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ABSTRACT

Perturbations in methyl group metabolism and homocysteine balance have emerged over the past few decades as having defining roles in a

number of pathological conditions. Numerous nutritional, hormonal, and genetic factors that are characterized by elevations in circulating

homocysteine concentrations are also associated with specific pathological conditions, including cancer development, autoimmune diseases,

vascular dysfunction, and neurodegenerative disease. Although much remains to be explored, our understanding of the relationship between

disease, methyl balance, and epigenetic control of gene expression has steadily progressed. However, homocysteine balance and its role in

health and disease are not as clearly understood. This review presents our current understanding of homocysteine metabolism and its link to

specific pathologies. Adv. Nutr. 3: 755–762, 2012.

Methyl group and homocysteine metabolism have
emerged as a metabolic process that has profound effects on
health and disease, particularly when it is disrupted (1–5).
Although the link between methyl groups and epigenetic con-
trol of gene expression is relatively clear from a mechanistic
point of view (6,7), the relationship between aberrant homo-
cysteine metabolism and numerous pathological conditions
is not well understood. Homocysteine is a product of all
S-adenosylmethionine (SAM)2-dependent transmethylation
reactions, including those involved in epigenetic regulation
of DNA silencing and posttranslational modification of his-
tones. It is clear that elevated concentrations of homocysteine
in the circulation are characteristic of a number of disease
states; thus, homocysteine management represents an impor-
tant goal for optimizing health.

Homocysteine is not a classic amino acid found in dietary
protein or used for the endogenous synthesis of proteins,
but rather a sulfur-containing amino acid derived from
the metabolism of methionine via methyl group metabolism
(Fig. 1). Methionine is activated via the action of MAT to
generate SAM, the ubiquitous methyl donor in a vast array
of intracellular transmethylation reactions. Methyl groups

derived from SAM are used in the synthesis of many
compounds, including creatine, phosphatidylcholine, and
neurotransmitters. SAM-derived methylation also exerts a
regulatory role in the control of gene expression. Posttransla-
tional modification of histones via methylation can function
to either condense or relax chromatin, whereas themethylation
of CpG regions present in DNA typically results in gene silenc-
ing. S-adenosylhomocysteine (SAH) is the product of all SAM-
dependent transmethylation reactions, and because SAH is a
potent allosteric inhibitor of most methyltransferases (8), the
intracellular ratio of SAM to SAH is considered an index of
transmethylation potential (9,10).

Although SAM-dependent transmethylation exists in most
tissues, the full complement of enzymes involved in methyl
group and homocysteine metabolism (Fig. 1) is tissue specific,
with the liver possessing the most activity and thus has a major
influence on methyl group supply for other tissues as well as
circulating homocysteine concentrations. The kidney also
contains many of the key enzymes involved in homocysteine
balance, including betaine-homocysteine S-methyltransferase
(BHMT), cystathionine b-synthase (CBS), and glycine N-
methyltransferase (GNMT). Different cell types may also
express isoforms of a given enzyme that possess different char-
acteristics. For example, methionine adenosyltransferase
(MAT)I and MATIII in the liver exhibit different enzyme
kinetics, namely, a higher Km, than MATII found in extrahe-
patic tissues; thus, the liver has a much greater capacity to con-
vert methionine to SAM. MATII is also subject to product
inhibition, a regulatory control mechanism that prevents
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excessive accumulation of SAM in extrahepatic tissues.
Therefore, although plasma homocysteine concentrations
are highly dependent on adequate intracellular homocyste-
ine metabolism in the liver and kidney, it may also reflect
1-carbon metabolism in a number of other cell types. As
discussed later in this review, kidney dysfunction can have
a significant impact on homocysteine balance in humans.

After SAM-dependent transmethylation, SAH is rapidly
metabolized to adenosine and homocysteine by SAH
hydrolase. Therefore, production of homocysteine is highly
dependent on the action of phosphatidylethanolamine N-
methyltransferase (PEMT) in phosphatidylcholine synthe-
sis, and guanidinoacetate N-methyltransferase (GAMT) for
creatine synthesis, as well as other SAM-dependent methyl-
transferases. The actions of PEMT and GAMT are major
contributors to the production of homocysteine in the cell,
comprising w85% of all SAM-dependent transmethylation, a
finding that is supported by the classic work of Mudd et al.
(11,12). However, a more recent review by Stead et al. (13) sug-
gests that PEMT is the largest consumer of SAM-derivedmethyl
groups and thus plays a major role in homocysteine balance.

