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ABSTRACT

Childhood obesity rates have reached epidemic proportions. Excessive weight gain in infancy is associated with persistence of elevated weight

status and later obesity. In this review, we make the case that weight gain in the first 6 mo is especially predictive of later obesity risk due to the

metabolic programming that can occur early postpartum. The current state of knowledge regarding the biological determinants of excess infant

weight gain is reviewed, with particular focus on infant feeding choice. Potential mechanisms by which different feeding approaches may

program the metabolic profile of the infant, causing the link between early weight gain and later obesity are proposed. These mechanisms are

likely highly complex and involve synergistic interactions between endocrine effects and factors that alter the inflammatory and oxidative stress

status of the infant. Gaps in current knowledge are highlighted. These include a lack of data describing 1) what type of infant body fat distribution

may impart risk and 2) howmaternal metabolic dysfunction (obesity and/or diabetes) may affect milk composition and exert downstream effects

on infant metabolism. Improved understanding and management of these early postnatal determinants of childhood obesity may have great

impact on reducing its prevalence. Adv. Nutr. 3: 675–686, 2012.

Introduction
In ancient times, humanity resembled other species whose
survival was often threatened by starvation and malnutri-
tion. In modern times, however, the most common threat
to human life expectancy is excess adiposity and the accom-
panying comorbidities. This crisis is not restricted to affluent
nations, but has become a global public health concern. It is
currently estimated that 68.8% of American adults 20 y and
older are overweight (BMI$25 kg/m2), and 35.7% are obese
(BMI$30 kg/m2) (1). The obesity epidemic has spread to the
pediatric population; w31.8% of American children ages 2–
19 y are considered overweight, and 16.9% meet the criteria
for obesity (2). Even at birth, 7.5% of American infants are
macrosomic, and 9.7% of infants and toddlers are overweight
(2,3). Treatment of overweight and obesity is notoriously dif-
ficult and often unsuccessful. As such, public health efforts
have increasingly concentrated on prevention-based strategies
focused on younger and younger age groups (2).

With regard to childhood obesity prevention, research to
understand and interventions to prevent rapid and excess

weight gain in infancy may be the most critical for several
reasons. Although the in utero environment plays a crucial
role in offspring’s future health outcomes, intervention dur-
ing pregnancy may be unavailable or unfeasible. The first
few weeks of life represent the first postnatal opportunity
to influence offspring health. Second, intervention during
infancy is simpler compared with older ages because dietary
intake is homogeneous and many common child feeding is-
sues have not yet manifested. Finally, and most importantly,
there is an emerging consensus in the scientific literature re-
garding the rate of weight gain during early infancy and the
risk of obesity and related comorbidities later in life (4–17).
Systematic reviews estimate that rapid growth in the first 1–
2 y of life is associated with an OR of later obesity that ranges
from 1.4 to 5.7 (5,6). Comprehensive reviews describing this
body of literature were recently performed (5–7). Yet to be
explained are the biological underpinnings of why early ex-
cess weight gain in infancy predisposes to later obesity. The
objectives of this review are to 1) summarize what is known
regarding the postnatal biological determinants of early
weight gain related to infant feeding and 2) propose poten-
tial mechanisms whereby these exposures may affect adipos-
ity over the life course. Although intrauterine and behavioral
determinants undoubtedly contribute to regulation of infant*To whom correspondence should be addressed. E-mail: Bridget.Young@UCDenver.edu.
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weight gain and obesity risk, these are only briefly men-
tioned in this review.

The first 6 mo are a critical window
The literature addressing the association between early in-
fant growth and later risk of overweight is characterized
by large variations in the definition and assessment of rapid
growth, later obesity, and related outcomes; the time period
over which growth was assessed; and the time elapsed before
the outcome was measured. This variation complicates inter-
pretation of the data. Definitions of exposure, or excess infant
growth, include measures of infant gains in linear growth
[centimeters/month and length-for-age Z-score (LAZ)3];
weight [grams/day and weight-for-age Z-score (WAZ)];
and weight relative to length [weight-for-length Z-score
(WLZ)]; and BMI Z-score (BMI-Z) for children older
than 2 y). Although these measures all assess some aspect
of infant growth, they represent distinct biological processes
that may not track consistently over time. Furthermore,
measures used as proxies for infant adiposity (WLZ, BMI,
and BMI-Z) do not actually measure body composition
(percentage of body fat) but are often interpreted as such.
Additionally, even accurate measures of body composition
do not typically address the distribution of infant body fat,
such as visceral versus subcutaneous fat or intrahepatocellu-
lar lipid, which may play a critical role in the development of
metabolic dysfunction (18). Despite these inconsistencies in
classification of exposure and outcome, study results consis-
tently support a link between rapid early infant growth and
later obesity. The “growth acceleration hypothesis” attempts
to explain this link by suggesting that early and rapid growth
during infancy programs the infant metabolic profile to be
susceptible to obesity and the other components of metabolic
syndrome (19). This brief review presents data from relevant
studies according to the time period in which infant weight
gain was assessed. Overall, these data support the premise
that the first 6 mo of life represent a particular time when
the growth acceleration hypothesis specifically applies.

