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Abstract

Genome projects now produce draft assemblies within weeks thanks to advanced high-throughput
sequencing technologies. For milestone projects like £. colior H. sapiens, teams of scientists were
employed to manually curate and finish these genomes to a high standard. Nowadays, this is not
feasible for most projects and the quality of genomes is generally of a much lower standard. This
protocol describes software (PAGIT, post-assembly genome-improvement toolkit) to improve the
quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base
errors in the consensus sequence, and to exploit reference genomes (if available) for improving
scaffolding and generating annotations. The protocol is most accessible for bacterial and small
Eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms.
Applying PAGIT to an E. coliassembly takes approximately 24 hours: it doubles the average
contig size and annotates over 4300 gene models.
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Introduction

The ultimate goal of many genome projects is to generate a gap-free and fully annotated
genome. Next Generation Sequencing (NGS) technology has greatly increased the through-
put of DNA sequencing and as a result the number of draft genomes deposited in public
databases has increased dramatically. However, although the quantity has increased, the
quality of available genomes has suffered. This is because it is essential to engage in a very
time-consuming process of manual editing and gap closure before a genome can be
considered to be a finished or gold-standard product . For the human genome project the
aspiration was to have a 1 bp error per 10 kb of finished sequence 2. In addition to
generating accurate genome sequences, genome annotation is an important and time-
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consuming aspect of de novo genome sequencing projects. These projects aim to generate
high quality annotated genomes that may be subsequently used as reference genomes — thus
facilitating the re-sequencing and annotation of many related species through comparative
methods 3 4. For the vast majority of NGS genome projects the resources are simply not
available to generate high-quality annotated sequences, and consequently many genomes
may remain as poor quality drafts.

In genome projects, the sequencing reads generated by the NGS technologies are usually
assembled using specialist software into large numbers of contigs (please see the glossary of
terms in Box 1). Genome assembly is a very difficult computational problem and new
approaches to assembly continue to be evaluated and developed® 6. Gaps, or discontinuities,
in the sequence invariably remain and are due to issues such as uneven sequence coverage,
long repeats, segmental duplications, or technology biases. The resulting draft assemblies
are thus frequently highly fragmented, incomplete and completely unannotated; regions of
sequence within the draft will suffer from misassemblies, contamination, and low quality;
and the error rate will be much higher than 1 bp per 10kb of assembled sequence.
Furthermore, the types of error can be influenced by the characteristics of different
sequencing technologies - 8. While draft genomes do contain useful information, they have
significant limitations that may render complete and rigorous scientific analyses difficult or
impossiblel: 9,

In this protocol we address these problems of genome quality through a pipeline of
computational methods. Our protocol, called PAGIT (Post-Assembly Genome-Improvement
Toolkit), is concerned with refining, improving and quality-checking the genome assemblies
created using assembly software. When sufficient sequencing reads are available, PAGIT
aims to raise the standard of the genome assembly from that of a “standard draft” to one
with features of a “high-quality” or “improved high-quality draft”, as defined by Chain et
al. Such assemblies may still contain misassembles, especially around repetitive areas, but
many gaps will have been closed and the quality of the assembly is good enough for gene
discovery and comparative genetics.

PAGIT can be used for de novo assemblies or for reference-guided assemblies. It consists of
four open source computer programmes that may be used either individually or together as a
pipeline. PAGIT can be set-up to run in a fully automatic manner. However, genome
assembly is a complicated procedure and it is highly advisable to manually check the output
at each stage of the pipeline and adjust program parameters if necessary. PAGIT is therefore
a semi-automatic computational method that aims to produce improved high quality draft
genomes with the minimum of manual intervention.

Figure 1 shows how the four tools can be used to improve a genome assembly. The tools
provide complimentary functionality and are used once a first draft assembly has been
obtained (we do not go into the detail of genome assembly here as it has been recently
covered elsewherel0-12), Here we briefly introduce the tools before explaining them in
greater detail in subsequent sections:

1. ABACAS (Algorithm-Based Automatic Contiguation of Assembled Sequences) — a
contig ordering and orientation tool that is guided by alignments against a
reference 13 (which should have an amino acid identity of at least 40%). ABACAS
outputs readily visualised files and if required, PCR-primer sequences to close
gaps.

2. IMAGE (lterative Mapping and Assembly for Gap Elimination) uses paired-end
sequence information to extend contig ends into gaps 14.
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3. ICORN: Iterative Correction of Reference Nucleotides. It enables errors in
consensus sequences, including small insertions and deletions as well as single
base-pair errors, to be corrected by iteratively mapping reads to the sequence 15,

4. RATT: Rapid Annotation Transfer Tool. This is a synteny based algorithm that
transfers annotation in minutes from a reference genome (or genomes) onto the
draft genome assembly 16,

For a de novo assembly, IMAGE and ICORN both offer useful functionality, and in some
circumstances RATT may also be used — for example when a de rnovo assembly is updated
and the annotations are transferred from an earlier version of the genome to the new version.
For a reference-guided assembly all four tools may be suitable.

PAGIT is available from http://www.sanger.ac.uk/resources/software/pagit/. This website
also provides links to additional information including documentation and source code for
each of the tools.

Where has the protocol been used?

The components of PAGIT were developed at the Wellcome Trust Sanger Institute and have
been applied to studies involving various parasites and pathogens. In one recent example,
the protocol was used to aid the investigation of genome evolution in 240 isolates of
multidrug resistant Streptococcus pneumonial’, where quick sequencing and assembly of
hundreds of bacterial genomes was necessary. In order to accurately detect single-nucleotide
polymorphisms (SNPs), and to distinguish them from polymorphisms arising through
horizontal sequence transfer, the genomes needed to be highly accurate. PAGIT was used as
a pipeline to generate the high quality genomes that were compared to investigate genomic
plasticity and the evolution of drug resistance over short times-scales. In another study 18, a
high quality reference genome sequence for a strain of the human parasite Le/shmania
donovani was created using the full protocol with a combination of 454 and Illumina
sequencing technologies. This sequence was then used as a reference to study variation in a
set of 16 clinical lines that differed in their response to /n vitro drug susceptibility. A related
paper 19 used ABACAS and ICORN to generate a reference genome for Leishmania
mexicana and refine reference genomes for three other Lesshmania species.

The protocol may be applied in a flexible manner. During de novo assembly, where no
reference sequences are available, a subset of tools from the protocol may be used. For
instance, IMAGE can be useful as a method of performing hybrid assemblies based on long
and short read types — by using a paired-end Illumina read library to fill the gaps in a
capillary read or 454 assembly. A substantial update of the 360 Mb genome of Schistosoma
mansoni used IMAGE with lllumina reads to fill gaps in an assembly based on capillary
reads. As part of the finishing process approximately 2000 of the gaps closed by IMAGE
were visually inspected and 90% of these gaps were verified manually. RATT was
subsequently used to transfer the existing annotation to this new reference sequence?0.
When generating the 74.5 Mb genome of the parasitic nematode Bursaphelenchus
xylophilus 2 using a hybrid assembly approach based on the 454 and Illumina sequencing
technologies IMAGE and ICORN were used to close gaps and make corrections to the
assembly. A similar approach (IMAGE and ICORN) was used for the 110 Mb genome of
Hymenolepis microstoma, the mouse bile-duct tapeworm 22 and for the bacteria
Staphylococcus lugadunensis 23. In the case of S. Jugdunensis, llumina sequences were first
assembled using Velvet 0.7.62 and these contigs were then combined with 454 reads in an
assembly produced using Newbler 2.1. The resulting assembly consisted of 69 contigs in 9
scaffolds. IMAGE was then used to close further gaps, before ICORN was applied. In the
final assembly all gaps were closed.
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Individual components of PAGIT can be applied in isolation. For instance, ABACAS is also
a tool for primer design when finishing genomes using PCR-based approaches 24 25 and for
comparing contigs to a reference genome 26, IMAGE has been used independently to close
gaps in large hybrid de novo assemblies. For instance, an initial assembly of the tsetse fly
Glossina moristans genome, produced using Sanger and 454 reads, was improved using
IMAGE and several paired-end Illumina libraries. The number of contigs was reduced from
45,000 to 24,000, and average contig length more than doubled (the 360 Mb assembly is
available at http://www.genedb.org).

Methods and algorithms

In the following paragraphs we describe each software package in turn, as presented in
Figure 1.

ABACAS: Algorithm Based Automatic Contiguation of Assembled Sequences

ABACAS 13 is designed to help with sequencing closely-related strains, where a high
quality reference sequence is available. By aligning contigs against a reference sequence,
using NUCmer or PROmer from the MUMmer package 27, ABACAS orders and orientates
contigs and estimates the sizes of gaps between them. ABACAS outputs files to allow the
contig ordering to be visualised (for example, using ACT, the Artemis Comparison

Tool 20 28) and within ABACAS, primer sequences for PCR-based gap closure can be
designed using Primer3 29. ABACAS can show ambiguous contigs, overlapping contigs and
can be used with a genome browser to identify and visualize repetitive regions.

A number of tools have been developed for similar purposes such as CONTIGuator 30,
which helps to find divergent regions in the reference and the new genome; Projector2 31
which is a web service application for closing gaps in prokaryotic genome assemblies and
OSLay 32, which requires a mapping file to find synteny for a set of contigs. The program
r2cat (related reference contig arrangement tool 33) is able quickly to match a set of contigs
onto a related genome, order them and display the result. It appears to implement a matching
algorithm that for microbial sized genomes can be faster than NUCmer (which is used in
ABACAS) but unlike NUCmer, no results are presented for larger genomes.

IMAGE: Iterative Mapping and Assembly for Gap Elimination

IMAGE 14 is an approach that uses lllumina paired-end reads to extend contigs and close
gaps within the scaffolds of a genome assembly. It functions in an iterative manner: at each
step it identifies pairs of short reads such that one of the pair maps to a contig end while the
other hangs into a gap. It then performs local assemblies using these mapped reads, thus
extending the contig ends and creating small contig islands in the gaps. The process is
repeated until contiguous sequence closes the gaps, or until there are no more mapping read
pairs (see the Anticipated Results and Figures 4 and 5 that show the impact IMAGE can
have on the number of gaps and the size of contigs in an £. coli assembly). IMAGE is able
to close gaps utilizing exactly the same data set that was used in the original assembly. This
is because some read pairs that are too repetitive to incorporate into a genome-wide
assembly can often be unambiguously aligned to a specific locus, such as a contig end. Once
read pairs have been sorted in this manner they can be successfully incorporated into local
assemblies.