Another important enzyme that uses SAM-derived methyl
groups and subsequently results in homocysteine production is
GNMT. GNMT is an abundant cytosolic protein that catalyzes
the SAM-dependent methylation of glycine to generate

sarcosine, a reaction of questionable importance. GNMT
also has a regulatory role, namely, to control the ratio of
SAM to SAH as a means to optimize intracellular transmeth-
ylation reactions (14). A metabolic network between SAM,
5,10-methylenetetrahydrofolate reductase (MTHFR) 5-
methyltetrahydrofolate (5-methyl-THF), and GNMTexists
to conserve methyl groups under conditions of low supply
and dispose of them as sarcosine when the groups are abun-
dant. This balance is achieved by the allosteric inhibition of
MTHFR by SAM (15,16) and the allosteric inhibition of
GNMT by 5-methyl-THF (17). Thus, under conditions of ex-
cess methionine, the subsequent increase in SAM inhibits
MTHFR, thereby reducing 5-methyl-THF production and al-
leviating any potential inhibition on GNMT, allowing it to
divert methyl groups to sarcosine production. Conversely,
the lack of MTHFR inhibition by SAM when methyl group
supply is reduced allows sufficient 5-methyl-THF synthesis
to inhibit GNMTactivity, thereby conserving methyl groups
for SAM-dependent transmethylation reactions. The rela-
tionship between PEMT, GAMT, and homocysteine balance,
as well as its importance, is discussed later in this review.

In addition to production, homocysteine balance is also
dependent on its remethylation back to methionine or its ir-
reversible catabolism to other compounds of biological sig-
nificance. For the latter, CBS catalyzes the condensation of

Figure 1 Hepatic folate, methyl group, and homocysteine metabolism. For this review, important SAM-dependent methyltransferases
include glycine N-methyltransferase (GNMT), guanidinoacetate N-methyltransferase (GAMT), and phosphatidylethanolamine N-
methyltransferase (PEMT). These 3 methyltransferases respectively catalyze the conversion of glycine to sarcosine, guanidinoacetate to
creatine, and phosphatidylethanolamine to phosphatidylcholine. In addition to folate, these reactions are dependent on a number of
other B vitamins, including riboflavin (vitamin B-2), vitamin B-6, and vitamin B-12. Metabolites and enzymes: BHMT, betaine-
homocysteine S-methyltransferase; CBS, cystathionine b-synthase; CGL, cystathionine g-lyase; DMG, dimethylglycine; MS, methionine
synthase; MTs, methyltransferases; MTHFR, 5,10-methylene-THF reductase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine;
SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate; X, methyl acceptor. Adapted from reference (5) with permission.
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homocysteine and serine to form cystathionine, a vitamin B-
6–dependent reaction. The transsulfuration pathway is com-
pleted by the formation of cysteine and a-ketobutyrate,
another vitamin B-6–dependent reaction catalyzed by cysta-
thionine g-lyase. Some of the initial linkage between eleva-
tions in homocysteine and cardiovascular disease resided in
the inborn error of metabolism termed homocystinuria,
wherein genetic defects of CBS and/or cystathionine g-lyase
resulted in elevated concentrations of homocysteine in the
plasma and urine. Because it can be synthesized frommethi-
onine through the transmethylation and transsulfuration
pathway, cysteine is considered a conditionally essential
amino acid, provided adequate methionine is available. In
turn, cysteine can serve as a substrate for gluconeogenesis
via its conversion to pyruvate, the synthesis of the tripeptide
antioxidant glutathione, or further catabolism to taurine.

Two distinct routes exist for the remethylation of homocys-
teine back to methionine to complete the methyl cycle. The
first reaction is dependent on the B vitamins folate and B-
12. The folate coenzyme 5-methyl-THF can donate a methyl
group to homocysteine in a reaction catalyzed by the vitamin
B-12–dependent enzyme methionine synthase (MS). Thus,
both folate and/or vitamin B-12 status play an important
role in homocysteine balance within the cell and subsequently
the circulation. It should also be noted that sufficient supply
of 5-methyl-THF for folate-dependent remethylation of ho-
mocysteine is dependent on the enzymatic reduction of
5,10-methylene-THF and the catalytic activity of MTHFR, a
physiologically irreversible reaction. A single nucleotide
polymorphism of the MTHFR gene (C677T) can result in in-
adequate folate-dependent remethylation and subsequent
elevations in homocysteine concentrations. The second route
for homocysteine remethylation is independent of folate and
the 1-carbon pool, using betaine, derived from the oxidation
of choline, as a methyl group source in a reaction catalyzed
by BHMT. BHMT-dependent remethylation of homocysteine
is primarily hepatic and renal, whereas the folate–vitamin B-
12–dependent route is found universally in all tissues. The
relationship betweenMS,MTHFR, BHMT, homocysteine bal-
ance, and disease is further discussed later in this review.

