic information: either the SNP is dichotomized (for example by
combining the heterozygous group with one of the homozygous groups; recessive or
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dominant model), or linearity is assumed according to the number of variant alleles (additive
model). In the latter case, the causal association is estimated as the ratio of the regression
coefficient of the outcome Y on the number of variant alleles of the SNP to the regression
coefficient of the phenotype X on the number of variant alleles of the SNP [4]. As the
regression coefficients are asymptotically normal, approximate confidence intervals for the
ratio can be calculated using Fieller’s theorem [6] or the asymptotic variance can be
estimated using a Taylor expansion [7]; the correlation between the two regression
coefficients can be estimated by bootstrapping, but is often assumed to be zero since it is
typically small [8].

The two-stage least-squares (2SLS) method [4] can be used for multiple, polychotomous
SNPs in one study. Least-squares regression of the phenotype on the SNPs is used to obtain
fitted values for the phenotype (X̂|G). Each SNP can be considered either as a continuous
variable (per allele analysis) or as a factor with three levels (2df analysis). The effects of
different SNPs can be combined additively; alternatively interactions can be included. The
regression coefficient of the outcome Y on these fitted values for the phenotype is the
estimate of the causal association. The point estimate from the 2SLS method performed per
allele is equal to that from the ratio of coefficients method in the case of a linear effect of a
single IV. If the uncertainty in the fitted values is ignored in the second-stage regression, the
standard error of the estimate of the causal association will be underestimated, and so a
correction is needed [9]. To define confidence limits, the asymptotic normal distribution of
the 2SLS estimator is used.

Methods based on genetic IVs are now being extensively used in practice. For example, they
have been used for estimating the causal relationship between blood concentrations of C-
reactive protein (CRP) and insulin resistance [10], CRP and carotid intima-media thickness
[11], and folate levels and coronary heart disease (CHD) [8]. A recurring problem is that the
anticipated causal effects are only of moderate size, and the effects of genetic markers on the
phenotype are typically small, so that IV techniques suffer from low power and poor
precision. Typically, sample sizes of tens of thousands are required [12, 13]. Meta-analysis
of results from different studies is therefore often necessary, but current meta-analysis
methods are restricted to studies all measuring the same single dichotomous or trichotomous
SNP [8, 14].

We seek here to extend these established methods: first to gain power by using evidence
from multiple studies, second to synthesize evidence across studies that use different SNPs
as instrumental variables, third to use multiple SNPs simultaneously [15], and finally to
avoid the problems of ‘weak instruments’ [16]. IV-based estimates using a weak instrument,
where the association between phenotype and the IV is not statistically strong, suffer bias in
the direction of the original observational association and deviation from an asymptotic
normal to a more heavy-tailed distribution [17]. The F-statistic from the regression of
phenotype on SNPs is commonly used as a measure of instrument strength [18].

We first describe a Bayesian approach to the estimation of causal effects using individual
data on genetic characteristics. We present the simple case of a single genetic marker in one
study (Section 2), and extend this to an analysis of multiple genetic markers in one study
(Section 3). A hierarchical model for meta-analysis is then developed (Section 4), which
efficiently deals with different genetic markers measured in different studies and with
heterogeneity between studies. The focus of this paper is on data from representative cross-
sectional population studies; application to case-control studies is deferred to the discussion
(Section 5).
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2. A single genetic marker in one study
2.1. Conventional methods

We first consider the case of a single SNP in one study, where confounding causes the
observational estimate of the association of phenotype and outcome to be different from the
causal relationship. Let individual i have phenotype level xi, outcome yi, genotype gi, taking
a value in {0,1,2}, and unmeasured confounder ui. We assume that all the confounders can
be summarized by a single value ui. Similar to Palmer et al. [19], we consider the model
represented in Figure 1:

(1)

with  independently. As an example, we simulate data
for a sample of size 300, containing 12 individuals with gi = 2, 96 with gi = 1, and 192 with
gi = 0, corresponding to the Hardy–Weinberg equilibrium for a minor allele frequency of 20

per cent. We set the parameters , and
consider the cases of a weak instrument (α1 = 0.3, giving an expected F-value for the
regression of X on G of 7), a moderate instrument (α1 = 0.5, F-value 20) and a strong
instrument (α1 = 1, F-value 75). Figure 2 shows the simulated data grouped by genotype
graphically.