A gap closing algorithm similar to IMAGE was incorporated into the SOAPdenovo short
read assembly program when it was used with the panda genome. This algorithm was able to
close most of the gaps within scaffolds of the panda genome, leaving just 2.4% of the total
scaffold sequence unclosed: those gaps that were unclosed either contained transposable
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elements (90%) or long tandem repeats 34. Other methods of gap closing involve comparing
a collection of assemblies, perhaps generated with different assembly software or different
sequencing technologies, in order to identify ways of extending contigs, merging or
reconciling contigs, and using contigs from one assembly to bridge gaps in another. Such
metho%s include the Graph Accordance Assembly (GAA) program 35, Reconciliator 36 and
CloG °'.

Once IMAGE has closed gaps in an assembly, it can be worth attempting to calculate new
scaffolding information for the new contigs as this may then define a new set of gaps for
IMAGE to close. There are a number of suitable scaffolding tools available. One of the first
scaffolding tools was BAMBUS 38, which can be applied to mammalian sized genomes.
More recently, scaffolding tools have been developed that specifically utilise deep coverage
of paired reads from second generation sequencing technologies. These include SOPRA 39,
which is designed to handle SOLID datasets for microbial genomes; SSPACE 4% which
scales to mammalian sized genomes; and Opera that uses a graphical method to produce an
exact solution to the scaffolding problem 41,

As well as improving whole genome assemblies, IMAGE can be used to assemble single
genes of interest or to extend a known PCR-product. This is performed by generating an
initial “seed” sequence of at least 300 bp. IMAGE is then used to extend the ends of the seed
sequence. If the seed is initially placed like a small contig island within a scaffold gap, it
may eventually merge into a larger fragment of sequence. The seed could be also a contig or
supercontig of interest, as long it is longer than 300bp.

ICORN: Iterative Correction of Reference Nucleotides

ICORN 15 is designed to identify and correct small errors in consensus sequences, including
errors from low-quality bases or homopolymer errors from pyrosequencing 42. ICORN
cannot correct large indels or other misassemblies in consensus sequences. Every genome
assembly algorithm has a unique error profile for indel errors. In general, indel errors are
minimized at the expense of contig size, with aggressive assemblers generating long contigs
that tend to have the most indel errors 3. ICORN works by iteratively mapping short reads
against a consensus sequence to identify potential single-base discrepancies or short
insertions and deletions (up to 3 bp). Before a correction is accepted, ICORN checks that it
will increase the sequence accuracy by measuring the read coverage of perfectly mapping
reads at that position. If the coverage is not decreased when the correction is incorporated
then it is likely that the new sequence is correct. Either a user specifies a number of
iterations or ICORN continues until no new corrections can be made. ICORN uses SSAHA
to perform the mappings #3; the SSAHA pileup pipeline to call single nucleotide
polymorphisms (SNPs) and small indels; and SNP-o-matic to evaluate potential corrections
with perfect-mapping reads 44.

There are few alternatives to ICORN. Such methods include algorithms to improve base
calling 4° or to detect frameshifts by protein homology or by sequence analysis. Iterative
mapping approaches have been used before to derive a consensus genome sequence from
metagenomic sequencing data 46 but since this derives from aggregated sequences from an
unknown number of starting genotypes, the resulting consensus represents no single genome
and hides much of the diversity present in the original sequence pool.

There are additional ways in which ICORN can be used. For example, it is possible to use
ICORN to transform or morph a reference sequence into the sequence of an aligned
comparator (e.g. reads from another strain or isolate) by “correcting” the bases over many
iterations. Once ICORN has completed many iterations, all the regions of the new consensus
that have average read coverage of perfect-mapping reads will represent the comparator
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sequence. On the other hand, those bases that are not well covered will be from the original
reference sequence and should therefore be masked out. A disadvantage of this approach is
that ICORN will only correct the sequence for insertions and deletions of up to 3 bp.
Performing a de novo assembly is therefore necessary to find longer indels.

Another application of ICORN is to find and confirm high quality sequence variation.
ICORN improves on the functionality available in the SSAHA pileup pipeline. In ICORN
each variant is confirmed by perfectly mapped reads and checked and re-checked over a
number of iterations. Once the sequence is corrected, new variants are often revealed that
were initially obscured by the errors present in the initial sequence, while the evidence
supporting other variants may have disappeared.

RATT: Rapid Annotation Transfer Tool

RATT 16 was designed to help annotate in three situations. It transfers annotation between
successive versions of a genome assembly, the genomes of closely related species, or the
genomes of closely related strains. Transfers are made from a high-quality reference to a
new sequence by inferring “orthology” (or equivalency, in the case of successive assembly
versions) and hence gene function, guided by shared synteny between the genomes. The
sequences of specific genes may differ between the genomes and RATT therefore makes
allowance for features such as changes to start/stop codons, the length of genes, splice sites
or the presence of internal stop codons.

NUCmer from the MUMmer package 2 is used to define the sequence regions that share
synteny (at least 40% sequence identity). These regions are filtered according to whether the
annotation is being transferred between species, strains or genome versions. Although this
function defines the synteny between blocks, it is not enough to generatea 1 to 1
relationship between bases in the reference and query sequences. However, the “show-snp”
functionality from the MUMmer package is designed for identifying polymorphisms,
including insertions and deletions, and it is subsequently used to refine the base-to-base
relationships between the reference and query sequences.

Ambiguity may be a problem when identifying indels in repetitive regions. To overcome
this RATT recalibrates the adjusted coordinates using single nucleotide polymorphisms
(SNPs, also identified using “show-snp” from MUMmer) as unambiguous anchor points
within synteny blocks. However, SNPs may be too rare for this if the sequences are very
similar, in which case RATT temporarily modifies the query by inserting a 7faux SNP every
300 bp to aid in the recalibrating step: this change is reversed later so that it does not affect
the final result.

Having defined the synteny blocks, the mapping stage takes place by associating each
reference feature (from an EMBL file) with coordinates in the new genome. Potential
mappings are ignored if a feature either (1) bridges a synteny break and if its coordinate
boundaries match different chromosomes or different DNA strands or (2) if the newly
mapped distance of its coordinates has increased by more than 20 kb. However, if a short
sequence from the beginning, middle or the end of a feature can be placed within a synteny
region, mapping is attempted.

Useful output from RATT includes information on gene models that do not map cleanly;
statistics about transferred features; the amount of synteny between the reference and query;
and files that allow features of the genomes to be viewed in Artemis, such as SNPs, indels
and regions that lack synteny between the compared sequences.
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While a number of other general automated annotation tools or pipelines do exist, such as
Ensembl 47, GARSA 48 or SABIA 49, they can be relatively complex and designed for large
genome sequencing centres which have an extensive network of existing software packages,
servers and bioinformatics experts. Also, for microbial systems there are additional
specialised software resources such as the integrated microbial genomes system %0, RATT is
much simpler and more general than these approaches and is therefore more suited to the
environment of a small laboratory.

Limitations and important requirements

In the flowchart shown in Figure 2 we give an overview of how subsections of the PAGIT
protocol may be applied to different problems, and list the corresponding steps from the
Procedure section of this article. Table 1 summarises the requirements that dictate whether a
component of the protocol can be applied. If the requirement is not met, the respective
component can be omitted from the protocol.

In order for ABACAS to generate good results, the reference genome must consist of longer
and more contiguous sequences than the assembly of the query genome. This will allow
multiple query sequences to align to a single reference sequence: the most ideal situation is a
single reference sequence or chromosome onto which many fragments from a query genome
can be mapped, thus allowing the relative order of the fragments, and the gaps between
them, to be defined. Preferably the reference sequences should contain fewer errors, and
there should be an amino acid identity of at least 40% between the reference and query
sequences.

Care should be taken to ensure that synteny is conserved between the two genomes: they
should be similar enough that intra-chromosomal rearrangements are relatively minor,
otherwise mapping sequences to the reference may place those sequences in an incorrect
order. This needs to be considered on a case by case basis. Some bacteria, for example
Wolbachia, are well known as having mosaic genomes where significant genomic
rearrangements occur between species: such genomes are not suitable for use with
ABACAS. Very short sequences (less than about 200bp) are difficult to place because
insufficient detectable synteny will prevent ambiguous mappings from being resolved.
Rearrangements between the reference and the query will be seen as long gaps, or large
regions without synteny.

If the query and the reference are very similar, then after running ABACAS, all sequences
should be ordered against the reference genome. Furthermore, a minimal number of larger
gaps is indicative of a good quality sequence ordering. The chances of a deletion falling into
a gap, or the assembler not joining the adjacent sequences, is dependent on the quality of the
assembly: the fewer the gaps in the initial assembly, the lower the chance that ABACAS
will introduce errors. ABACAS produces a statistics file that outputs numbers of gaps,
synteny information and ordered sequences. After running ABACAS it is advisable to check
for large gaps between mapped sequences, or a large quantity of unmapped sequences, as
these are indicative of a low quality mapping.

Although the current implementation of ABACAS is designed to run on reference genomes
with a single chromosome, it is can also be used with genomes that have more than one
plasmid or chromosome (see Procedure). ABACAS uses a sensitive version of NUCmer/
PROmer that could take a long time to complete for mid-size genomes with large numbers
of contigs. It is therefore important to use the parameter ‘-d’ to avoid searching for repetitive
regions, which will improve run-time without severely affecting sensitivity. If running on
large genomes, it is important to use the 64 bit version of PAGIT. The primer design
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functionality of ABACAS generates high quality primers based on the uniqueness and
composition of the sequence and may not always report primer sets for some regions.

The requirements for IMAGE are concerned with the availability of paired Illumina
sequences with at least 20x depth of coverage. IMAGE closes the gaps between contigs in
scaffolds and so scaffolds are an essential requirement. Scaffolds are a standard output from
most genome assemblers, including Velvet, Newbler and Celera, and they may be created
using standalone software such as SSPACE 40, Note that if the reference genome of a
closely related species exists, then ABACAS can be used to generate further scaffolding
information for IMAGE (by mapping the initial assembly scaffolds to the reference
genome). However, it is important to check that the scaffolding information is correct or else
IMAGE may close false gaps or no gaps in the assembly. Depending on the repetitive nature
of the genome, assembly quality and the coverage depth of the paired-end reads used by
IMAGE, up to 50% of gaps can be closed. When using Illumina data, IMAGE can only run
with paired-reads with inserts of a few hundred base pairs.