Current status of knowledge
Regulation of homocysteine balance
Homocysteine production. Because homocysteine has many
metabolic routes for its production and utilization, a number
of key proteins involved in these processes factor heavily in the
regulation of homocysteine balance. As mentioned, PEMTand
GAMT collectively represent the most predominant SAM-
dependent methyltransferases that contribute to homocysteine
production, and GNMTexerts regulatory control over methyl
group metabolism and concomitantly the generation of
homocysteine. GAMT is a hepatic enzyme that catalyzes the
synthesis of creatine by the SAM-dependent transmethylation
of guanidinoacetate, a compound synthesized in the kidney
from arginine and glycine. The biosynthesis of creatine for
muscle creatine phosphate is a major consumer of SAM-
derivedmethyl groups and thus produces a significant amount

of intracellular homocysteine in the liver. Stead et al. (18)
showed that dietary provision of creatine alleviates the re-
quirement of hepatic creatine synthesis, and subsequently
the production of homocysteine was diminished. Moreover,
homocysteine production was elevated when guanidinoace-
tate was provided in the diet, likely owing to the metabolic
need to methylate it to creatine.

In addition to the direct synthesis of phosphatidylcholine
from choline, hepatic PEMT serves as an additional route to
generate phosphatidylcholine from phosphatidylethanola-
mine. Because this biosynthetic pathway requires 3 methyl
groups from SAM, it has been proposed that PEMT repre-
sents the largest consumption of SAM-derived methyl
groups and subsequent production of homocysteine (13).
This potential regulatory relationship between hepatic
PEMT and homocysteine has been explored by Vance et al.
(19–21). Pemt-deficient mice exhibited significantly reduced
concentrations of homocysteine in the circulation, and over-
expression of PEMT resulted in hyperhomocysteinemia.
Whether this later finding can be linked to hyperhomocys-
teinemia-associated pathologies remains to be determined.

Knockout mouse models have also been useful in further
understanding the role of GNMT as a potential regulator
of homocysteine balance. However, unlike PEMT, GNMT-
knockout mice had normal circulating concentrations of
homocysteine, whereas plasma methionine and SAM con-
centrations were markedly elevated (22). Thus, a direct rela-
tionship between GNMT regulation and homocysteine
concentrations does not appear to exist, in contrast to
PEMTand other related enzymes, as discussed in the follow-
ing. It has also been shown that hepatic PEMTexpression is
estrogen regulated (23), thus, sex and age may be additional
factors in PEMT function and its impact on homocysteine
balance.

Homocysteine catabolism. The irreversible catabolism
of homocysteine by the sequential action of CBS and g-
cystathionase to generate cysteine exists largely in the liver
and kidney, but is also present in a few other tissues. Inborn
defects in either vitamin B-6–dependent enzyme results in
homocystinuria and was some of the initial evidence linking
elevations in homocysteine to vascular disease. The link be-
tween CBS, hyperhomocysteinemia, and cardiovascular dis-
ease continues to be explored and is further discussed in this
review. It is clear that inadequate CBS expression, combined
with specific diets, results in well-defined adverse vascular
outcomes (24,25). The use of a low-folate, high-methionine
diet fed to Cbs+/2 mice has proved to be a very successful
approach to produce varying degrees of hyperhomocystei-
nemia and linked to specific measure of endothelial dysfunc-
tion as well as elevated SAH concentrations.