When growth was measured in the first 2 y of life, infants
who exhibited rapid growth (gain inWAZ$0.67 units) were
heavier, had a higher BMI, and a higher percentage of body
fat at 5 y of age (9) and continued to exhibit increased total
and abdominal adiposity in adulthood (20). When gain in
BMI-Z in the first 24 mo was considered the exposure,
this gain was positively correlated with increased BMI,
and specifically with the percentage of body fat, at 7 y
of age (21). Infant weight gain (grams/day) over the first
12 mo has also been associated with an increased risk of
obesity later in childhood (11,22). A meta-analysis of 10
cohort studies estimated the OR for obesity in childhood
increased by 1.97 for every unit of WAZ gained during
the first 12 mo (6).

Other studies have measured infant weight gain over suc-
cessively smaller intervals of time to identify the most criti-
cal window of exposure. Weight gain from birth to 9 mo was
positively associated withWAZ at 7 y of age (23). The increase
in WLZ and WAZ during the first 6 mo has been correlated
with BMI-Z, skinfold thicknesses, and odds of obesity at
3 y of age (24,25). Absolute weight gain over the first 6 mo
was also correlated with overweight in offspring at age 4 y
(26) and with BMI, absolute and relative fat mass, and clus-
tered metabolic risk score at 17 y of age (27,28). In children
assessed at 17 y, weight gain during childhood (from 3 to
6 y) was not associated with clustered metabolic risk score
at 17 y, suggesting that early infancy is a more crucial window
of metabolic programming (27). Excess gain even before
6 mo has also been studied. African American infants gaining
$1 WAZ unit in the first 4 mo were significantly more likely
to be obese by age 20 (OR = 5.22) (10). In a multicenter U.S.
cohort, weight gain in the first 4 mo was also associated with
OR of obesity at 7 y (16). In a Chinese cohort, increase in
WAZ in the first 3 mo was associated with BMI-Z at 7 y
(17). Even increases in WAZ as early as the first 8 d of life
have been associated with an increased risk of overweight
and obesity in adulthood (12).

The studies referenced suggest that the first few weeks
and months of life are particularly associated with later
weight status (29). However, few studies have actually com-
pared the strength of the relationship across different time
intervals during the infant period. Taveras et al. (30) recently
showed that crossing $2 major weight-for-length percen-
tiles in the first 6 mo was associated with a significantly
higher risk of obesity at 5 y than if the gain occurred during
any other 6-mo window in the first 2 y. Figure 1 shows pre-
viously unpublished data from a Denver birth cohort born
between 1999 and 2004 (N = 15,552). All infants were
born at term ($37 wk and <42 wk gestation) and had a
birth weight >2.5 kg. Logistic regression was used to com-
pare the risk of overweight (weight for length$95th percen-
tile) at 18–24 mo attributed to macrosomia (birth weight
>4000 g) or excess weight gain (defined as gaining $0.5
WAZ) from birth to 2 mo, 2 to 4 mo, and 4 to 6 mo. These
time intervals were chosen based on the timing of well-child
visits. The OR of overweight at 18–24 mo attributed to birth
weight and weight gain across these individual time intervals
were all significant (P < 0.0001). Controlling for birth
weight, the OR attributed to excess weight gain between 2
and 4 mo was significantly higher than the OR of overweight
from gaining excessively during the other 2 intervals (P <
0.001). Together these studies suggest that weight gain dur-
ing the first 6 mo merits particular attention in relation to
later obesity risk.

With that background in mind, the remainder of this re-
view focuses on the first 6 mo after birth. These months are
a critical time when metabolic programming can occur, sim-
ilar to the in utero period, because infants’ organ systems
still maintain considerable plasticity for adaptation to nutri-
tional and environmental exposures. Additionally, the first
6 mo are a clinically relevant time when infants are seen

3 Abbreviations used: BMI-Z, BMI Z-score; GDM, gestational diabetes mellitus; HM, human

milk; LAZ, length for age Z-score; SGA, small for gestational age; T1D, type 1 diabetes/insulin-

dependent diabetes; T2D, type 2 diabetes; WAZ, weight for age Z-score; WLZ, weight for

length Z-score.

676 Young et al.



frequently by physicians. The mechanism(s) driving the cor-
relation between excess weight gain in the first 6 mo and
later obesity remain unknown. This knowledge gap results
in part from the inconsistencies in study design, but also
from a lack of longitudinal and intervention studies. Further-
more, previous research has emphasized absolute weight gain,
rarely addressing changes in body composition and failing to
address fat distribution (subcutaneous vs. visceral). To under-
stand the earliest postnatal etiologies of obesity, both the
causes and characteristics of risky infant gain must be consid-
ered. In the following sections, we review how infant feeding
mode [human milk (HM) vs. formula in various formula-
tions] affects early weight gain and child obesity and explore
biological mechanisms whereby metabolic programming may
occur.