ICORN will perform best if the coverage of the genome is between 20-60x and distributed
evenly over the complete genome. In this case most of the bases will be successfully
corrected, although repetitive regions where reads cannot be mapped unambiguously will
not. General systematic errors in short reads are not possible to correct. For example, long
homopolymer tracks with more than 10 bases are often sequenced erroneously by Illumina
technology 1°.

If a genome is larger than 6 Mb or if coverage exceeds 200x%, then ICORN might perform
slowly and need a relatively high amount of memory (up to 15 GB). For a bacterial genome
of around 4 Mb in size, with 100x of coverage, each iteration should take less than an hour.
Up to 5 iterations are typically performed with about 80% of the errors corrected in the first
iteration.

RATT requires an annotated reference genome for its input. The proportion of synteny
between the reference genome and the new genome corresponds to the proportion of genes
that can be transferred. The sequence identity to transfer the annotation should be over 40%
for at least 50 bases upstream and downstream from the annotated feature. Gaps in either the
reference genome or the new genome will adversely affect performance. For regions in
which no synteny exists no transfer can be carried out and the user will then need to do ab
initio gene finding and functional annotation3, perhaps using gene prediction software such
as Augustus 1. Such unannotated regions are flagged and written to a file that can be loaded
onto the new reference. For bacterial sized genomes RATT uses around 1 Gb of RAM and
runs in around 5-10 minutes, while for malaria-sized genomes (about 23 MDb) it requires up
to 6Gb of RAM and 10-30 minutes.

Scalability issues

PAGIT was mainly designed for working on parasite genomes of up to about 300 Mb. In
this protocol we have emphasised its applicability to smaller genomes, which can be worked
on relatively quickly and simply without the need for parallelisation or specialised
computing infrastructure. However, it is worth noting that the tools may be used on
significantly larger genomes if such infrastructure is available.

ABACAS and RATT both rely on MUMmer tools to perform their alignments, and when
run in the default 32-bit mode this limits the size of the genomes being aligned to about
200-300 Mb. However, when MUMmer is compiled in a 64-bit mode this limitation no
longer applies — as long as enough RAM is available to handle the larger genome
alignments. To reduce the runtime it is also advisable to use larger seeds in the alignments,
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which are controlled via the ABACAS “-s” parameter. For example, using ABACAS to
order contigs from an assembly of mouse chromosome 1 against the complete mouse
genome required almost 100 Gb of RAM and took about 4 hours. To transfer with RATT a
subset of the annotation of the Human genome to the Chimp genome required 60 Gb of
RAM and took about 70 minutes. These tests were performed using an Intel Xeon 2.40 GHz
E7440 processor.

IMAGE and ICORN do not scale so easily in the serial implementations, as we have
discussed in this paper. The IMAGE and ICORN serial implementations are currently
unsuitable for genomes larger than about 25 Mb. Much of their limitation comes from the
large numbers of reads that need to be mapped. For small genomes, reads can usually be
mapped in hours using a single processor, but for larger genomes this can take weeks, and
then it is highly desirable to speed up this process by using a high-throughput computing
resource. IMAGE is also limited by the numbers of gaps that must be closed: many gaps
means that many local assemblies must be performed to close those gaps. Versions of
IMAGE and ICORN that are able to parallelise tasks via the Platform LSF cluster
management system are available from the SourceForge websites of these tools (which are
linked to from the PAGIT website). For the parallel versions, IMAGE can scale up to
genomes Gigabytes in size (it has been used on mouse) and ICORN can be applied to
genomes of up to approximately 300 Mb.

Expected improvements

Materials

EQUIPMENT

Sequencing technologies are rapidly evolving and the tools comprising the PAGIT protocol
are continuously under development in order to adapt to those changes. In future ABACAS
should be able to join two neighbouring contigs, if they overlap with at least 50 bases and no
mismatches. IMAGE will support newer sequencing technologies such as the PacBio RS
from Pacific Biosciences or lon Torrent, while improvements to ICORN will allow different
tools to be used to map reads and call variants (with significantly lower memory
requirements than the currently used SSAHA pileup pipeline). Finally, future developments
for RATT are concerned with accurately transferring greater numbers of genes between
species that are more distant.

Hardware and software—The protocol is designed for a Linux environment. Depending
on the size of the target genomes different requirements may arise, as discussed in the
preceding sections. For genomes of up to 200 Mb, a machine with about 16 Gb of RAM and
about 50 Gb of free disk space could be sufficient. The whole pipeline should complete in
about one day for microbial genomes, or several days for larger genomes (a computer cluster
may be required).

There are two ways to run PAGIT: as Linux binaries (recommended) or as a preinstalled
Linux version running under a virtual machine. The virtual machine can run under MAC OS
or Windows and should be sufficient for genomes of up to 3 Mb. We have precompiled
Linux and virtual machine versions of PAGIT for 32bit and 64bit systems. The 64 bit virtual
machine should be able to access more RAM and may therefore be suitable for larger
genomes.

For the Linux version, a bash-shell must be running, and a tcsh-shell and Java version 1.6
(http://www.java.com/en/download/manual.jsp) must be pre-installed.
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For the virtual machine version, the virtual box software from VirtualBox must be
downloaded and installed. This process is well documented at https://www.virtualbox.org/
wiki/Downloads

PAGIT is available from http://www.sanger.ac.uk/resources/software/pagit/.

Obtaining and installing PAGIT Timing 15 to 45 minutes

(1) There are two recommended ways to install PAGIT, depending on the available
operating system. Follow option A for Linux or option B for Windows or MAC OS:

(i) Download the appropriate compressed tar archive for your Linux system. Click on either
the “Linux binary x32bit” or the “Linux binary x64bit” link from the “Download” tab of the
PAGIT website: http://www.sanger.ac.uk/resources/software/pagit/.

(if) Move the compressed tar archive to the location where you want PAGIT installed, then
decompress the tar ball by typing the following commands in a terminal window:

nmv PAG T.V1.64bit.tgz /path/to/nmy/installed/software

cd /path/to/ny/installed/ software

tar xzf PAG T.V1.64bit.tgz

(iii) Execute the install script by typing the following in a terminal window:
bash ./installme.sh

(iv) Switch to bash-shell

bash

(v) Source the environment settings to run PAGIT:

source PAG T/ sourcene. pagi t

Critical Step—The environment settings for PAGIT should be sourced each time PAGIT
is executed. Alternatively, the command “ sour ce PAG T/ sour cene. pagi t” may be
included into your local environmental variable file (for example the file “~/.bashrc™) so that
the PAGIT environment is automatically initialised.

(B) Windows or MAC OS

i. If not already performed, download the virtual box software from VirtualBox and
install it according the VirtualBox documentation: https://www.virtualbox.org/
wiki/Downloads

ii. Download the PAGIT virtual machine required for your Linux system. Click on
either the “Virtual Machine 32 bit” or the “Virtual Machine 64 bit” link from the
“Download” tab of the PAGIT website:http://www.sanger.ac.uk/resources/
software/pagit/.
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iii. Register the downloaded PAGIT virtual machine. Open virtual box and click on
new to create a new virtual machine. Click on “next” to move through the
registration screens.

iv. Name the virtual machine (e.g. PAGIT) and select the operating system and
version: “Linux” and then either “Ubuntu” or “Ubuntu64”.

v. Specify the amount of memory to be allocated. You shouldn’t give the virtual
machine more than 75% of the complete memory available, but it should have at
least 2GB.

vi. Specify the Virtual Hard Disk using the toggle on the “use existing hard disk”
option and click on the file icon to find and select the downloaded PAGIT virtual
machine. (“Start-Up Disk” should be enabled.)

vii. To start the virtual machine, select it and click on the green arrow.

(2) Running the PAGIT test example. Move to the PAGIT test example directory by typing
the following in a terminal window:

cd $PAG T_HOWE/ exanpl eTest set /
(3) Run the test by typing the following in a terminal window:
bash ./dotestrun. sh

(4) Initial setup of input files: make a working directory for PAGIT. Type the following
command in a terminal window:

nkdi r myWor ki ngDi r

(5) Either copy the initial assembly, or to make a symbolic link from it to the working
directory type the following commands in a terminal window:

cd myWor ki ngDi r

In —s /path/to/assenbly/scaffolds.fasta ./assenbly.fasta

Before proceeding with assembly improvements, it may be worth validating the quality of
the initial assembly. Methods of doing this are given in BOX 2.

(6) Either copy the read libraries, the reference genome sequence, and the reference genome
annotation, or to link them to the working directory type the following commands in a
terminal window:

In —s /path/to/reads/readLi braryPart_1.fastq .

In —s /path/to/reads/readLi braryPart_2.fastq .

I'n —s /path/to/referencel/ Ref sequence. fasta .

In —s /path/tolreference/ Ref annot ati ons. enbl

(7) (Optional) Find reference annotations online through searching the “Genome” database

at the NCBI (http://www.nchi.nIm.nih.gov) and then convert the NCBI annotations, which
are in Genbank format, to EMBL format. There are a number of ways to convert annotations
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(one easy way is to load the Genbank file into Artemis and save it as an EMBL entry, but
here we use a bioperl script available from the RATT website to perform the conversion.
There are two arguments to the script: the first is the Genbank annotations, the second the
output file with the annotations in the EMBL format:

genbank2enbl . pl Refannot ati ons. gbk Refannotati ons. enbl

Alternatively, annotations are stored at the EBI (http://www.ebi.ac.uk) in EMBL format with
the same accession numbers as used by the NCBI.

Running ABACASto order contigsor scaffolds on areference genome Timing 10-20
mins

(8) Setup a working directory for ABACAS, and link in the files containing the genome
assembly and the reference genome by typing the following commands in a terminal
window:

cd / path/to/ myWr ki ngDir
nkdi r r unABACAS

cd runABACAS

In —s ../assenbly.fasta .

In —s ../ Refsequence.fasta .

ABACAS can also be used for primer design as described in Box 3.