Homocysteine remethylation. Hepatic folate-dependent
remethylation of homocysteine depends on 2 enzymes,
MTHFR and MS. The MTHFR C677T polymorphism has
been shown to result in hyperhomocysteinemia and indices
of vascular disease (26–28). Similar to CBS, animal knockout
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models of MTHFR andMS have proved useful tools in exam-
ining the regulation of homocysteine with respect to vascular
dysfunction (29). For folate-independent remethylation, the
regulation and/or expression of BHMT has been shown to
affect homocysteine concentrations. The use of a highly
specific inhibitor of BHMT activity, S-(a-carboxybutyl)-DL-
homocysteine, inhibited BHMT activity by 90% and resulted
in a 7-fold increase in circulating homocysteine concentra-
tions (30). Because this compound did not have an effect
on other homocysteine-metabolizing enzymes, this study
demonstrated that inhibition of BHMT alone is sufficient to
result in homocysteine imbalance. Recently, a Bhmt-deficient
mouse model was developed that confirms these earlier
findings (31). Bhmt+/2 mice were characterized by a 50%
reduction in BHMTactivity and normal circulating homo-
cysteine concentrations, whereas Bhmt2/2 mice have a
complete absence of activity and approximately an 8-fold
increase in plasma homocysteine concentrations. Although
the Bhmt-deficient mouse exhibits hepatic steatosis and in-
creased hepatocellular carcinoma, it has not yet been deter-
mined whether the characteristic homocysteine imbalance
has an impact on the pathogenesis of the diseases described
in the following.

Homocysteine and disease
Cardiovascular disease. There is little doubt that hyperho-
mocysteinemia plays a role in the development of cardiovas-
cular disease (CVD) (32–34). This is not only supported by
human population studies identifying it as an independent
risk factor, but strong evidence resides in animal models
with diet- and/ or genetic-based elevations in homocysteine
concentrations (29,35–38). Homocysteine and the incidence
of myocardial infarction are positively correlated, even after
adjustment for other CVD risk factors (39). Meta-analysis
of >80 studies on folate metabolism and CVD has shown
an association with hyperhomocysteinemia and a variety
of cardiovascular events, including atherosclerotic vessel
damage and thrombosis (40). In contrast, plasma homocys-
teine is not related to total CVD risk burden and may or may
not be related to CVD-related mortality (41). However, it
should be noted that clinical trials targeting homocysteine
management by the use of vitamin B supplementation as a
means to lower circulating homocysteine concentrations
have not been as effective as anticipated (42–47). Numerous
reviews have debated the various explanations for these
findings and the associative versus causal role of homocyste-
ine in vascular disease (25,48,49). Nonetheless, it is clear
from animal studies that genetic and dietary-induced in-
creases in plasma homocysteine result in well-defined indi-
ces of vascular disease (29,35–38). Heterozygous mice
deficient in CBS, MS, and MTHFR are all characterized by
elevated circulation homocysteine concentrations and vas-
cular dysfunction, as well as neurological disorders. This is
supported in humans possessing the MTHFR C677T
polymorphism, which results in reduced activity of the en-
zyme, resulting in hyperhomocysteinemia and increased in-
cidence of vascular disease (26–28).

Recently, homocysteine has been shown to negatively
affect endothelial cell function, revealing novel mechanisms
involved in hyperhomocysteinemia and cardiovascular
health. Homocysteine can hypomethylate CpG islands in
the promoter region of P66shc, an adaptor protein, leading
to increased P66shc expression and causing increased oxida-
tive stress (50). In endothelial cells of the coronary arteries,
hyperhomocysteinemia appeared to result in diminished
tetrahydrobiopterin function, an important cofactor for va-
sodilation (51). However, the impact of homocysteine on
vascular oxidation was shown to be unimportant compared
with the impact of 5-methyl-THF, which appears to regulate
nitric oxide balance in blood vessels (52). This indicates that
elevated homocysteine may not only be a cause of endothe-
lial dysfunction, but also a biomarker for other complica-
tions. Attempts to improve endothelial cell function by
lowering homocysteine have had moderate success. Homo-
cysteine-lowering therapy did not lower markers of endo-
thelial cell dysfunction in stroke patients, perhaps because
the vascular damage was too advanced (53). In a mouse
model, homocysteine-lowering gene therapy corrected en-
dothelial cell dysfunction, thereby delaying development of
thrombosis, but had no impact on atherogenesis or vessel
narrowing (54).

The impact of homocysteine on endothelial cell health
may contribute to the development of hypertension. In an
epidemiological study of 500 patients, those in the highest
tertile with respect to plasma homocysteine concentrations,
had an odds risk of 1.66 for the development of hyperten-
sion within 10 y compared with patients in the lowest tertile
(55). This finding is in agreement with a recent study com-
paring plasma homocysteine with total antioxidant status,
C-reactive protein (an index of inflammation), endothelial
progenitor cells, and intima-media thickness of the carotid
arteries. In hypertensive patients, homocysteine, intima-
media thickness and C-reactive protein were significantly
higher, whereas total antioxidant status and endothelial pro-
genitor cells were significantly lower (56). Researchers spec-
ulate that the reduced total antioxidant status, possibly
affected by homocysteine, may reduce the number of endo-
thelial progenitor cells. Elevated plasma homocysteine may
also be a valuable predictive factor for hypertension because
circulating homocysteine is related to increased arterial stiff-
ness in prehypertensive patients (50).