The in utero environment
Although we focus on the first 6 mo postpartum, it would be
remiss to ignore the contributions of the in utero environ-
ment to the milieu of factors that contribute to infant growth

and childhood obesity. Beginning with the work of Barker
(31), it has become well accepted that the in utero environ-
ment programs infant metabolic profile and affects future
chronic disease risk. Birth weight is considered a clinical out-
come representative of the summation of exposures and in-
sults that occurred in utero. Birth weight and size within
the normal range are linearly associated with the risk of obe-
sity in adulthood (13,17,32,33), and extremes in birth weight,
both large and small for gestational age (SGA), increase the
risk of later obesity and metabolic disease (34).

Maternal BMI, adiposity, gestational weight gain, circu-
lating triglyceride concentrations, and degree of inflamma-
tion during pregnancy are associated with increased birth
weight and neonatal adiposity (11,31,34–40). Maternal dia-
betes is linked with higher offspring fat mass at birth (41),
increased BMI, and risk of type 2 diabetes (T2D) in child-
hood and beyond (42). Maternal smoking during pregnancy
is associated with offspring risk of overweight and obesity at
5–7 y (11,43,44). Various animal models have shown that a
high-fat maternal diet during pregnancy causes malprog-
ramming of the fetal liver (45), increased offspring accumu-
lation of fat (46), and development of features of metabolic
syndrome in adulthood (47). Maternal nutritional status
preconception also plays an important, but often underap-
preciated role. In ewes, undernutrition around the time
of conception causes increased fetal blood pressure and im-
paired glucose signaling in adult offspring (48,49). More
comprehensive reviews of the fetal origins of obesity are
widely available.

Maternal increased BMI, smoking, and circulating tri-
glyceride concentrations are all also associated with rapid
postnatal growth (33,37,39,50). Therefore, these maternal
characteristics may illicit a “double-hit” programming effect
on offspring’s metabolic profile, increasing the odds of later
metabolic dysfunction and obesity in a cumulative or even
synergistic manner (51).

What the infant is fed
HM versus formula feeding
What the infant is fed (i.e., HM vs. formula) affects the rate
of infant weight gain and later risk of obesity. Breastfeeding
is moderately but consistently protective against later obe-
sity. Four systematic reviews of dozens of studies each con-
firmed the protective effect of breastfeeding against obesity
in childhood (52,53) and adulthood (54–56) with OR rang-
ing between 0.78 and 0.87 (52,56). Causality is suggested
by the dose-dependent characteristic of this association
(52,53,55,57,58), with every additional month of exclusive
or predominant breastfeeding linked with a 4% decrease
in later risk of overweight/obesity (55). However, the true ef-
fect size of breastfeeding on later obesity remains unknown
because it is impossible to tease apart effects that may result
from underlying parental and socioeconomic characteristics
that affect choice to breastfeed and duration of breastfeeding
(59,60). However, although the intricacies remain unclear,
the consensus that breastfeeding imparts a consistent but
small protective effect against later obesity holds (61).

Figure 1 Infant weight gain in the first 6 mo is associated with
increased odds of overweight at 18–24 mo. Infants born in
Denver, Colorado, between 1999 and 2004 (N = 15,552) were
followed through the first 2 y of life. All infants were born at
term ($37 wk and ,42 wk gestation) and had a birth weight
.2.5 kg; 2636 infants had a birth weight ,3.0 kg, and 1234
infants had a birth weight .4.0 kg. Weight gain was monitored
bimonthly and weight for age Z-scores (WAZ) generated from
the 2006 WHO growth curves. Logistic regression was used to
generate the OR of overweight (achieving a weight-for-length
$95th percentile) at 18–24 mo based on birth weight and
gaining $0.5 WAZ units between 0 and 2, 2 and 4, or 4 and
6 mo. Birth weight $3.0 and #4.0 kg (N = 11,682) was used as
the reference group, as indicated by the dashed line. Error bars
represent 95% CI. The OR attributed to each category (birth
weight ,3.0 kg or .4.0 kg or gaining $0.5 WAZ units at any
time point) was significant (P , 0.0001). *DWAZ controlled for
birth weight. **OR of overweight at 18–24 mo associated with
gaining $0.5 WAZ between 2 and 4 mo was significantly larger
than the OR associated with gaining $0.5 WAZ between 0 and
2 or 4 and 6 mo (P , 0.0001).
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Breast-fed infants exhibit different weight-gain patterns
during the first 6 mo from those of formula-fed infants (62).
This altered growth pattern may connect the causal pathway
between breastfeeding and reduced obesity (19,52). Breast-
fed infants gain weight more slowly beginning at 3 mo while
exhibiting similar gains in stature (length), which translates
into a lower mean WLZ detectable by 4 mo (63). To reflect
the assumption that breast-fed infants’ growth represents
ideal physiologic growth, the CDC and the American Acad-
emy of Pediatrics have endorsed the WHO growth stan-
dards, which are derived from predominantly breast-fed
infants, for children 24 mo of age or younger (62,64).