(9) (Optional) If there are multiple chromosomes, plasmids, or other sequences in the
reference file, then, before ABACAS is executed, these must be joined in such a manner that
they appear to be a single reference sequence. After the alignment, the mapped contigs can
be subdivided according to the reference sequences they were mapped against (Step 11).
Type the following command in a terminal window to join the reference sequences into the
file “Refsequence.union.fasta”. This file should now be used in place of the file
“Refsequence.fasta” in subsequent steps:

perl $PAG T_HOVE/ ABACAS/ j oi nMul ti fasta. pl Refsequence.fasta
Ref sequence. uni on. fasta

(10) Check ABACAS usage information and view basic help, then run ABACAS with the
required parameters. The main parameters are: the “—r” flag that is used to specify the file
containing the reference genome; the “—q” flag that specifies the file containing the
assembled sequences that are to be ordered; the “—p” flag that specifies which alignment
program to use: either NUCmer for alignment in nucleic acid space or PROmer for
alignment in amino-acid space; and the “—0” flag that specifies the prefix for the output file
names. The default options generate ordered contigs in a single FASTA file. However, using
flags “—m” and “~b”, multiple-FASTA format files of the ordered contigs and the unused
contigs (from the bin) can be produced. Call ABACAS by typing the following commands
in a terminal window:
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perl $PAG T_HOVE/ ABACAS/ abacas. pl -h
perl $PAG T_HOVE/ ABACAS/ abacas. pl -r Refsequence.fasta -q

assenbly.fasta -p nucnmer -m-b —o nyPrefix

If you have a circular genome you can use the “-c” flag.

I CAUTION—Errors may occur if two or more instance of ABACAS are running in the
same directory. This is because the alignment software NUCmer or PROmer always outputs
a temporary file with the same name, and so multiple instances of ABACAS will attempt to
read and write from the same file. Only run a single ABACAS instance in a directory at a
time.

? TROUBLESHOOTING

(11) (Optional) If you ran the “joinMultifasta.pl” script (Step 9) before running ABACAS,
then you will need to use the “splitABACASunion.pl” script to decompose the results into
contig mappings against the individual reference sequences. The results will be
“myPrefix.ReferenceName.fasta” and “myPrefix.ReferenceName.tab”, where
“ReferenceName” stands for the replicon names from the reference. Type the following
command in a terminal window, where the three files beginning with “myPrefix” will be the
output from the ABACAS run:

perl $PAG T_HOVE/ ABACAS/ spl i t ABACASuni on. pl Refsequence. fasta
Ref sequence. uni on. fasta nyPrefix.fasta nyPrefix.crunch nmyPrefix.tab

(12) Check ABACAS output (see Box 4). To gain a general overview of the results, first
look at the file “myPrefix.gaps.stats”. This file provides a quick summary of the gaps
present in the ordered pseudomolecule. Type the following command in a terminal window:

nore mnyPrefix.gaps.stats

I CAUTION—ABACAS is not designed to order genomes where rearrangement is
expected, as it might result in the wrong order of contigs. Large gaps listed in the file
“myPrefix.gaps.stats” can indicate possible rearrangements between the genomes.

(13) (Optional) To visualise the mapped alignments using the ACT genome browser type the
following command in a terminal window:

act Refsequence.fasta nyPrefix.fasta.crunch nmyPrefix.fasta

(14) (Optional) To view other ABACAS output files in ACT such as feature files describing
ordered contigs and gaps (“myPrefix.tab” and “myPrefix.gaps.tab”), then in ACT go to File
> Read an entry, and select “myPrefix.gaps.tab”.

(15) (Optional) Unmapped contigs will be placed in the ABACAS bin: it is recommended to
BLAST the contigs in the bin against the reference by using ABACAS with the “~b —t”
options. If the binned contigs have acceptable matches with the reference according to the
BLAST results, then the ordering parameters used by ABACAS may have been too strict. It
is therefore recommended to re-run ABACAS with slightly less stringent parameters, or to
improve the ordering by moving contigs around using a genome browser such as ACT. In
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ABACAS, the option “-a” will append the bin contigs at the end of the pseudomolecule and
these will then be visible in ACT for manual adjustment. This option is not recommended if
IMAGE will be run subsequently, as the contig borders will be lost.

I CAUTION—The contigs in the bin may contain important biological information, such as
strain-specific insertions, plasmids or highly diverged sequence, which might be worth
further investigation.

(16) (Optional) The crunch file generated through NUCmer or PROmer is not as accurate as
a BLAST comparison file; however it is possible to generate a BLAST comparison file. To
do this, first create a blast database from the reference genome; then BLAST the mapped
contigs against the created BLAST database; and finally start up ACT. Type the following
commands in a terminal window:

formatdb -p F -i Refsequence.fasta
blastall -p tblastx -e 1e-20 -m 8 -d Refsequence.fasta -i
myPrefix.fasta -o nmyPrefix. bl ast

act Refsequence.fasta nmyPrefix.blast nyPrefix.fasta

Critical step—To obtain a nucleotide comparison rather that a six frame comparison,
change “TBLASTX” to “BLASTN".

(17) In preparation for running IMAGE, concatenate together the mapped sequences and the
unmapped sequences. Type the following command in a terminal window:

cat nyPrefix.fasta nmyPrefix.contigslnbin.fasta >

nmappedAndUnnapped. f ast a

I CAUTION—If this concatenation step is skipped (or if the “~b” option is not used with
ABACAS) then the unmapped sequences of the genome will be lost to subsequent steps of
the protocol. Note that the “-a” option should not have been used, because the unordered
contigs would be part of ordered the pseudo molecule.

Running IMAGE to close gapsin scaffolds Timing approximately 6 hours

(18) Setup a working directory for IMAGE, and link in the files containing the short read
pairs by typing the following commands in a terminal window:

cd / pat h/to/ myWrki ngDir

mkdi r runl MAGE

cd runl MAGE

In —s /path/to/pairedReadsPart_1.fastq .

In —s /path/to/pairedReadsPart_2.fastq .

I CAUTION—Before running IMAGE (or generally doing assemblies), sequencing reads
should be cleaned from possible sequencing vector, as they can generate assembly errors.
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Reads can be trimmed or removed from the read set e.g. using Cutadapt (http://
code.google.com/p/cutadapt/).

Critical step—IMAGE can also be used for extending seed sequences into longer contigs
as described in Box 5.

(19) To link in the latest assembly, either the output from ABACAS (from Step 17) or the
sequence output from a de novo assembly, type the following command into a terminal
window:

In —s /path/tol/assenbly inputScaffolds.fasta

(20) Check IMAGE usage information and view basic help, by typing the following
command in a terminal window:

per| $PAG T_HOVE/ | MAGE/ i mage. pl

I CAUTION—It can be a good idea to remove smaller contigs (less than 500bp) from the
assembly before running IMAGE. If a contig should have been placed in the gap of a
scaffold or a pseudo molecule, but wasn’t, then it is just possible to close this gap by
deleting the small contig.

(21) Run IMAGE with the required parameters by executing one of the following sets of
commands; option A represents the simplest usage, while option B optimizes the gap
closing. In the following, the “—scaffolds” option defines an input file in FASTA format of
sequences containing gaps to be closed; the “—prefix” option identifies the fastq files
containing the read pair sequences; the “— dir_prefix” option gives the directory name prefix
for the directories containing the output files for each iteration, the option “~iteration”
specifies the number of the first iteration, and the “— all_iteration” option defines the range
or total number of iterations. These numbers are combined with the directory prefix to create
the names of the output directories. Finally, the “~kmer” option specifies the k-mer used for
the local assemblies performed at the gaps:

(A) The simplest usage of IMAGE—(i) To use a single k-mer and run through a
number of iterations without restarting, type the following command in a terminal window:

perl $PAG T_HOVE/ | MAGE/ i mage. pl -scaffol ds inputScaffolds.fasta —

prefix pairedReadsPart -iteration 1 -all _iteration 9 -dir_prefix ite
—kmer 55

? TROUBLESHOOTING

(B) Optimizing the gap closing—(i) If the reads used to span the gaps are relatively
large (for example 108 bp) then the results from IMAGE can be improved by using a range
of different k-mers. To run IMAGE with a range of k-mers, type the following commands in
a terminal window:

perl $PAG T_HOMVE/ | MAGE/ i nage. pl -scaffol ds inputScaffolds.fasta —

prefix pairedReadsPart -iteration 1 -all_iteration3 -dir_prefix ite
—kmer 91

perl $PAG T_HOVE/ | MAGE/ restart| MAGE. pl ite3 71 3 partitioned
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perl $PAG T_HOVE/ | MAGE/ restart| MAGE. pl ite6 51 3 partitioned

perl $PAG T_HOVE/ | MAGE/ restart| MAGE. pl ite9 31 3 partitioned

Note that the initial iterations of IMAGE close the most gaps, especially the first and second
iterations. If time or computational resources are limited then just running 1 or maybe 2
iterations with a small k-mer can still significantly improve a genome assembly.

? TROUBLESHOOTING

(22) Check the output of IMAGE (see Box 6). In each iteration directory (these directories
are called after the value given to the “~dir_prefix” parameter) there is a file called
“walk2.summary” which contains some statistics describing what was achieved during that
gap closing iteration. A summary of the statistics in each of these files may be viewed by
using the “image_run_summary.pl” script, which has only one argument: the prefix of the
output directories. To run the script type the following commands in a terminal window:

per| $PAG T_HOVE/ | MAGE/ i mage_r un_sunmary. pl
perl $PAG T_HOVE/ | MAGE/ i mage_run_sumuary.pl ite

(23) (Optional) If the output of IMAGE shows that gaps are still being closed, or if contigs
are still being extended, then it may be worth running some more iterations. To restart
IMAGE from iteration 9, with a k-mer size of 31, for 3 more iterations, type the following
into a terminal window:

perl $PAG T_HOVE/ | MAGE/ restart| MAGE. pl ite9 31 3 partitioned
? TROUBLESHOOTING

(24) Once IMAGE has completed its run, the contigs that are found in the file “new.fa”
under each iteration directory may be output as scaffolds using the “contigs2scaffolds.pl”
script. See Box 6 for further detail about IMAGE output. The final iteration directory (i.e.
the directory with the highest number appended to its prefix name, e.g. “ite9”) gives the
most contiguous set of contigs. The arguments given to the “contigs2scaffolds.pl” script are
as follows: “new.fa” is the file containing the set of contigs for the final iteration; the file
“new.read.placed” gives the scaffolding information for the new contigs based on the initial
set of scaffolds; the number “300” gives the gap between contigs in the scaffold (denoted by
NNs in the output file), “0” gives the minimum size for contigs to be included in the
scaffolds output file; and “scaffolds” is the prefix of the output scaffolds file which will be
in FASTA format. Type the following commands in a terminal window to change to the
final iteration directory, to view the usage information for the script “contigs2scaffolds.pl”,
and to run the script:

cd ite9
perl $PAG T_HOVE/ | MAGE/ conti gs2scaf f ol ds. pl
per| $PAG T_HOVE/ | MAGE/ conti gs2scaffol ds. pl new fa new. read. pl aced

300 0 scaffolds
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I CAUTION—In some applications we have observed small contigs (<=500bp) generating
miss-assemblies by duplicating their sequence.