The observational estimates obtained by regressing Y on X (Table I) are far from the true
causal association (β1 = 2) as expected because of the strong negative confounding (U is
positively related to X but negatively to Y). The IV-based ratio method (assuming zero
correlation between coefficients) gives estimates compatible with β1 = 2, but with a wide
confidence interval in the case of the weak or moderate instrument.

2.2. A Bayesian method
Estimating the causal parameter by the ratio method is equivalent to determining the
gradients in Figure 2 [4]. We can reformulate the problem as one of linear regression with
heterogeneous error in X. For each genotype value j = 0,1,2, we calculate the mean level of

the phenotype x̄j with its variance  and mean outcome ȳj with its variance . The model
is

(2)

Thus, we assume that each observed mean phenotype x̄j is from a normal distribution with

unknown true mean ξj and known variance , each observed mean outcome ȳj is from a

normal distribution with unknown true mean ηj and known variance , and there is a linear
relationship between η and ξ. β1 represents the increase in outcome for unit increase in true
phenotype and is the parameter of interest.

To implement this model, we employ Bayesian analysis and Markov Chain Monte Carlo
(MCMC) methods with the Gibbs sampling. This allows extension to more complicated
situations, as in the next sections. We used vague priors (independent normals with zero
mean and large variance of 1002) for the regression parameters and each ξj. We performed
this analysis in WinBUGS [20] using 150 000 iterations, discarding the first 1000 as ‘burn-
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in’, employing different starting values to assess convergence of the posterior distribution
and sensitivity analyses to show lack of dependence on the prior distributions. The posterior
distributions shown in Figure 3 are non-normal, with a heavier tail toward larger values
especially for the weaker instruments. For this reason, the posterior median of the
distribution of β1 is taken as the estimate of the causal association. Table I shows that the
estimates and the intervals from this Bayesian group-based method are similar to those from
the ratio method. Other simulated examples (not shown) also demonstrated similar results.
The 2SLS per allele method gives the same estimates as the ratio method, but the intervals
are symmetric and so deviate from the ratio and the Bayesian methods for the weaker
instruments.

This Bayesian method assumes that the variances  and  are known, whereas in fact
they need to be estimated from the data, an issue which is addressed in the next section.

3. Multiple genetic markers in one study
3.1. Methods

If we have data in the study from more than one SNP then, provided they satisfy the IV
assumptions above, all SNPs can be used simultaneously to divide the population into many
subgroups. For each diallelic SNP, there are three genotypic categories, corresponding to 0,
1, or 2 variant alleles. For a data set with n diallelic SNPs, we have a maximum 3n

categories, for each of which we can measure the mean phenotype and outcome, and
examine the regression as in (2) above to estimate β1, the causal association. In practice,
fewer than the maximum number of genotypic groups will be observed, due to correlation
between SNPs caused by linkage disequilibrium (LD).

If the number of groups is large, and so their sizes nj are small, then the assumption of exact

knowledge of  and  for each group is not appropriate. Indeed if nj = 1, the group-
specific variance cannot even be calculated. It is then preferable to base the analysis on the
standard deviation in the whole population for the phenotype (σx) and the outcome (σy),
using an individual-based model for phenotype and outcome. For each individual i in
category j, we have

(3)

The observed phenotype and outcome for each individual are here modelled using normal
distributions, although other distributions might be more appropriate for some applications.
The information about ξj now depends on the population standard deviation for the
phenotype as well as the size of the group. In the application below, vague Uniform[0,20]
priors are used for σx and σy, whereas the other priors remain as before.

An alternative analysis is to assume a linear relationship between the phenotype and the
number of variant alleles for each SNP, which is also additive across SNPs. If this structure
is appropriate, the analysis should be more efficient as the correlation between similar
genotypes is accounted for and fewer parameters are estimated. Then we use these modelled
values in the second-stage regression. Writing G as the matrix of genotypes, so that Gik is
the number of variant alleles in SNP k for individual i, and αk is the first-stage regression
coefficients, then the model is
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(4)

Independent vague N(0,1002) priors are now placed on the αk rather than the ξi. The values
of αk depend, through feedback, on all the data including the outcome Y.