Breast-fed infants also exhibit different body composition
trajectories than formula-fed infants during the first 6 mo
(65–67). This difference is more complicated than the differ-
ences in weight gain trajectories. One small study (N = 87)
documented a lower percentage of fat by 5 mo, and thinner
skinfold thicknesses byw10 mo in predominantly breast-fed
versus formula-fed infants (66). Another study (N = 76) using
dual-energy X-ray absorptiometry for body composition
assessment found exclusively breast-fed infants (for $4
mo) to have higher percentage of fat mass at 3 and 6 mo
compared with formula-fed infants (67). A meta-analysis
comparing body composition patterns among HM-fed ver-
sus formula-fed infants in the first year of life was recently
published (65). Although the criteria defining breast-fed
in these studies was heterogeneous, the results indicated
that differences in body composition trajectories between
breast- and formula-fed infants are complex and change
over time (65). Notably, fat deposition as a whole should
not necessarily be considered deleterious because breast-
fed infants often exhibit larger fat mass than formula-fed
infants (65,67), underscoring the need to investigate the
long-term impact of altered body composition and fat dis-
tribution during infancy.

Although infant feeding choice is associated with the rate
and type of infant weight gain, the overarching association
between excess and rapid weight gain and later obesity re-
mains significant regardless of feeding mode. Even exclu-
sively breast-fed infants who gain too much too fast in the
first 6 mo are still at increased risk of later obesity (9,26).
However, the details and strength of this relationship may
differ depending on feeding choice. Among children who
exhibited “risky infant weight gain” (gaining $8.15 kg in
the first 2 y), those who did not become overweight by 6–
8 y were more likely to have been exclusively breast-fed
for $6 mo (68), suggesting that feeding HM may modulate
the impact of excessive weight gain on the risk of childhood
obesity (25). Why the relationship between excess infant
weight gain and later obesity differs among infants fed
HM versus formula remains unknown, but may be under-
lined by the differences in body composition between these
2 groups (65). Future research should address how infant
feeding choice affects the composition of weight gain (fat
vs. fat-free mass) and fat deposition (subcutaneous vs. vis-
ceral) because these effects are likely critical for the risk of
later obesity.

Exclusive versus mixed feeding
Although exclusive breastfeeding for approximately the first
6 mo of life is universally recommended, mixed feeding
(feeding both HM and formula) is far more common in
the United States. Mixed feeding may still provide a protec-
tive, albeit a much smaller, effect against childhood obesity
(24,69,70), but the duration of partial breastfeeding neces-
sary to impart a protective effect is longer than when breast-
feeding is exclusive (71). This longer duration may be
difficult to obtain given that mixed feeding is also associated
with shorter duration of any breastfeeding (70). The atten-
uated protection imparted by mixed feeding is still likely
mediated via reduced rates of weight gain observed in com-
bination fed versus exclusively formula-fed infants (37,72).

A critical gap in our understanding of how exclusive ver-
sus mixed breastfeeding affects offspring derives from the
lack of clarity associated with these terms in the literature.
Studies are very heterogeneous in their definition of feeding
exposure; any given infant may be classified in completely
different feeding groups depending on investigators’ variable
definitions of “exclusive,” “predominant,” “any,” or “no”
breastfeeding. Studies that more strictly classify exposure
are called for to characterize the extent of a dose response
between the amount and/or duration of breastfeeding and
infant growth.

Milk from obese mothers
The human fetus was previously considered the “perfect par-
asite,” capable of extracting ideal nutrition from the maternal
host regardless of her status. However, we now understand
that in utero exposures exert powerful effects on the devel-
opmental potential of offspring. This paradigm shift in
understanding is applicable to HM. Previously, HM was
considered a relatively imperturbable and complex mixture
that was universal among women. However, understanding
is now emerging that maternal phenotype and behaviors
(e.g., obesity and high-fat diet) cause alterations in the nu-
tritional and other bioactive components of HM, which
may affect infant growth and adiposity gain, potentially con-
tributing to the heritability of obesity.