Running ICORN to correct small insertions and deletions as well as single base-pair errors
Timing 1 hour per iteration

(25) Setup a working directory for ICORN, and link in the files containing Illumina reads by
typing the following commands in a terminal window:

cd / path/to/ myWerkingDir

mkdi r runl CORN

cd runl CORN

In —s /path/to/pairedReadsPart_1.fastq .

In —s /path/to/pairedReadsPart_2.fastq .

Critical step—ICORN can also be used to find high quality variants as described in Box 7.

(26) Link in the assembly to be corrected. This could be the output from ABACAS (from
Step 17) or IMAGE (from Step 24), or the sequences output from a de novo assembly. Type
the following command into a terminal window:

In —s /path/to/assenbly uncorrected.fasta

(27) First check ICORN usage information and view basic help. The arguments to ICORN
are as follows: the first is the FASTA file of the sequence to be corrected; the second and
third specify the first and last iterations; then come the Illumina read file or files used to
make the corrections. For paired-end reads a number of libraries can be used. A file is
specified for each half of the pair, followed by an estimation of the range of the insert size
for the paired reads and the mean insert size range; if another paired-end Illumina library is
available, then this is specified in the same way. If a single-end library is available then the
insert size arguments are missed out. Type the following command in a terminal window:

icorn.start.sh

(28) Run ICORN with the required parameters. Choose one of the following options,
depending on the available Illumina libraries; use option A to call ICORN with one paired-
end library, option B if two paired-end libraries are available, or option C if only one single-
end Hlumina library is available:

(A) To call ICORN with one paired-end library (with an insert size of 250bp)—
(i) Type a command similar to the following in a terminal window:

icorn.start.sh uncorrected.fasta 1 6 pairedReadsPart_1.fastq
pai redReadsPart_2.fastqg 100, 500 250

? TROUBLESHOOTING

(B) To call ICORN if two paired-end libraries are available (with insert sizes of
250bp and 3000bp)—(i) Type commands similar to the following in a terminal window:
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icorn.start.sh uncorrected.fasta 1 6 ApairedReadsPart_1.fastq
Apai redReadsPart _2.fastqg 100,500 250 BpairedReadsPart_1.fastq
Bpai r edReadsPart _2. fastq 2000, 4000 3000

? TROUBLESHOOTING

(C) To call ICORN if only one single-end Illumina library is available—(i) Type a
command similar to the following in a terminal window:

icorn.start.sh uncorrected.fasta 1 6 unpairedReads.fastq

? TROUBLESHOOTING

If you have long insert size libraries it might be necessary to reverse complement the reads
before performing the mapping.

(29) At the end of an ICORN run, three small files may be consulted to view how ICORN
has performed: the “ICORN.overview.txt" file has a general overview; the
“Stats.Mapping.csv” file shows the improvements in the number of reads that map to the
sequence after each iteration; and the “stats.Correction.csv” file that gives the numbers of
corrections made for each iteration. For further detail please see Box 8. To view the contents
of these files, type the following commands in a terminal window:

nmore | CORN. overvi ew. t xt
nore Stats. Mappi ng. csv

nore Stats. Correction.csv

Further ways of evaluating the consensus sequence are given in BOX 2.

I CAUTION—ICORN cannot correct regions where no reads map uniquely. Double-check
the “Stats.Mapping.csv” to see the percentage of the genome is covered to at least 20x.

I CAUTION—If you work with haploid genomes, then SNPs called as heterozygous by
ICORN might be mis-assemblies consisting mostly of larger insertions and deletions or
collapsed repeats.

(30) (Optional) In the file “ICORN.overview.txt”, the errors corrected by ICORN in the last
iteration are listed. If errors are still being corrected then it might be advisable to run further
iterations. The call is as before, just changing the start and end iteration:

icorn.start.sh uncorrected.fasta 7 9 pairedReadsPart_1.fastq

pai redReadsPart_2.fastqg 100, 500 250

Around 85% of the errors are corrected in the first iteration. Most errors in the coding
regions are corrected in the first two iterations.
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I CAUTION—Only a single instance of ICORN should be run at a time in a directory (to
avoid different instances simultaneously accessing the same files).

? TROUBLESHOOTING

(31) (Optional) It is recommended to view the corrections made by ICORN in a genome
browser such as Artemis. The file “All.Reference.gff” will show the corrections projected
onto the original sequence; see Box 8 for a description of the ICORN’s output. To look at
the final version of the correction, open Artemis with the “Final.ICORN.fasta” file, and open
the perfect mapping plot for the “PerfectMappingPlot” directory. By right clicking on the
graph one can generate regions with no coverage that were not corrected. The rest, as
reported in the “ICORN.overview.txt” file should be perfect sequence. The following
command will open Artemis with the corrections. Once it is open you can load the plot files
from the “PerfectCoverageplots” directory:

art uncorrected.fasta + A l.Reference. gff

(32) (Optional) If the file “uncorrected.fasta” contains more than one sequence, then it is
necessary to index the FASTA file, so that Artemis can select between the different
sequences in the file:

samt ool s faidx uncorrected. fasta

I CAUTION—Systematic errors in lllumina reads around homopolymer tracks 1> will cause
ICORN to incorrectly identify heterozygous SNPs. Strand specific motif errors are another
potential source of error, but so far such errors have not been observed in ICORN.

Running RATT to transfer annotations from a reference genome Timing 60 to 90 minutes

(33) Setup a working directory for RATT by typing the following commands in a terminal
window:

cd /path/to/ myWerkingDir
mkdi r runRATT

cd runRATT

Before you run RATT, you may need to adapt the setting in the file SRATT_CONFIG. Use
the command “echo $RATT_CONFIG” to get the position of the file, and then open it in an
editor. If necessary, adapt the triplets for start and stop codons, specify splice sites and tell
RATT not to correct pseudo genes. Note that example config files are given in the RATT
home directory (which is “6PAGIT_HOME/RATT").

(34) Make a directory for the EMBL files (see Step 7 for help with converting annotation
files between formats), and link in the files containing the reference genome annotation to
that directory by typing the following commands in a terminal window:

mkdi r EMBL

cd EMBL

cp —s /path/to/ Refannotations/*. enbl
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I CAUTION—The quality of the annotations generated by RATT is highly dependent on
those in the reference annotations. See also Box 9 for the RATT transfer options.

? TROUBLESHOOTING

(35) Return to the RATT working directory by typing the following command in a terminal
window:

cd ..

(36) Link in the assembly to be annotated. This could be the output from ABACAS (from
Step 17), IMAGE (from Step 24) or ICORN (from Step 29), or the sequences output from a
de novo assembly. Type the following command into a terminal window:

In —s /path/to/assenbly unannotated. fasta

(37) Check RATT usage information and view basic help (see also Box 9 for explanation of
the RATT transfer parameters), then run RATT with the required parameters by typing the
following commands in a terminal window:

start.ratt.sh

(38) Run RATT with the following arguments: the directory containing the annotations that
are in EMBL format; the unannotated query file; the output prefix and finally the type of
annotation transfer. Use option A to transfer from a different strain, option B to transfer
from a related species, or option C to transfer multiple annotations from more than 1 strain
or species:

A) Annotation transfer from a different strain: (i) (Optional) Type the following
command in a terminal window:

start.ratt.sh ./EMBL unannotated.fasta nyPrefix Strain >
ratt.output.txt

? TROUBLESHOOTING

(B) Annotation transfer from a related species: (i) (Optional) Type the following
command in a terminal window:

start.ratt.sh ./EMBL unannot ated. fasta myPrefix Species >
ratt.output.txt

(C) Multiple annotation transfer from morethan 1 strain or species:. (i) (Optional) To
use RATT with multiple reference annotations, setup RATT as Step 33 but ensure that all
the reference genome EMBL files have been placed in the EMBL file directory. Then type
the following command in a terminal window:

start.ratt.sh ./EMBL unannotated.fasta nmyPrefix Miltiple >
ratt.out put.txt

? TROUBLESHOOTING

(39) Check RATT output. See Box 10 for details of the output files.
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If the amount of synteny between the sequences is low and not many genes were transferred,
then try rerunning RATT with another parameter like “Strain.Global” or “Species.Global”.
See also Box 9.

(40) Manually view the output using ACT. Type the following command in a terminal
window:

art nyPrefix.querynane.final.enbl + Query/
nyPrefi x. querynanme. Mut ati ons. gf f

Alternatively, if the annotation comes from several references (see Step 38C), it is not
possible to use ACT, in which case it is possible to analyse the data with Artemis instead.

To see from which reference the annotation was transferred look up the systematic_ID or
locus_tag of the gene models. This unique identifier normally has the abbreviation of the
reference in the name.

Please note that commands for starting the genome browser Artemis with the annotated
sequences are printed as part of RATT’s standard output.

(41 (Optional) To analyse which features were not transferred, load the results into ACT.
Generate a new BLAST comparison file with the updated sequence by typing the following
commands in a terminal window:

formatdb -p F -i Refsequence. fasta

blastall -p blastn -m8 -e 1le-40 -d Refsequence.fasta -i
Sequences/ myPrefi x. querynane —o prefix. bl ast

(42) (Optional) Start ACT with the following command:

act EMBL/ Refannotations. enbl prefix. bl ast

nyPrefi x. querynane. final . enbl

(43) (Optional) In ACT, include into the reference sequence (top window) the file
“myPrefix.referencename.NOT Transfered.embl”, as well as the file “Reference/
myPrefix.referencename.mutations.gff” by selecting file -> Reference name (2" line) ->
read An Entry. Onto the query you can include the file “Query/myPrefix.queryname” by
selecting file -> Query name (3. line) -> read An Entry. Choose the “one line per entry”
option by right-clicking onto the genome sequence of the reference. Now it is possible to
analyse which models were transferred, which regions have no synteny and therefore no
transferred annotations, and where variants between the two genomes exist.