Models (3) and (4) are the equivalent of 2SLS in a Bayesian setting, except that there is
feedback on the first-stage coefficients from the second-stage regression; the posterior
distribution of the causal association parameter β1 naturally incorporates the uncertainty in
the first-stage regression, but with no assumption of asymptotic normality on its distribution.

3.2. Application to CRP and fibrinogen
CRP is an acute-phase protein produced by the liver as a part of the inflammation response
pathway. Fibrinogen is a soluble blood plasma glycoprotein, which enables blood-clotting
and is also associated with inflammation. The pathway of inflammation is not well
understood, but is important as both CRP and fibrinogen are proposed as risk markers of
CHD [13]. Furthermore, although CRP is associated with CHD risk, this association reduces
on adjustment for various risk factors, and attenuates to near null on adjustment for
fibrinogen [21]. It is important, therefore, to assess whether CRP causally affects levels of
fibrinogen, since if so adjusting for fibrinogen would represent an overadjustment. The CRP
gene has several common variations, which are associated with different blood
concentrations of CRP. We use IV techniques to estimate the causal effect of CRP on
fibrinogen. As CRP has a positively skewed distribution, we take its natural logarithm, and
assume a linear relationship between fibrinogen and loge(CRP). All SNPs used here as IVs
are in the CRP regulatory gene on chromosome 1.

The Cardiovascular Health Study (CHS) [22] is an observational study of risk factors for
cardiovascular disease in adults 65 years or older. We use cross-sectional baseline data for
4469 white subjects from this study, in which four diallelic SNPs relevant to CRP were
measured: rs1205, rs1800947, rs1417938 and rs2808630. Each of these SNPs was found to
be associated with CRP levels. We checked their associations with seven known CHD risk
factors (age, body mass index, triglycerides, systolic blood pressure, total cholesterol, low-
and high-density lipoproteins) for each SNP, and found no significant associations (P<0.05)
out of the 28 examined. This suggests that the SNPs are valid instruments.

We used each of the techniques for estimating causal association mentioned above. The ratio
method for each SNP separately is based on per allele regressions. For the 2SLS method, we
use first a per allele model additive across SNPs and second a fully factorial version of the
2df model where each observed genotype is placed in a separate category. The 2SLS per
allele model is equivalent to the structure-based Bayesian model (4) and the 2SLS factorial
model is equivalent to the individual-based Bayesian model (3). When using the group-
based regression (2), we excluded all genotypic groups with less than five subjects (14
subjects excluded, Figure 4). The individual-based (3), structure-based (4), ratio, and 2SLS
analyses include all subjects. A sensitivity analysis was performed excluding from the 2SLS
factorial and the Bayesian individual-based analyses all individuals from genotypic groups
with less than five subjects. The observational increase in fibrinogen (μmol/l) per unit
increase in log(CRP) is 0.937 (s.e. 0.024) and correlation between fibrinogen and log(CRP)
is 0.501. The F4,4464 statistic in the regression of log(CRP) on the SNPs additively per allele
is 27.2, indicating that the instruments together are moderately strong, with a relative size
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bias less than 5 per cent [16, 23]. As we have used more IVs than we have phenotypes, we
can perform an overidentification test. The Sargan test [24] is a test of the validity of the IV

and linearity assumptions in the model. The test statistic is 7.15, which compared with a 
distribution gives a p-value of 0.067, meaning that the validity of the instruments is not
rejected at the 5 per cent level.

The ratio method gives a different point estimate for each SNP, all of which are compatible
with zero association (Table II). Using the 2SLS methods on all of the SNPs together, we
obtain answers that synthesize all of the relevant data for each of the SNPs. The Bayesian
methods give causal estimates consistent with the 2SLS estimates (Table II). The Bayesian
structural-based and 2SLS per allele models give lower estimates of causal association than
the other models, with 95 per cent CIs that include zero. The Bayesian credibility intervals
are (appropriately) asymmetric, as no normal assumption has been made. The Bayesian
structural-based and 2SLS per allele models give lower estimates of causal association than
the other models. The Bayesian individual-based and the 2SLS factorial methods both give
different results when individuals from small genotypic groups are excluded. This is due to
weak instruments leading to a bias in the causal estimate in the direction of the confounded
(observational) association [16]. We return to bias from weak instruments in the discussion.