Maternal obesity affects milk composition in several
ways. In rats, the fatty acid composition and insulin concen-
trations of milk from genetically obese dams differs from
those of the milk of lean dams (73), and diet-induced obe-
sity impairs mammary lipid metabolism and milk fat pro-
duction and results in reduced milk triglycerides (74). HM
from overweight and obese women also has higher total
fat, glucose, and insulin concentrations than HM from
lean mothers (75,76). The concentrations of the hormonally
active adipokines leptin and adiponectin in HM vary by ma-
ternal BMI (77–80). Maternal diet also affects milk compo-
sition. Nonhuman primates consuming a high-fat diet
produce milk that has lower protein content and reduced
DHA and EPA concentrations compared with milk from
control animals (81). When consuming a high-fat diet,
women also produce HM that has an altered fatty acid pro-
file compared with HM produced when consuming a low-
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fat diet (82). In a similar study, a high fat maternal diet (55%
fat, 30% carbohydrate) during lactation resulted in a higher
percentage of milk fat and higher infant total volume and
energy intake compared with an isocaloric high carbohy-
drate diet (25% fat, 60% carbohydrate) (83).

The finding that a high-fat maternal diet resulted in in-
creased energy intake of the breast-fed infant (83) indicates
that HM alterations resulting from maternal phenotype/
behavior may affect regulation of infant energy balance. An-
imal data suggest that the milk of obese mothers exerts dele-
terious effects on infant metabolism, weight gain, and obesity
risk. When pups of lean control dams were cross-fostered to
diet-induced obese dams, offspring developed increased body
weight and a nonalcoholic fatty liver disease phenotype by
3 mo (84). When pups of obesity-resistant dams were cross-
fostered to obese dams, they exhibited increased adiposity
and reduced insulin sensitivity as adults (5 mo) (73). However,
normal species differences in milk composition and offspring
maturity at birth necessitate that caution be used when extrap-
olating these results to humans. In fact, epidemiological data
suggest that the protective effect of breastfeeding against child-
hood obesity does not differ between lean (BMI <25 kg/m2)
and overweight mothers (BMI $25 kg/m2) (85). Under-
standing the biochemical impact of maternal obesity on
HM composition and infant weight gain warrants further
research.

Milk from mothers with diabetes
Current understanding of how maternal diabetes affects HM
and infant growth postpartum is muddled by the common
practice of combining variations of diabetic disease into a
single risk category. Gestational diabetes (GDM), type 1 dia-
betes (T1D), and T2D are often grouped together despite
distinctly different etiologies and pathophysiology. Fur-
thermore, obesity is a common comanifestation and con-
founding risk factor that is specific to GDM and T2D.
Contemporary knowledge regarding the impact of insulin
resistance on HM composition is still based on historical
studies of women with T1D,. Early milk from women with
T1D has altered sodium, glucose, insulin, total fat and fat
composition compared with milk from healthy women
(86–88). However, if diabetes is tightly controlled, the mac-
ronutrient, glucose, and insulin composition of her milk is
indistinguishable from that of healthy counterparts (89).
These observations would suggest that the glycemic and ca-
loric characteristics of HM may be altered if maternal glu-
cose control remains inadequate in the postpartum period.
Limited data exist regarding the composition of HM from
women with GDM. One study detected alterations in con-
centrations of certain bioactive peptides and hormones, in-
cluding ghrelin (90). Data characterizing HM composition
from T2D are notably lacking.

Animal data suggest that the milk of mothers with GDM
imparts deleterious programming effects to offspring. Control
pups cross-fostered to dams with GDM exhibit malprogram-
ming of the hypothalamic arcuate nucleus post-weaning that
may cause a dysregulation of appetite, food intake, and body

weight (91). Epidemiological data from humans are difficult
to interpret. Among infants of women with T1D and GDM,
HM intake in the first week of life was associated with greater
infant relative body weight and risk of overweight at 24 mo
(92). In a study of mothers with T1D, infant weight and
BMI at 12 mo did not differ between infants who were exclu-
sively fed formula versus HM, a difference normally detected
in healthy cohorts (93). In contrast, another epidemiological
study established that breastfeeding protected against off-
spring overweight at 9–14 y similarly among lean, over-
weight, and T1D/GDM women (85). In another GDM/
T1D cohort, adequate breastfeeding (defined as HM for
$6 mo) ameliorated the negative impact of in utero expo-
sure to diabetes on childhood adiposity (94). In that same
cohort, infants of diabetic mothers who received adequate
HM (HM for$6 mo) exhibited a lower BMI trajectory dur-
ing childhood than infants with inadequate breastfeeding, a
difference that approached significance (1.11 kg/m2 less
BMI gain, P = 0.07, n = 94) (95). In a group of mother
with GDM only (n = 324), breastfeeding was protective
against child obesity, although obese mothers needed to
breastfeed longer to impart any protection, implying an in-
teractive effect of obesity and insulin resistance (96).