It is very important to analyse the regions of sequence that have no synteny to the reference,
because in those regions no annotation is transferred. On such sites an ab initio prediction
could be done: these genes might be unique 3. It is also important to analyse the sequence
from the ABACAS bin, which will be individual EMBL files.
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Gene models that failed to transfer may indicate deletions in the unannotated sequence or
low similarity regions and should be manually inspected.

Troubleshooting

Guidelines for troubleshooting are given in Table 2.

Approximate timing information for PAGIT applied to a bacterial genome is given here.
Please note that an experienced Linux user and genome assembler may run through these
stages significantly quicker, and that the time required to manually check results depends
very much on the genome being analysed. These results are based on using a machine with
an Intel processor X5650 (2.67 Ghz)

Obtaining and installing PAGIT takes 15 to 45 minutes including 10 minutes execution time
when running the example. For ABACAS, allow up to 40 minutes to order contigs or
scaffolds on a reference genome: the execution time is just a few minutes, but it is advisable
to spend 20 minutes or so manually checking the output. Using ABACAS for primer design
should take about 15 minutes. IMAGE is much more computationally intensive than
ABACAS and will require about 6 hours of execution time — note that the first iteration is by
far the longest. However it should only take about 15 minutes to set up the input files and
get IMAGE running. When used for extending seed sequences into longer contigs, it will
again take about 15 minutes to prepare the input files, but then the execution time should be
quicker: about 2 hours. ICORN will take about 6 hours or so to run. The time should be
much the same for both uses we describe here (to correct small insertions, deletions, and
single base-pair errors; and for finding high quality variants). It will take about 15 minutes
to set up the input files for ICORN, then allow 1 or 2 hours per iteration and about 30
minutes to check the output. Note that both IMAGE and ICORN make most of their
improvements in iterations 1 and 2. Allow 90 minutes when using RATT to transfer
annotation from a reference genome. The actual execution time should be less than 10
minutes, but it might take more time to locate the EMBL files on public databases and to
check the output.

Anticipated results

In this section we show the output from the test example and present two further use-cases
of PAGIT. Further details of how PAGIT was applied to these examples are given in the
Supplementary Methods. One of the use-cases involves a high quality Illumina lane from E£.
coli. From the initial assembly of 182 scaffolds, PAGIT ordered 179 scaffolds on the
reference genome, IMAGE closed more than 60% of the 342 gaps and almost tripled the
average contig size from 13.5 kb to 39.9 kb. With this improved assembly RATT was then
able to transfer 99.47% of the gene models. The second use-case shows the potential of
ICORN to correct 454 homopolymer track errors in a C. trachomatis assembly 3. All genes
that had frameshifts due to homopolymer tracks could be corrected. In these examples we
used machines with an Intel processor X5650 (2.67GHz).

The PAGIT test example

The test data set is based on three contigs of a Plasmodium falciparum 1T clone and the
genome reference clone 3D7. The PAGIT test example (included in the distribution) is run
as described in Steps 2 and 3, and invokes all the PAGIT tools. It generates progress reports
and a small amount of textual output. Once the script completes, ACT opens and displays
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the reads mapped in three ways: against the ABACAS output, the reference genome, and the
final annotated new assembly. The results should be similar to Figure 3.

The E. coli example

The PAGIT protocol was applied to a Velvet>* assembly created from reads for Escherichia
coli K-12 strain MG1655 as described in Supplementary Methods. In Table 3 we show the
actual resource requirements, in terms of memory, hard-disk space, and the timings for each
different stage of PAGIT. The memory requirements are mostly quite modest, except for
ICORN: here it is the SSAHA pileup pipeline that has the most demanding memory usage.
IMAGE may be time-consuming and use a relatively high amount of disk-space, but this
depends on how many iterations are performed: most files can be deleted from earlier
iterations, thus freeing up more disk-space if required.

The standard output of ABACAS revealed that 179 sequences (in this case scaffolds) were
ordered against the reference genome while 3 scaffolds were placed in the bin. Checking
ABACAS output (see Box 4), the file “U96mapped.gaps.stats” showed that 77 gaps were
introduced because of overlaps and 102 real gaps were found: the sum of the gaps was 73.1
kb, the largest gap 4.9 kb and the average gap 0.5 kb. Viewing the file
“U96mapped.contigsinbin.fas” revealed that the three unmapped scaffolds were in fact very
small contigs of no more than a few 100 bp.

Figure 4 displays the number of gaps closed by IMAGE over 18 iterations, and Figure 5
shows how the average contigs size increases over these iterations. After each change of k-
mer there is a noticeable drop in the number of gaps, and a corresponding increase in the
average contig size. By the final iteration, the contig N50 was 81.5 Kb, the average contig
size was 39.9 Kb and the largest contig was 221.6 Kb. These contigs were re-scaffolded
using the IMAGE “contigs2scaffolds.pl” script before the sequence was corrected using
ICORN.

The ICORN output file “Stats.Mapping.csv” (see Box 8) shows that 99% of the reads
mapped on the first iteration and this did not change significantly for subsequent iterations.
The file “Stats.Correction.csv” shows that about 50 erroneous SNPs were corrected over six
iterations, with 40 taking place in the first iteration. It is interesting to note that although the
same reads were used for ICORN as for the assembly, errors were still found.

We used the scripts listed in Box 2 to check the coverage of perfectly mapping reads: 99.25
% of the consensus sequence was covered by perfectly mapping reads. The low coverage
regions were converted to gaps i.e. 4645 bases were changed to Ns.

RATT standard output (see Box 10) indicated that 1.28 % of the corrected assembly had no
synteny with the reference genome. Of the 4320 gene models in the reference, 4297 were
correctly transferred, 22 were not transferred, and 1 was partially transferred.

In Table 4, we compare the results of correcting the £. coli assembly using PAGIT to the
uncorrected results. The table is split into two parts. The upper part shows the results for all
annotation elements, the lower part just for the coding sequences. Each part is broken down
into those annotations that were entirely transferred, partially transferred, split across
scaffolds, parts of which were not transferred, and entirely not transferred. Compared to the
initial assembly, the corrected assembly allowed 89 more annotations to be transferred from
the reference, of which 28 were gene models. The uncorrected assembly also contains 188
annotations that were split across scaffolds: these all disappear in the corrected version
because the initial scaffolds were mapped and ordered (using ABACAS) with the same
genome sequence as that from which the annotations were derived.
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To investigate why an annotation transfer failed a screen-shot from ACT is shown in Figure
6. The upper half of the screen shows the non-transferred annotations. The lower half of the
screen indicates the transferred models (these are in blue and white). In this region there is a
break of synteny, as the sequence of the new assembly is smaller (yellow and pink block)
with the result that the gene models of the reference couldn’t be transferred (white region in
the middle of the screen). Furthermore this sequence matches to several other regions in the
reference genome, so it is likely to be a repetitive region, which should be further
investigated.

In Table 5 we give some assembly statistics to show how the first two stages of the PAGIT
protocol are able to improve the initial assembly. ABACAS is able to map all but three of
the initial scaffolds to the reference £. coli sequence, with the result that the assembly is
now almost entirely contained within a single large scaffold. The ordering of scaffolds
performed by ABACAS can be capitalized on by IMAGE. Indeed, there is a real possibility
that IMAGE is able to close the gaps between adjacent scaffolds as well as the gaps between
the contigs comprising the scaffolds. The results of IMAGE are very good: the number of
contigs is reduced by 66%, and their average size has almost tripled. When scaffolding the
new set of contigs, IMAGE uses a standardised gap size between all contigs: this is the
cause of the small discrepancy between the N50 scaffold sizes shown in Table 5. Note that
there are only 4 scaffolds, 1 of which is many orders of magnitude greater than the others.
This means that in this situation the N50 size refers to the size of this single large scaffold.

C. trachomatis 454 assembly example

As a second example we used a previous 454 assembly of C. trachomatis 3. In this study
the authors manually corrected frameshifts due to homopolymer errors in the sequencing
technology. We demonstrate how PAGIT is able to automatically perform those manual
corrections and generate a high quality draft genome in less than 3 hours, which is
completely functional annotated, including the identification of problematic regions. Further
details of this example are given in Supplementary Methods.

ABACAS was able to map 7 of 18 of the 454 assembly contigs against the reference
genome. These 7 contigs cover most of the reference genome: the sum of all the gaps in the
pseudo molecule was 7.5 kb, while the sum of the unmapped contigs came to 20 kb. IMAGE
was able to close all but one gap. ICORN corrected 2 single base errors, 24 insertions and 57
deletions.

As the focus of this example was to examine how ICORN can correct homopolymer tracks,
we used RATT to transfer the annotation from the reference genome, onto the uncorrected
assembly, and onto the PAGIT improved sequence, so that we could compare the two
annotations. Both transfers mapped all gene models completely. When mapping onto the
uncorrected assembly 45 gene models had frameshifts. When mapping onto the PAGIT
assembly, just two genes initially had frameshifts that were later corrected by RATT. The
impact of ICORN’s corrections is indicated by the fact that RATT was able to immediately
transfer 43 of the 45 models that were frameshifted in the uncorrected assembly. The 2
models that RATT corrected were output in an Artemis loadable GFF and tabulator files,
ready for visualization and manual checking. Note that RATT is able to conserve the open
read frame by splitting the gene model into two parts, see Figure 7. This is an advantage
over ab initio methods that would generate two genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BOX 1
Glossary of terms

Alignment: the process of matching the order of bases between two or more DNA
sequences so that the sequences map on to each other.

Annotation: identifying and ascribing functional descriptions to regions of the genome,
including genes and coding sequences.

Genome assembly: the process of using reads to reconstruct the original genome from
which they were derived.

Base calling: the automated process of determining the nucleotide base at a position in a
sequence.

Base quality: a confidence score assigned to each base call. Low scores indicate a higher
chance that the base may have been called incorrectly.

Consensus sequence: during genome assembly, when overlapping reads have been
combined to form a contig with sufficiently high coverage, the most common base in the
reads at each position is taken to be the consensus sequence.