4. Multiple genetic markers in multiple studies
4.1. Methods

The above framework leads naturally to a model for meta-analysis across multiple studies.
Assumption (c) in Section 1 for IVs ensures that, in principle, the same parameter β1 is
being estimated regardless of how many and which SNPs are available in each study. This is
because the outcome is independent of the IV given the phenotype (which is measured) and
the confounders (which are averaged over). We thus propose a hierarchical model for β1
estimated across multiple studies as follows. For a fixed-effect meta-analysis, we assume the
same value of β1 for each study. For a random-effects meta-analysis, we allow β1m from
study m to come from a distribution with mean β1 and variance ψ2. This acknowledges the
possibility that the causal parameters are somewhat different across studies, as is plausible
due to the influences of different population characteristics, but that they are expected to
have generally similar values.

For the group-based regression (2), for group j in study m, a fixed-effect meta-analysis is

(5)

Values for β0m, the constant terms in the regression, will vary depending on the average
level of outcome in the population in each study, and are thus given independent vague
N(0,1002) priors for each study.

For a random-effect meta-analysis, the last line of (5) is replaced by

(6)

We use a Uniform[0,20] prior for ψ in the example below.
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These modifications to the simple group-based analysis (2) for a meta-analysis context can
also be similarly made to the individual-based model (3), and to the structured model (4).
For example, the full model using a structured model (4), assuming heterogeneity between
studies, for individual i and SNP k = 1…Km in study m is

(7)

In this model, we assume that the first-stage regression coefficients αkm are unrelated in the
different studies. An extra sophistication would be to assume that these coefficients are
common or related when different studies involve the same set of SNPs. Example
WinBUGS code is given in the appendix.

4.2. Application to CRP and fibrinogen
We give an example of meta-analysis of 11 studies [13] using the methods described. In
addition to the CHS used in Section 3.2, we incorporate data from a further eight general
population cohort studies: British Women’s Heart and Health Study (BWHHS), Copenhagen
City Heart Study (CCHS), Copenhagen General Population Study (CGPS), English
Longitudinal Study of Ageing (ELSA), Framingham Health Study (FRAM), Northwick Park
Heart Study II (NPHS2), Rotterdam Study (ROTT), and Whitehall II Study (W2). In each of
these, the analyses presented here are cross-sectional, based on the baseline measurements
of CRP and fibrinogen. We also use data from two case-control studies, the Nurses’ Health
Study (NHS) and Stockholm Heart Epidemiology Program (SHEEP), again with CRP and
fibrinogen measured at baseline. We use the data from controls alone since these better
represent cross-sectional population studies. Details of these studies are summarized in
Table III.

To avoid problems with weak instruments, we want to choose genetic instruments that
together are strongly related to log(CRP). For this, the instrument was chosen to maintain
the F statistic above 10 and to include sequentially, where available, each of SNPs rs1205,
one of rs1130864 and rs1417938 (these SNPs are in complete LD), rs3093077, rs1800947,
and rs2808630. In the meta-analysis we use between two and four SNPs as instruments in
each study; the Sargan overidentification tests were satisfied (Table III). The choice of
instruments here is not made a priori, as should ideally be the case, but pragmatically to
exemplify the method. For comparison with the Bayesian methods, we use the study-
specific 2SLS causal estimates and corresponding asymptotic standard errors in a standard
two-step inverse variance weighted meta-analysis (using a moment estimator of the
between-study variance in the case of random-effects meta-analysis). Mean log(CRP) and
fibrinogen levels for the genotypic groups for six of the studies are shown in Figure 5.

Table IV shows a causal association of log(CRP) on fibrinogen, which does not significantly
differ from the null, except for the structural-based fixed-effect meta-analysis, which
suggests a weak negative causal association. Groups of size less than 5 have been omitted in
the 2SLS factorial, group-based and individual-based analyses. There is no clear preference
for the random-effects models from the deviance information criterion (DIC) [25]. The DIC
should only be used to compare between a fixed- or random-effect model, and not between
models based on different data structures. Again, the structural-based models give lower
estimates of causal association than the other methods.
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5. Discussion
In this paper, we have described a Bayesian approach to analysis of Mendelian
randomization studies. We introduced the approach in a simple example of a confounded
association with one IV. We extended the method to use multiple IVs, to use individual
participant data and to incorporate an explicit, here additive, genetic model. We then show
how this leads naturally to a meta-analysis, which can be performed even with
heterogeneous genetic data. These methods have been applied in the estimation of the causal
association of CRP levels on fibrinogen.