The lack of consistency in these findings may partially re-
sult from grouping women with GDM and T1D because
these very different etiologies likely exert differential effects
on HM composition and infant growth. Furthermore, these
studies do not control for alterations that may occur in HM
composition/properties as lactation progresses, glucose con-
trol is re-established, and the infant gut matures. It has been
proposed that “early” diabetic milk may have an obesigenic
effect on infant weight gain that decreases over time such
that protective effects of breastfeeding will only be observed
if exclusive breastfeeding is maintained beyond when this
negative effect has diminished (97). Research is urgently
needed to determine whether a critical window exists in the
case of maternal obesity or each type of diabetes and the im-
pact on HMcomposition and infant weight gain. Equally nec-
essary are studies designed to investigate effects of GDM
separately from those of T1D and obesity separately from
T2D. The acuteness of these research needs is underscored
by the unprecedented prevalence of maternal obesity and
T2D. Our understanding of the biochemical impact on HM
and infant growth lags far behind the epidemiological data
linking maternal phenotype with offspring obesity risk.

Formula versus formula feeding
Although exclusive breastfeeding is recognized as the ideal
mode of infant feeding, nonetheless, many infants are fed
formula. Just as HM varies in composition between individ-
uals, infant formulas vary in composition. For example, al-
though the percentage of fat content of infant formula is
regulated, the fat source and fatty acid composition vary
among brands (98). Variation in fatty acid (particularly
long-chain PUFA) content can have biological effects on in-
fant growth. When preterm infants (born <33 wk) were fed
formula supplemented with DHA and arachidonic acid, they
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exhibited decreased fat mass and increased fat-free mass by 12
mo of age compared with infants fed control formula (99).
Interestingly, no differences in weight or length were observed
(99). Extrapolation of these results to term infants is tem-
pered by the different physiological states and nutritional re-
quirements represented by a preterm population.

Formula protein content is another major component
that has been extensively studied with relation to weight
gain. In the context of SGA or low birth weight infants, ex-
cessive postpartum weight gain that matches in utero rates
of growth is prescribed. A Cochrane review of this topic re-
ported that higher protein formula (>3.0 and <4.0 g/kg/d)
accelerates weight gain and increases all weight gain param-
eters in low-birth weight infants (100). However, because
the potential for chronic disease risk attributed to rapid
postpartum gain is increasingly recognized, the ideal degree
of “catch-up growth” has become controversial. In a study of
SGA infants from the United Kingdom (N = 153), those ran-
domized to receive a nutrient-enriched formula (28–43%
higher protein and 6–12% higher energy content) exhibited
a greater change in WAZ, but no difference in change in LAZ
at 9 mo and a larger fat mass at 6–8 y (101). Similar effects
were observed in healthy term infants who, when random-
ized to receive a higher protein formula, displayed higher
weight gain velocity, WAZ, WLZ, and BMI-Z, but no differ-
ences in LAZ by 6 mo compared with controls (102,103).
These trends implied a larger fat mass accrual in the high-
protein group, a finding that persisted until study termination
at 2 y (102).

Not only the amount, but the type, of protein in formula
can affect infant growth. Hydrolyzed protein may be more
easily absorbed, metabolized differently, and exert different
satiety responses than the modified cow’s milk protein of
standard formulas. A recent study that randomized healthy
infants to receive either standard (cow’s milk based) or hy-
drolyzed formula from 0.5 to 7.5 mo found higher WAZ
starting at 3.5 mo, and higher WLZ starting at 2.5 mo
among infants receiving standard formula, but no differ-
ences in LAZ (104). Individual amino acid composition
may affect infant metabolism as well. Both hydrolyzed for-
mula and cow’s milk formula supplemented with free glu-
tamate resulted in a higher infant satiety response than
cow’s milk formula alone (105). Future research on the bi-
ological components of HM that may prevent excessive
infant gain may be relevant to optimization of formula
composition.

Mechanisms of programming
The first 6 mo are such a critical window of programming
because at no other time postnatally is the metabolic envi-
ronment so malleable and the gut so permeable that milk/
formula can elicit significant endocrine responses. There
are several different overarching components of HM/for-
mula that may affect infant adipose and weight gain, both
nutritive and nonnutritive. Traditionally proposed biologi-
cal mechanisms of programming are reviewed, and novel
pathways proposed in the following.

HM is a heterogeneous mixture that is dynamic on sev-
eral levels, differing among and within individuals through-
out the day and over the course of lactation (106,107). The
complexity of HM and role of hundreds of components
found in HM are still to be discovered. The individual fac-
tors that differ between HM and formula and may differen-
tially affect infant weight gain and adipose deposition have
been extensively studied for years and recently reviewed
(108). The primary difference that likely affects weight
gain is the higher concentrations and different sources of
several macro- and micronutrients found in formula. For-
mula has higher protein and energy density than HM, and
infants consume more of it (19,109), which may plausibly
cause the increased weight gain and increased obesity risk
of formula-fed infants (57). Additionally, the amount of
fat and the fatty acid profile of HM differ from those of for-
mula and may be protective against inflammation and exces-
sive adipose deposition (52,98,110). The amount of fat and
fatty acid composition of HM also differs among women
and varies by maternal BMI and dietary intake, which may
be a mechanism whereby maternal phenotype affects infant
weight gain (76,81–83,111,112).