Contig: a contiguous sequence of DNA assembled from overlapping reads.

Coverage: the number or depth of reads that cover (extend over) a section of DNA
sequence.

De novo genome assembly: a genome assembly that is performed without referring to
any existing genomes or reference sequences.

Draft genome assembly: a set of contigs and / or scaffolds generated by a computer
program that attempts to reconstruct original chromosomal sequences from sequenced
reads. Draft genomes are frequently highly fragmented, unannotated, and often contain
assembly errors such as collapsed repeats.

Finished genome: the chromosomal sequences have been determined to an accuracy of at
least 1 error in 10,000 base pairs. All contigs are placed in the right order and orientation
along a chromosome with almost no gaps present. The sequence has been fully
annotated.

Gaps: an unsequenced region of a scaffold that lies between two linked contigs.

Insert size: the average or expected number of (unsequenced) bases that lie between
paired-end reads as measured from their outermost bases.

Indel: an insertion or deletion in a DNA sequence.

Mapping: aligning reads or other relatively short sequences to a longer sequence such as
a finished genome.

N50: the length, for a set of different sized sequences, such that 50% of the genome is
contained in sequences of at least that length. The larger the N50, the less fragmented the
genome.

Paired-end reads or mate pairs: fragments of DNA sequenced from opposite ends of a
larger fragment DNA that is of an approximately known size. Mate-pair libraries refer to
large insert libraries sequenced over the paired-ends.

Read: data produced by a DNA sequencing machine from reading an individual DNA
template in one direction.
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BOX 2
Assembly validation using ICORN and Artemis

Genome assembly algorithms often misassemble fragments of a genome®: 2. Many of
these mistakes cannot currently be corrected automatically, however software for
evaluating and identifying potential misassemblies has been developed®2. Here we
describe a few ways in which ICORN and Artemis can be used to check and evaluate the
CONSEeNsUs sequence.

(2) The following approach can be used to check if certain regions in the genome are not
covered by perfectly mapping reads (a read and its mate are considered “perfecty
mapping” if they are identical to the reference and their mapping distance is in the
expected insert size). The “getPerfectCoverage.2lanes.sh” script uses the very fast SNP-
0-MATIC algorithm to generate plot files for each sequence in a given file. It should take
about five minutes for bacterial genomes. The arguments to the script are: the genome
sequence; the first lllumina FASTQ file; the second Illumina FASTQ file; and the mean
fragment size for the paired Illumina reads. Standard output should indicate the coverage
levels. Plots for each sequence can be found in the output directory
“PerfectCoverageplots”. Type the following command in a terminal window:

get Per f ect Cover age. 2l anes. sh final | CORNresul t.fasta
pai redReadsPart _1.fastq

pai r edReadsPart_2.fastq 300

The generated plots can be loaded into Artemis. Possible problems with the assembly are
indicated where the coverage drops toward zero. Then using the logarithmic view, the
sink in the plots are more visible.

Please note that SNP-o-MATIC maps a repetitive mapping read pair to all the possible
positions in the genome. This means that if a repetitive region is represented 3 times in a
genome, the coverage would be tripled as compared to the rest of the genome.

(2) Possible mis-assemblies can be found in regions with 0 or <5 perfect mapping reads.
Those potential erroneous regions can be converted to a sequencing gap (i.e. the bases are
switched to N’s). Rather than do this manually in Artemis, it is easiest to use the
“PerfectMapping2n.pl” script, with the directory “PerfectCoverageplots” generated by
the “getPerfectCoverage.2lanes.sh” script (described above), to generate a new fasta file,
“result.fasta”. Type the following in a terminal window:

Per f ect Mappi ng2n. pl final | CORNresul t.fasta Perfect Coveragepl ots
result.fasta

The standard output will report how many bases were converted to N’s. For all further
downstream analysis it is recommended to use this output. Please note that this script
could also be run on an initial assembly, or on the output from ABACAS, so that the
regions converted to N’s could subsequently be closed by IMAGE. The only drawback
could be that few reads map close to the ends of contigs, and therefore the gaps might be
extended.

Please note that although the script can find mis-assemblies, it cannot be guaranteed to
find them all.

(3) Another option to investigate the quality of the consensus sequence is to map the
sequencing reads back to it and visualize the resulting BAM file in Artemis or ACT (a
BAM file contains all mapping information for all the reads). PAGIT has a script to map
the reads with SMALT (http://www.sanger.ac.uk/resources/software/smalt/) against the
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given reference and generate a BAM file called “little.smalt.bam.sh”. The first parameter
is the sequence file, followed by the k-mer and step size for SMALT. We suggest leaving
those as given in this example. Next the forward and reverse reads are given. The last two
parameters are the output prefix for the mapping results and the insert size of the read-
pairs:

little.smalt.bamsh final |l CORNresult.fasta 15 3

pai redReadsPart _1.fastq pai redReadsPart_2.fastq Resul t Mappi ng 1000
To open the BAM file in Artemis, type:

art -DbamrResul t Mappi ng. bam final | CORNresul t. fasta

Visualising mapped reads is a powerful way to analyse the data. For example, it is
possible to check if the coverage over the ABACAS bin contigs (i.e. the contigs that
weren’t aligned against the reference) is equal to that of the rest of the assembly —
contamination and new plasmids have different coverage levels. It is possible to examine
if the two mates are mapping on different contigs, and then it might be appropriate to
order (i.e. scaffold) the contigs manually. Smaller regions of higher coverage could
indicate collapsed repeats. Regions with heterozygous SNP’s (such that not all reads have
the SNIP) in haploid genomes can indicate indels. For examples please see http://
www.sanger.ac.uk/resources/software/artemis/ngs/.
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Box 3
Running ABACAS for primer design

(1) After the contig ordering is completed, ABACAS will prompt users to provide
appropriate parameters for selecting primers. These parameters include primer size,
melting temperature, size of flanking regions, product size and GC content of primers.
Primers can be automatically designed while ordering contigs using the following
command:

perl $PAGIT_HOME/ABACAS/abacas.pl —r Refsequence.fasta -q assembly.fasta -p
nucmer -m —b —0 myOutput —P

Critical step

Sequence gaps represented as “N”s (as small as 1bp) will be identified by ABACAS for
primer design. It is therefore important to check the distribution of gap sizes prior to
setting the maximum product size.

? TROUBLESHOOTING

(2) Primer design can also be performed independently after the contig ordering stage.
Here the flag “—e” dictates that ABACAS will ignore the sequence ordering step and go
directly to designing primers. Primer sets are checked for uniqueness against the
reference genome using a sensitive NUCmer search. The primer design phase could be
repeated for different parameters without re-ordering contigs. To perform this type the
following command in a terminal window:

perl $PAGIT_HOME/ABACAS/abacas.pl —r Refsequence.fasta -q assembly.fasta —e
? TROUBLESHOOTING

(3) Check the ABACAS output. Sense and antisense primers are written in separate files
formatted using a 96 well plate: “sense_primers.out” and “antiSense_primers.out”. Other
output files include a primer3 summary file with alternative primer sets:
“antiSense_primers.out”. See Box 4 for further information on ABACAS output.

(4) ABACAS can also be used to design primers to validate SNPs from functional studies
by replacing each putative SNP position with 5 N’s, so ABACAS assumes they are gaps
and therefore will design primers over the regions.
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Box 4
Output interpretation for ABACAS

To gain a quick overview of the output of ABACAS look at the file
“myPrefix.gaps.stats”. This file gives statistics about the gaps that remain in the assembly
after mapping it to the reference. These include the number of overlapping gaps and the
number of real gaps; and then further statistics on the real gaps, such as the minimum,
maximum and median gap size, the sum of all the gaps and the N50 gap size.

Two types of gaps are considered in the output of ABACAS. Real gaps are regions of the
reference genome where no contigs map. Overlapping gaps are derived from two contigs
that map to the genome and which overlap in their mapped positions, often due low
quality sequences at the ends of contigs. A gap is therefore inserted between the mapped
contigs and can subsequently be closed by running IMAGE. ABACAS introduces 100 Ns
(or a number specified by the user using flag “-g”) to distinguish such gaps from real or
genuine gaps.

To gain a clearer view of the contig mapping, ABACAS produces output files that may
be visualised using a genome browser like Artemis or ACT. These files include:

« myPrefix.crunch: this is the main file to be used by a genome browser. The
format is standard for genome browsers and described in the Artemis manual.

» myPrefix.tab: this is a genome browser feature file and it gives colour-coded
mapping information that describes if the contigs align in a forward or reverse
direction, or they are overlapping.

» myPrefix.gaps.tab: this is a genome browser feature file that describes the length
and type of gaps (i.e. overlapping or real gaps).

Other output files list some general information about the contig mappings:

» myPrefix.gaps: each line in this file describes one of the gaps. The columns in
this file are as follows: the first is always the text “Gap”. The second is the size
of the gap. Columns 3 to 6 represent start and end positions on the
pseudomolecule and then start and end positions on the reference. The final
column describes if the gap is a non-overlapping (i.e. real) gap, or if it is a gap
introduced due to overlapping contigs. A quick overview of gap sizes can be
found from the second column of the *.gaps output file (awk “print $2 “ *.gaps).
Extracting this column to a file will allow for quick statistics of the gaps using R
or excel.

« myPrefix.bin: a list of unmapped contigs.

» myPrefix.fasta: this is the output sequence i.e. the contigs mapped to the
chromosome or chromosomes with the gaps denoted by a series of Ns.

Please note that ABACAS has various parameters that may be used to control the output,
as described in its usage information.
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Box 5
Using IMAGE for extending seed sequences into longer contigs

(1) Setup a working directory for IMAGE, and link in the files containing the seed
sequences, and the read pairs by typing the following commands in a terminal window:

cd /path/to/ nyWr ki ngDi r

nmkdi r runl MAGE

cd runl MAGE

In —s /path/to/pairedReadsPart_1.fastq .
In —s /path/to/pai redReadsPart_2.fastq .
In —s /path/tol/seed. fasta

I CAUTION

The initial seed sequences must be of at least 300 bp.