5.1. Bayesian methods in IV analysis
The Bayesian approach has similarities to the 2SLS method. In both, fitted values of
phenotype are estimated for each genotypic group, which are then used in a regression of
outcome on phenotype. In 2SLS, these fitted values are assumed to be precisely known in
the second-stage regression, and a correction is made to the second-stage standard error to
account for this using sandwich variance estimators. In the Bayesian framework, the fitted
values of phenotype and outcome are estimated simultaneously, and the standard error in the
causal parameter is directly estimated from the MCMC sampling process. This means that
no assumption is made on the distribution of the causal parameter, giving appropriately
sized standard errors and skew CIs. The Bayesian approach allows us to be explicit about
the assumptions made. This gives us flexibility to determine the model according to what we
believe is plausible without being limited to linear or normal assumptions.

Additionally, the Bayesian approach provides a framework to perform analyses that are not
possible using 2SLS. These include meta-analysis in a single hierarchical model, imputation
of missing data, use of haplotypes with uncertainty, and analysis of binary outcomes, each of
which is discussed below. It also allows for more accurate inference when using instruments
that are weak.

Bayesian methods have not been widely proposed for IV analyses or applied in the
Mendelian randomization studies. Although Bayesian methods for IV analysis have been
suggested in the econometrics literature [26, 27], their use is not common and differences
between the fields mean that the methods cannot easily be translated into an epidemiological
setting [28]. McKeigue et al. [29] have performed a Bayesian analysis in the single SNP and
single study situation, but regarding the parameter of interest as the ‘ratio of the causal effect
to crude [observational] effect’. We prefer to regard β1, the causal association, as the
parameter of interest.

5.2. Meta-analysis
Methods for meta-analysis of Mendelian randomization studies have not been extensively
discussed, and have been restricted to studies measuring one identical SNP [8, 14, 30]. In
applications, meta-analyses of studies have concentrated on testing for a causal effect,
without accounting for the uncertainty in the estimated mean difference in phenotype values
between genotypic groups [31, 32]. Where this uncertainty has been accounted for,
confidence intervals for the causal association have been too wide to exclude a moderate
causal association [33, 34]. Our proposed analysis thus extends this previous work in a
number of ways: first by using a flexible Bayesian framework that eliminates the problems
caused by non-normal causal estimates, second by presenting a coherent framework for
estimation of the causal association using data from multiple studies, and third by allowing
the use of different genetic markers in different studies.

An advantage of the Bayesian setting for meta-analysis is that the whole analysis can be
performed in one step. This keeps each study distinct within the hierarchical model, only
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combining studies at the top level. This is more effective at dealing with heterogeneity, both
statistical and in study design, than performing separate meta-analyses on each of the
genotype–phenotype and genotype–outcome associations [8]. An alternative approach where
the causal association estimate and its precision are estimated in each study, and these
estimates are combined in a meta-analysis in a second stage, is not recommended for two
reasons. First, the distribution of each causal estimate is not normal (especially if the
instrument is not strong), and so the uncertainty is not well represented by its standard error,
and second, some causal estimates from individual studies may have infinite variance.
Examples of these problems are apparent in Figure 3 and Table II.

5.3. Weak instruments
A cause for concern in IV analysis is the bias created by using ‘weak instruments’, that is
instruments not strongly associated with the phenotype. When several instruments are used,
an instrument is strong if it explains sufficient variance in the phenotype given the other
included instruments. Owing to the correlation between SNPs, an instrument that is strong
on its own may not be strong when considered in addition to other instruments. As the
number of instruments increases, if no more of the variation in the phenotype is explained,
then the overall instrument becomes weaker and two problems occur. First, the theoretical
bias of the IV estimator increases, due to the random correlation between the IVs and
unmeasured confounders [35]. If the variation in the phenotype explained by confounders is
relatively large compared with the variation in the phenotype caused by the IVs, then the
instruments may model the variation in the confounders rather than the systematic variation
from the genetic differences. This will give rise to a correlation between the confounders
and the fitted phenotype values, which will lead to bias of the IV estimate in the direction of
the confounded estimate [17, 23]. This bias affects all the methods considered: the ratio of
coefficients method, 2SLS, and the proposed Bayesian method. Second, as the instruments
weaken, the distribution of the causal estimate becomes heavy-tailed, leading to possible
underestimation of the size of a test based on 2SLS [23], although recent work on modifying
the 2SLS method has concentrated on improving properties of test size and confidence
intervals with weak instruments [36, 37]. The Bayesian method has an advantage here, in
that it makes no assumption of normality. The shape of the posterior distribution for the
causal parameter β1 reflects its true uncertainty.