HM also provides countless identified and unidentified
nonnutritive bioactive molecules that are absent in formula,
including hormones, prostaglandins, neuropeptides, and
growth factors (77). Because the newborn gut is highly per-
meable, hormones in HM such as insulin, leptin, and adipo-
nectin may actually elicit endocrine effects and play a role in
the short-term regulation of infant appetite and weight gain
(77,78,113,114). Both leptin and adiponectin are detected in
HM at concentrations that correspond to circulating mater-
nal concentrations such that the HM concentrations of both
of these adipokines are positively associated with maternal
BMI (77–80). Interestingly, the HM concentrations of
both adiponectin and leptin have been associated with lower
infant gains in weight, BMI, WAZ, and WLZ during infancy
(113,115–117). The endocrine impact of these hormones is
not well understood, especially in the case of adiponectin.
Most of these studies have been conducted in relatively
lean populations, and whether these relationships are similar
at the upper end of the distribution of maternal BMI is un-
known. Furthermore, obesity in adults is often characterized
by leptin resistance, and how early exposure to elevated lep-
tin concentrations in HM may affect leptin sensitivity also
remains unknown. Insulin is another powerful anabolic
hormone present in HM that differs based on maternal phe-
notype (75). Variation in these hormones resulting from
maternal obesity and/or diabetes could affect the metabolic
programming and growth/adiposity trajectory of the new-
born (108).

It is likely that bioactive components of HM also affect
the type and distribution of adipose tissue laid down by
the infant. Obesity and metabolic syndrome in particular
are considered states of inflammation and oxidative stress
(118–120). Metabolic syndrome is characterized by excess
visceral adiposity and a self-perpetuating cycle in which dys-
functional adipocytes both promote and are stimulated by
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inflammatory cytokines and oxidative stress (Figure 2). The
directionality of the causal pathway that links obesity with
inflammation and oxidative stress is not fully understood
and may be bidirectional. It is possible that when the meta-
bolic profile is susceptible early postpartum, exposure to el-
evated inflammatory cytokines and/or oxidative stress may
mimic the signaling pathways and local environments that
characterize the dysfunctional adipocytes of metabolic syn-
drome and program naïve infant adipocytes to develop as
such. Such “stimuli” may be more present in formula, or
HM may contain protective factors, likely a combination
of both. Similarly, HM of obese or diabetic mothers may
contain more inflammatory and oxidative factors and/or
less protective factors. A schematic of these proposed mech-
anisms by which maternal phenotype may affect HM and
infant obesity risk is presented in Figure 2.

Inflammatory cytokines such as TNF-a and IL-6 play a piv-
otal role in the signaling that perpetuates the relationship be-
tween visceral obesity and increased inflammation (118,120).

Both these and other potent proinflammatory cytokines are
detected in HM at widely varied concentrations (121–
124). In terms of oxidative stress stimulus, HM also contains
a plethora of antioxidant factors that provide breast-fed in-
fants with greater protection against oxidative stress than
formula-fed infants (125–127). Antioxidant capacity in the
diet has been linked to decreased visceral adiposity in young
adults (128) and may be even more critical to infants because
healthy term infants normally experience a large degree of ox-
idative stress as they adjust to ambient oxygen postpartum
(129). In contrast to antioxidants, HM can also contain
markers of oxidative stress, including isoprostanes. The con-
centrations of these factors decrease during lactation (130).
However, the combination of increased exposure to oxidative
stress in HM combined with increased endogenous produc-
tion of oxidative byproducts that both occur early postpartum
suggests that this is a particularly vulnerable time when subtle
variation within the normal “oxidative load” delivered to the
infant may exert powerful programming effects on developing

Figure 2 Potential biological mechanisms whereby maternal phenotype/behavior may indirectly affect infant metabolic phenotype
via alterations in human milk (HM). Shown is a conceptual diagram of potential biological mechanisms by which maternal phenotype
may affect infant metabolic phenotype via alterations in HM, affecting weight gain and obesity risk. All infant outcomes listed in the
right-hand column may individually or in combination predispose the infant to obesity and metabolic dysfunction later in childhood
and adulthood. Solid black lines represent relationships that have been suggested by published data (from animal models and human
studies). Dashed gray lines represent hypothesized relationships postulated here. 1Incorporating total fat intake, saturated fat intake,
and fatty acid composition of diet, including the n-6:n-3 ratio of dietary fatty acids. 2Inflammatory load incorporates the cumulative
effect of both pro- and anti-inflammatory cytokines and other factors of HM. 3Oxidative load incorporates the cumulative effect of both
oxidants and the antioxidant capacity of HM. *The cycle of metabolic syndrome in which increased inflammation, and oxidative stress
mutually stimulate and respond to malprogrammed adipocytes.
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adipose tissue. It is possible that maternal obesity and/or dia-
betes may alter the cytokine profile, antioxidant capacity, or
amount of oxidative stress in HM, resulting in a higher in-
flammatory or oxidative “load” than in HM of healthy lean
mothers. Although these potential mechanisms are currently
speculative, they are based on a contemporary understanding
of the complexity of obesity and may expand our understand-
ing of the earliest etiologies of the disorder. The regulatory
factors that influence the inflammatory and oxidative load
of HM are important areas for future research.