Autoimmune disease. A number of autoimmune diseases
are characterized by aberrant methyl group metabolism and
homocysteine imbalance. For humans, both types 1 and 2 di-
abetes are characterized by hypohomocysteinemia, which
progresses to hyperhomocysteinemia as renal function be-
comes compromised (57–59). From animal studies using
chemically induced type 1 diabetes and genetic-based type 2
diabetes, the initial phase of hypohomocysteinemia appears
to be the result of increased remethylation and catabolism
of homocysteine by the induction of BHMTand CBS, respec-
tively (60–65). This is not surprising because increased
expression of hepatic and renal CBS in transgenic mice has
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been reported to effectively lower circulating homocysteine
concentrations (66). These alterations in homocysteine bal-
ance in type 1 diabetes are specific for the pathology because
insulin administration abrogates all of the metabolic anoma-
lies (60,65,67,68). Diabetes is also characterized by induction
of specific methyltransferases that should result in increased
homocysteine production, namely, GNMT and PEMT
(62,63,67). However, the concomitant induction of CBS
and BHMT appears to promote remethylation and transsul-
furation as a means to prevent homocysteine accumulation
in the cell and subsequently the circulation. An increased
flux through the transsulfuration pathway has also been
reported in humans with type 2 diabetic nephropathy (69).
One clear species-specific difference is that in Zucker diabetic
fatty rats with clear indices of renal dysfunction, the circulat-
ing concentration remains lower than normal and does not
progress to hyperhomocysteinemia as it does in humans
(70). The basis for this discrepancy remains an area for future
investigation, but may be attributed to the fact the rodents
possess very little renal BHMT activity compared with hu-
mans; hence, they may be less susceptible to the hyperhomo-
cysteinemia owing to renal dysfunction and the associated
loss of BHMT-dependent remethylation of homocysteine.

Gastrointestinal disorders. Hyperhomocysteinemia con-
tributes to inflammatory remodeling of the gastrointestinal
tract, resulting in elevated levels of matrix metalloprotei-
nase-9, reactive oxygen species, and superoxide (71). Addi-
tionally, hyperhomocysteinemia caused by the C677T
MTHFR polymorphism was associated with mesenteric
venous thrombosis and bowel infarction (72). Increased
plasma homocysteine concentration has been implicated
in a variety of gastrointestinal diseases, including constipa-
tion, inflammatory bowel disease, Crohn’s disease, and colo-
rectal cancer (73–76). Constipation, lowered fecal output,
and increased superoxide species quickly develop in Cbs+/2

mice, indicating that hyperhomocysteinemia itself may be
causing gastrointestinal distress (73). Specific medications
that interfere with methyl group metabolism have the nega-
tive side effects of stomach pain and indigestion. In particular,
isotretinoin (i.e., 13-cis-retinoic acid), a therapeutic retinoid
derivative used for the treatment of severe acne, has been
associated with severe bowel problems, possibly due to the
marked increase in homocysteine concentrations observed
in isotretinoin patients (77,78). However, the increased ho-
mocysteine concentrations in patients with inflammatory
bowel disease may also be a consequence of the disease itself
because the gastrointestinal tract is responsible for much of
the metabolism of sulfur amino acids (75).

Skeletal maintenance. Homocysteine can impair bone
health by interfering with proper osteoclast activity. In vitro
incubation of homocysteine and bone marrow cells showed
that homocysteine up-regulates osteoclast formation and
suppresses osteoclast apoptosis by increasing reactive oxygen
species concentrations in bone marrow cells. This increase
in oxidative stress induces the activity of RANK-L (receptor

activator for nuclear factor kB ligand), an osteoclast differ-
entiation factor. Increased osteoclast activity will result in
increased bone resorption, explaining the increased risk of
fractures and decreased bone mineral density seen in pa-
tients with high circulating homocysteine concentrations
(79,80). Furthermore, homocysteine induces caspase-
dependent apoptosis of human bone marrow stromal cells,
thereby impairing bone repair (81). A rat model of hyperho-
mocysteinemia led to increased accumulation of homocys-
teine in bone tissue, 65% of which was localized in the
collagen extracellular matrix. This accumulation of homo-
cysteine was associated with a dramatic reduction of trabec-
ular or “spongy” bone and a corresponding decrease in bone
strength (82). Furthermore, homocysteine can epigeneti-
cally modify expression of Lox, thereby down-regulating ex-
pression of lysyl oxidase, essential for collagen cross-linking
and stability (83). This indicates a novel mechanism for
bone damage resulting from elevated homocysteine concen-
trations in the circulation. Recently, studies in a rat model
showed that homocysteine may lower blood flow through
bone tissue, an effect that can be partially corrected by folic
acid supplementation (84). However, homocysteine-lowering
therapy has not been conclusively shown to improve bone
health (85).