An extreme case of weak instruments is where multiple instruments place each individual in
their own separate genetic group. Then the IV estimate, derived from the regression as in
Figure 2, is equal to the observational confounded estimate. The generally quoted advice
that an instrument with F>10 is strong is an oversimplification [17]. A modified list of
values for a version of the F statistic that limit bias and preserve test size due to Stock and
Yogo [23] is quoted in the function ivreg2 in Stata [9].

Instruments should be specified in Mendelian randomization studies prior to data collection.
When this is not possible, instruments should be chosen so as not to use those that give little
additional strength to the G–X association. Overidentification tests, such as the Sargan or
Basmann test [9] can be performed to test the validity of instruments. However, it should not
be thought that an overidentification test is a cure-all: instruments that pass the test can still
give estimates that suffer from bias. Sensitivity analyses, especially when the F statistic is
below 10, should be performed using different instruments and models of genetic
association with informally investigate heterogeneity of estimates indicating possible bias or
violation of IV assumptions.

Although the individual-level model includes all of the participants, the inclusion of many
small groups potentially weakens the instruments in the model and so increases bias. Small
groups will not have enough participants for confounder levels to be assumed equal between
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groups. The structural model may then be preferred, and will be less biased and more
efficient if the additive assumptions for the effects of genotype on phenotype are valid.
Fewer parameters are estimated and groups with similar genotypes will have correlated
estimated true levels of phenotype, which provides extra information in the analysis. In each
of our analyses, the individual and the group-based models give more positive estimates of
causal association than the structural-based model. This is due to greater bias in the direction
of the observed association in the individual and the group-based models from weaker
instruments with more degrees of freedom in the G–X association.

5.4. Missing data and haplotype assignment
If there are missing SNP data when applying the individual-based or group-based Bayesian
models, and if we can assume that this missingness is not associated with any variable
except possibly conditional on the genotype, then the pattern of missing data satisfies the IV
assumptions. For each SNP, missing values can be included as a separate category when
defining the subgroups. If there are missing genetic data when applying the structural model,
we can impute the missing data M times using the correlation between SNPs with software
such as fastPHASE [38]. These multiple imputations can then be included in the Bayesian
model, for example using the WinBUGS function m~ dpick(1,M). Alternatively, if we
believe that the variation in the phenotype is better explained by haplotypes than by
genotypes, then we can use standard software to infer haplotypes [38] and instead use these
haplotype assignments in a multiple imputation, with the true phenotype level as the sum of
contributions from each haplotype [4].

5.5. Binary outcomes
The Bayesian group-level method can be applied to binary outcomes, such as disease events,
using a normal approximation to the distribution of log-odds as the outcome. In this case, for

example, ȳj and  for genotype group j in model (2) are replaced by logit(pj) and 1/n1j + 1/
n2j, respectively, where pj is the observed probability of the event in group j, n1j the number
of events, and n2j the number of non-events. Alternatively, we can model the probability of
an event directly using logistic regression. We replace the normal distribution of the
outcome in each group in model (2) with a binomial distribution as follows:

(8)

For an individual-level analysis of binary data, as in model (3), the outcome yij for
individual i in genotype group j takes the value of 0 or 1. Then the first line in model (8) is
replaced by yij ~ Binomial(πj, 1). Similar adaptations for binary outcomes can be made to
the meta-analysis models (5) and (7).