Additional environmental factors that play
a role
This review focuses on the biological mechanisms that may
link infant nutrition with excessive infant weight gain and
predispose to later obesity. Several other environmental
and behavioral factors also contribute to the milieu of com-
ponents that program for metabolic dysfunction and are
briefly mentioned in the following.

The method of infant feeding (i.e., suckled directly at the
breast or via a bottle) affects infant growth patterns. When
feeding at the breast, the pace and volume of intake are con-
trolled by the infant, whereas the caregiver maintains more
control when bottle feeding (131). Infants fed from a bottle
(vs. fed at the breast) consume more milk, protein, and en-
ergy (109,132,133), which could potentially result in greater
weight gain (66,109,134). Removing control from the infant
may “malprogram” the infant’s ability to interpret satiety
cues and self-regulate food intake accordingly (135–138).
These mechanisms are postulated to occur regardless of
what is in the bottle (HM vs. formula). Caregiver feeding
style may program infants’ ability to self-regulate in a similar
manner. Recent reviews suggest that responsive feeding (the
ability to identify and appropriately respond to infant hun-
ger cues) is associated with appropriate weight gain and is
protective against late obesity (139,140).

Introduction of complementary foods may also contrib-
ute to infant weight gain, although these data are more com-
plicated. Several studies have found that, in formula-fed
infants only, early introduction of solid foods (before
4 mo) was associated with excessive infant weight gain and
increased risk of obesity at 3 y (37,141,142). Other studies
failed to detect any relationship between timing of introduc-
tion of solid foods and measures of adiposity during infancy
and at 5 y (24,143). Complementary foods are necessary to
meet nutritional needs of the w6 mo old breast-fed infant.
Recent publications have advocated a shift in research focus
from the timing to the composition and quality of comple-
mentary foods necessary to meet older infant needs and pre-
vent excess gain (144,145). Beyond feeding, infant sleep
patterns also affect early weight gain (7), and <12 h of sleep
per day during infancy may increase the risk of overweight
later in childhood (146).

Conclusions and research needs
Excessive weight gain, reflected in increasing WLZ, during
the first 6 mo of life is predictive of later obesity. A combination

of factors including postnatal effects of the intrauterine en-
vironment, the putative malleable metabolic environment in
early infancy, and the permeability of the infant gut makes
this time a vulnerable period. Exclusive breastfeeding is at
least modestly protective against excessive early infant gain
and later obesity, an effect that may result from differences
in composition of weight gain between HM- and formula-
fed infants. However, research addressing the impact of infant
feeding on infant weight gain is complicated by an inability to
completely control for confounding factors, heterogeneous
definitions of feeding exposure, and large variation between
formulas and HM from different women, all of which likely
affect the rate and quality of infant weight gain.

In light of the staggering prevalence of young childhood
obesity, the underlying mechanisms linking early weight
gain and later obesity urgently need clarification. We specu-
late here that, in addition to previously proposed mecha-
nisms, exposure to oxidative stress and inflammation may
program the infant metabolic profile to be susceptible to ex-
cess gain and later obesity. These potential mechanisms (Fig.
2) are by no means a comprehensive summary of all the
pathways involved, but provide a framework that incorpo-
rates contemporary understanding of the complex patho-
physiology of obesity, with which novel hypotheses can
be generated. Beyond more descriptive research, both basic
mechanistic models and prospective, innovative intervention
trials will be needed to characterize adiposity distribution
(subcutaneous vs. visceral) that may predispose to obesity, de-
termine the extent to which adipose distribution is driven by
feeding mode or maternal phenotype, and to alter current
trends and improve the health outcomes of all infants. Al-
though it remains a fundamentally sound premise that
mother’s milk is the ideal infant feeding choice, the current
prevalence of maternal obesity and T2D is unprecedented.
The biochemical impact of maternal metabolic phenotype
on HM composition, infant metabolism and growth, and ul-
timately risk of later obesity represents an additional gap in
knowledge. Understanding this interplay may lead to treat-
ments or interventions for at-risk women and infants to
optimize maternal health and minimize infant risk of ex-
cess gain. Additionally, if there are critical windows during
lactation when HM is most affected, targeted breastfeeding
support can be provided to at-risk women to ensure that
breastfeeding is maintained beyond this time and the infant
receives the optimal benefits of HM.
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