Neurodegenerative disorders. An area that has received a
lot of attention recently is the relationship between homo-
cysteine and neurological problems, such as depression
and Parkinson’s disease. Major depressive disorder is com-
monly attributed to low levels or impaired transmission of
the neurotransmitters serotonin, dopamine, and norepi-
nephrine, some of which are dependent on methyl group
donation from SAM for synthesis or metabolism. In a recent
longitudinal study of >11,000 patients, elevated homocyste-
ine concentrations were associated with a 26% increase in
the likelihood of depressive symptoms (86). Dietary supple-
mentation with folate, vitamin B-12, and SAM has been
shown to effectively lower plasma homocysteine concentra-
tions and reduce depressive symptoms (87).

Hyperhomocysteinemia occurs in 10% to 30% of pa-
tients with Parkinson’s disease (88). Parkinson’s disease is
a neurodegenerative disorder characterized by loss of motor
control, often resulting in tremors caused by damage to
dopamine-producing brain cells, which can be managed with
the neurotransmitter precursor levodopa (L-DOPA). Metab-
olism of L-DOPA by catechol-O-methyltransferase requires
SAM, rapidly depleting the methyl group supply and leading
to increased concentrations of homocysteine (89). Elevated
plasma homocysteine concentrations have been associated
with dementia, depression, and dyskinesia in Parkinson’s
patients; however, determination of homocysteine concen-
trations alone was not sufficient for prognosis (90). As pre-
viously mentioned, hyperhomocysteinemia has been linked
to low bone mineral density, a serious concern for Parkin-
son’s disease patients, who have an increased fracture risk
due to loss of motor control and comorbid dementia
(91). Patients are often encouraged to minimize protein
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intake and take vitamin B supplements to prevent or con-
trol perturbations in methyl group metabolism (92). Re-
cently, Parkinson’s disease patients who exercised regularly
were shown to completely avoid an increase in plasma homo-
cysteine concentrations after L-DOPA treatment, in contrast
to sedentary Parkinson’s disease patients (93). Reduction of
plasma homocysteine concentration remains a primary goal
in controlling the symptoms of Parkinson’s disease.

Homocysteine can also complicate the progression of
Alzheimer’s disease. In a recent population study of >1200
Swedish women, a high plasma homocysteine concentration
in middle age was an independent risk factor for later
dementia and Alzheimer’s disease (94). In patients who al-
ready have a diagnosis of Alzheimer’s disease, the rate of cog-
nitive decline positively correlated with the concentration of
plasma homocysteine (95). Furthermore, patients with
moderate Alzheimer’s disease and elevated homocysteine
concentrations experienced greater behavioral disturbances
associated with major depressive disorder (96). A recent
study involving a transgenic mouse model of Alzheimer’s
disease showed that a methionine-rich, homocysteine-low-
ering diet may effectively lower brain amyloidosis and im-
prove cognitive defects (97). However, these benefits were
not confirmed in a randomized, placebo-controlled trial
with human Alzheimer’s patients (98).

Conclusions
Homocysteine balance, and hyperhomocysteinemia in
particular, appears to be a consistent characteristic of a num-
ber of pathologies. It remains unclear whether excessive
homocysteine concentrations directly contribute to the
pathogenesis of disease or represent a biomarker of meta-
bolic aberrations, such as aberrant methyl group metabo-
lism. It is clear from dietary and genetic animal models of
hyperhomocysteinemia that well-defined adverse outcomes,
such as vascular dysfunction, can be demonstrated. Inter-
vention strategies to reduce plasma homocysteine concen-
trations have met with mixed results, not just in the case
of vascular disease, but also with respect to neurodegenera-
tive disorders, diabetes, and bone health. Therefore, a more
precise understanding of the relationship between homocys-
teine balance and disease remains an important area of
investigation, particularly for those populations that may
be at the greatest risk of hyperhomocysteinemia.
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