Such models for binary outcomes are valid for testing the causal hypothesis β1 = 0.
However, they do not provide unbiased estimators of a non-zero causal parameter [2], due to
the non-collapsibility of the log-odds function over the distribution of the unknown
confounders [39]. Alternative methods, including marginal structural models [40] and
structural mean models [41], have been proposed for binary outcomes in a classical setting,
but these do not provide consistent estimators either [42]. An alternative estimator, usually
called the control variable approach, involves including the residuals from the first-stage
regression of X on G into the second-stage regression of Y on X̂ [43]. This has been shown
usually to reduce bias for IV analyses involving binary outcomes in the Mendelian
randomization setting [19]. An alternative approach would be to use a relative risk model.
This does not suffer the same problems of non-collapsibility and the parameter estimated
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from such an approach is the relevant causal parameter [2]. Application of these ideas and
methods within our Bayesian model formulation needs investigation.

6. Conclusion
The validity of IV analyses relies on the assumptions specified in the introduction. These
assumptions can only be partially verified from data, and there are a number of ways in
which they may be violated for the Mendelian randomization studies [4]. Whereas the
association between the genotypes and the measured confounders can be assessed, and
checked that they are compatible with chance, associations with unmeasured confounders
clearly cannot be checked. Potential correlations caused by LD between the SNPs of interest
and other genetic variants, which act on the outcome through different biological pathways,
would also violate the assumptions implicit in Figure 1. The argument against the existence
of such pathways is usually biological rather than statistical. Finally it is difficult to rule out
the possibility that a genetic mutation leads, through developmental compensation or
canalization, to feedback regulation which affects the distribution of confounders. Thus,
causal estimates derived from all IV analyses should be subject to the caveat that they rely
on assumptions. Nevertheless, our proposed Bayesian method for meta-analysis of
Mendelian randomization studies is a useful methodological advance. It should also find
application in the context of the increasing number of consortia that are now collating the
relevant genetic, phenotype, and outcome data from multiple studies [13].
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Appendix A: WinBUGS code for random-effects meta-analysis of group-
based model

model {
# prior for hierarchical causal estimate (parameter of interest)
betatrue ~ dnorm(0, 0.000001)
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# prior for standard deviation of individual study estimates
betasd ~ dunif(0, 20)
betatau <- pow(betasd, -2)
for(m in 1:S) { # S = number of studies
# prior for regression intercept parameter
beta0[m] ~ dnorm(0, 0.000001)
# distribution of study-specific causal estimates
beta[m] ~ dnorm(betatrue, betatau)
for (j in 1:G[m]) { # G[m] = number of genetic subgroups in study m
# distribution of phenotype in subgroup j, study m
x[j, m] ~ dnorm(xi[j, m], xtau[j, m])
# distribution of outcome in subgroup j, study m
y[j, m] ~ dnorm(eta[j, m], ytau[j, m])
# prior for true value of phenotype in subgroup j, study m
xi[j, m] ~ dnorm(0, 0.000001)
# linear model of true outcome on true phenotype
eta[j, m] <- beta0[m] + beta[m] * xi[j, m]
}
}
}

Appendix B: WinBUGS code for fixed-effect meta-analysis of structure-
based model

model {
# prior for fixed causal estimate (parameter of interest)
beta ~ dnorm(0, 0.000001)
for(m in 1:S) {
# prior for regression intercept parameter
beta0[m] ~ dnorm(0, 0.000001)
alpha0[m] ~ dnorm(0, 0.000001)
# prior for study phenotype standard deviation
xsd[m] ~ dunif(0, 20)
xtau[m] <- pow(xsd[m], -2)
# prior for study outcome standard deviation
ysd[m] ~ dunif(0, 100)
ytau[m] <- pow(ysd[m], -2)
for(k in 1:G[m]) { # G[m] = number of genes in study m
# prior for gene-phenotype regression parameters
alpha[k, m] ~ dnorm(0, 0.000001)
}
for (i in 1:N[m]) { # N[m] = number of individuals in study m
# linear model of true phenotype on genes
xi[i, m] <- inprod(alpha[1:G[m], m], gene[i, 1:G[m], m]) + alpha0[m]
# distribution of phenotype in individual i, study m
x[i, m] ~ dnorm(xi[i, m], xtau[m])
# distribution of outcome in individual i, study m
y[i, m] ~ dnorm(eta[i, m], ytau[m])
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eta[i, m] <- beta0[m] + beta * xi[i, m]
}
}
}
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Figure 1.
Directed acyclic graph (DAG) of the Mendelian randomization assumptions.
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Figure 2.
Graphs of mean outcome (ȳ) against mean phenotype (x̄) in three genetic groups for the
weak, moderate, and strong instrument simulated examples of Section 2.1. Error bars are 95
per cent CIs for the means.
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Figure 3.
Kernel-smoothed density of posterior distribution of the causal parameter for the weak,
moderate, and strong instrument simulated examples of Section 2.1 using the Bayesian
method of Section 2.2.
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Figure 4.
Plot of mean fibrinogen against mean log(CRP) in the Cardiovascular Health Study
stratified by genotypic group. Error bars are 95 per cent CIs. Groups with less than five
subjects omitted. The size of the shaded squares is proportional to the number of subjects in
each group. The dashed line is the estimate of causal association from the group-based
method without random effects.
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Figure 5.
Plot of mean fibrinogen against mean log(CRP) for six studies from Section 4.2 stratified by
genetic group. Error bars are 95 per cent CIs. Groups with less than five subjects omitted.
The size of the shaded squares is proportional to the number of subjects in each group.
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Table I

Causal parameter estimates and confidence/credible intervals using ratio, 2SLS, and the Bayesian methods
compared with the observational estimate for the weak, moderate, and strong instrument simulated examples
of Section 2.1.

Estimate 95 per cent CI/CrI

Weak instrument—(F = 7)

Observational estimate −0.358 −0.506, −0.210

Ratio method 1.637 0.563, 6.582

Bayesian method 1.496 0.536, 7.190

2SLS method 1.637 −0.126, 3.400

Moderate instrument—(F = 20)

Observational estimate −0.251 −0.393, −0.109

Ratio method 2.555 1.481, 6.007

Bayesian method 2.417 1.473, 4.592

2SLS method 2.555 0.801, 4.309

Strong instrument—(F = 75)

Observational estimate 0.108 −0.061, 0.276

Ratio method 2.136 1.632, 2.906

Bayesian method 2.107 1.633, 2.817

2SLS method 2.136 1.469, 2.804
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Table II

Comparison of the causal estimates of increase in fibrinogen (μmol/l) per unit increase in loge(CRP) in the
Cardiovascular Health Study.

Estimate 95 per cent CI

Method

Ratio using rs1205 0.234 −0.169, 0.660

Ratio using rs1417938 −0.608 −1.581, 0.137

Ratio using rs1800947 0.203 −0.478, 0.940

Ratio using rs2808630 2.722 −∞, +∞

2SLS factorial using all SNPs 0.376 0.088, 0.665

2SLS factorial (excluding small groups) 0.280 −0.041, 0.601

2SLS per allele using all SNPs 0.200 −0.138, 0.538

Bayesian methods

Group-based (excluding small groups) 0.342 0.004, 0.698

Individual-based 0.389 0.049, 0.728

Individual (excluding small groups) 0.300 −0.045, 0.666

Structural-based 0.212 −0.157, 0.586

Ninety-five per cent confidence/credible interval (CI/CrI) are shown. Small groups are genotypic groups with less than five subjects.
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Table IV

Estimates of increase in fibrinogen (μmol/l) per unit increase in loge(CRP), 95 per cent confidence/credible
interval (CI/CrI), deviance information criterion (DIC) and heterogeneity parameter (ψ) in meta-analysis of 11
studies using 2SLS and the Bayesian methods. Genotypic groups with less than five individuals excluded from
the 2SLS factorial, group-based and individual-based analyses.

Fixed-effect meta-analysis Estimate 95 per cent CI/CrI DIC*

2SLS factorial −0.005 −0.139, 0.130

2SLS per allele −0.086 −0.255, 0.082

Group-based −0.008 −0.142, 0.125 −242.1

Individual-based −0.036 −0.164, 0.090 500 692

Structural-based −0.136 −0.276, −0.002 501 037

Random-effects meta-analysis Estimate 95 per cent CI/CrI DIC ψ

2SLS factorial −0.007 −0.151, 0.137 0.072

2SLS per allele −0.086 −0.255, 0.082 0.000

Group-based −0.017 −0.234, 0.177 −244.5 0.188

Individual-based −0.039 −0.228, 0.153 500 692 0.155

Structural-based −0.150 −0.365, 0.048 501 037 0.169

*
Note: DIC should be used to compare between a fixed- or random-effect model and not between models.
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