(2) Run IMAGE using the “-smalt_minScore” parameter and specify a relatively large
number of iterations. The “-smalt_minScore” parameter is used to specify the Smith-
Waterman score that a read has when mapped onto the reference: if it maps with its
complete length, without any mismatch or indel, then the score is equal to the read
length; whereas if it maps with one mismatch, then the score is the read length minus 3.
Therefore, to map the reads to positions where each read would be expected to have 3
mismatches, the “-smalt_minScore” parameter would be set to the read length minus 9.
In this way the “-smalt_minScore” parameter is used to tighten the constraints on where a
read is mapped to a contig — and it therefore determines if the second read of the pair is
able to extend the contig and thus should be included in a local assembly. Type the
following command in a terminal window (for 75bp reads):

per| $PAG T_HOVE/ | MAGE/ i mage. pl -scaffold seed.fasta -prefix

pai redReadsPart -iteration 1 -all_iteration 30 -dir_prefix
ite_seed -smalt_mninScore 67 —kmer 71

Critical step

It is important that the mapping constraints are tight enough to ensure that reads from
different regions of the genome do not map to the seed.

Critical step
It is best to use large k-mers for seeding applications.
I CAUTION

If the seed is similar to another region of the genome then this approach may create a
chimeric contig.

? TROUBLESHOOTING

(3) To check the results using the “image_run_summary.pl” script, as described in Step
22, type the following command in a terminal window:

per| $PAG T_HOVE/ | MAGE/ i mage_run_sunmmary. pl ite_seed
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BOX 6
Output interpretation for IMAGE

IMAGE outputs a relatively large number of files when it is running, but only a small
number need be of interest to the user: these files are located in each of the iteration
directories. Within each IMAGE iteration directory three of the files created are of
particular interest. These files include:

» new.fa: the set of updated contigs created during the current gap closing
iteration.

» new.read.placed: maps contigs to scaffolds, for the current iteration.

« walk2.summary: gives a short description of the gap closing results for each
iteration, including the number of gaps in the assembly, the number closed
during the current iteration, and contigs that have been extended from one or
both sides.

o  After the first iteration, IMAGE creates a much smaller subset or partition of
each of the initial FASTQ files. These new FASTQ files (“partitioned_1.fastq”
and “partitioned_2.fastq™) only contain those reads that are involved in spanning
gaps (i.e. read pairs that map to the middle of contigs are removed). When the
initial FASTQ files are very large, using the partitioned FASTQ files can
significantly reduce the execution time.

IMAGE provides scripts that summarise the output from all iteration directories (i.e. the
gaps closed, extended and so on) and that re-scaffold the final set of contigs
(“image_run_summary.pl” and “contigs2scaffolds.pl”).

In the base IMAGE directory, when IMAGE is executed using the “~scaffolds” option,
the following input files for IMAGE are automatically created:

» read.placed.original: maps contigs to scaffolds for the initial FASTA file (that
contains sequences with gaps to be closed).

» read.placed: may rename the contigs and scaffolds in the read.placed.original
file if they contain problematic characters.

» contigs.fa.original: contains the initial set of contig sequences in FASTA format.

» contigs.fa: may rename the contig headers in the contigs.fa.original file if they
contain problematic characters.

Critical step

If another run of IMAGE is started using the “image.pl” script in the same directory as an
existing IMAGE run, then it is important to first delete the automatically created input
files because IMAGE will not overwrite them. Please note that the recommended way to
continue an existing IMAGE run is via the “restartiMAGE.pl” script: it is not necessary
to delete any files before running this script.
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BOX 8
Output interpretation for ICORN

If ICORN runs to completion there will be a directory for each ICORN iteration. The
names of these directories are based on the original sequence file, with a number
appended to the original file name corresponding to each iteration.

In the main ICORN working directory there are two important files to look at after a run:

1. Stats.Mapping.csv: statistics based on the number of reads mapped (including
read-pairs and unique mappings), the depth of genome coverage of the mapped
reads, and how the genome size may change as corrections are made due to
small insertions and deletions. There is a separate column of results for each
ICORN iteration.

2. Stats.Correction.csv: a break-down of the different types of correction made by
ICORN. A separate column is given for each ICORN iteration. The types of
correction made by ICORN are as follows:

»  SNP: the correction of a single nucleotide or base pair
» INS: inserted up to 3 base pairs in order to fix an incorrect deletion
o DEL: removed up to 3 base pairs in order to fix an incorrect insertion

 HETERO: If a second allele is called with a frequency between 0.15 -
0.5, the base is called heterozygous. The consensus sequence is derived
from the most abundant allele.

e Three types of correction (SNP, INS and DEL) that are themselves
corrected (i.e. rejected) as the coverage of mapping reads increases.
The corrections are labelled as Rej.SNP, Rej.INS, and Rej.Del.

To see a summary of the ICORN results, look at the file “ICORN.overview.txt”. This file
contains basic information on the corrections, and the coverage of mapping reads. It is a
short summary of the above two files, including amount of corrections per iteration and
amount base covered with perfect mapping reads.

Around 90% of the reads should map, depending on the quality of the lllumina input files
and the draft genome. For read pairs, the amount of uniquely mapped read pairs should
be 60-80%, although a repeat-rich genome may reduce this substantially. If a newly
generated draft genome is used, then this number may drop to around 40% as most read
pairs will lie on different contigs. Just regions covered with 20x mapped reads will be
corrected.

Using a genome browser such as Artemis and the GFF files output by ICORN it is
possible to view the corrections made for each sequence (contigs or scaffold) in the
uncorrected input file. GFF files are made at each iteration, and at the end of the
iterations these files are combined into a single file (for each contig or scaffold). The
naming convention for these files is as follows:

» At each iteration the GFF files are made from three components joined together
using a “.”: the initial uncorrected sequence name (e.g. “uncorrected.seq”), the
iteration number (e.g. 1), and the contig or scaffold name (e.g. “ctg0001”). In
this case the GFF would be called: “uncorrected.seq.1.ctg0001.gff”

» The final GFF files are constructed using a prefix “All” joined to the contig
name e.g. “All.ctg0001.gff”
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Other important files written to the base ICORN directory include:

* The FASTA file of the corrected sequence that is written at each iteration. The
name of this file is based on the original sequence file, with a “.” and a number
appended to original file name corresponding to each iteration. It is found in the

base directory of ICORN.

e At each iteration, the file with the ending “PerBase.stats” gives a list of all the
different high quality variants that ICORN found. The format of this file is:
column one, sequence name (usually a contig or scaffold); column two, base
position of the variant relative to the initial uncorrected sequence; column three,
type of variant (SNP, INS, DEL, etc); and column four, corrected base of the
new variant.

The directory “PerfectCoverageplots” contains files giving the coverage for each base.
This is just a single column of numbers giving the coverage, starting at base 1. These
files can be loaded into Artemis.
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BOX 9
RATT transfer parameters

It is important when using RATT to choose the correct transfer parameter. It influences
the speed and accuracy in NUCmer, the insertion of “Faux-SNPs” (temporary
modifications to SNPs) and the synteny identification process. It is always worth running
RATT with different parameters to see if the annotation improves. Further information
on this is available; see the table under the RATT tab on PAGIT web-page (http://
www.sanger.ac.uk/resources/software/pagit/).

There are three main parameter sets to use: “Assembly”, “Strain”, and “Species”.
“Assembly” is used to transfer between different assemblies of the same isolate. “Faux
SNP” are included in the “Assembly” and “Strain” parameters.

These three parameter sets can be extended with two further setting. The first extension,
“.Repetitive” is used if the reference has many repetitive regions. This will extend the
execution time. For example, when transferring annotation between different strains the
“Strain” parameter becomes “Strain.Repetitive”. The second extension, “.Global”, is used
if the query sequence does not have many gaps or rearrangements when compared to the
reference.

The “Multiple” parameter set is used to transfer annotation from multiple references.
Finally, there is the “Free” parameter for advanced users who wish to set their own
parameters. This is further explained on the RATT sourceforge documentation: http://
ratt.sourceforge.net/documentation.html

A comprehensive list of all the available transfer parameters is as follows:
o “Assembly”, “Assembly.Repetitive”,
e “Strain”, “Strain.Global”, “Strain.Repetitive”, “Strain.Global.Repetitive”,
o “Species”, “Species.Global”, “Species.Repetitive”, “Species.Global.Repetitive”,
e “Multiple”

e  “Free”
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BOX 10
Output interpretation for RATT

RATT standard output gives an overview of the results: for each sequence the number of
synteny regions is given, and then statistics on the transferred features and CDS. After
the transfer, each gene with an incorrect start or stop codon is reported, as well as
whether RATT could fix it in the correction step. It is advisable to redirect the RATT
standard output to a file.

There are two types of output file for RATT: a number of files that refer to the initially
unannotated file including a general report file and a number of files that refer to the
reference file from which the annotations are being transferred.

The most general report file is “userPrefix.fastaHeader.Report.txt”. It gives information
on syntenic regions, annotation correctly transferred, and annotations on incorrectly
transferred gene models with some instruction about how they might be corrected for the
query.

Output files from RATT that refer to the initially unannotated query file are constructed
by combining an output file prefix that is set by the user, with the FASTA headers from
the query file (each sequence in the query file is annotated separately), and a file ending
that identifies each output file. The files for the reference (annotated genome) are:

» userPrefix.fastaHeader.embl: these are all the potential annotations.

»  userPrefix.fastaHeader.final.embl: these are the corrected annotations and any
annotations that could not be corrected. They also contain the sequence.

» userPrefix.fastaHeader.Report.gff: gives information on where RATT has been
able to correct CDS models or not. RATT looks at start and stop codons, splice
sites, frame-shifts and joined exons.

» Inthe “Query” directory, the file: userPrefix.fastaHeader.Mutations.gff. This
file gives details of regions that could not be transferred because there was no
synteny, insertions or deletions were present, there was low sequence similarity,
or identical repeats.

The output files that refer to the annotated genome (the reference) are constructed by
combining the prefix set by the user with the prefix of the reference EMBL file and with
a file ending identifier. The files for the annotated genome or reference are:

o userPrefix. EMBLprefix.NOT Transfered.embl: annotations that were not
transferred.

» Inthe “Reference” directory, the file: userPrefix. EMBLprefix.Mutations.gff.
The contents of this file are described above.
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Figure 1.

The four components comprising PAGIT are summarised.
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Figure2.

The basic workflow of the protocol is shown for two common use-cases: for de novo
assembly, and when a reference genome is available. Some alternative applications of the
PAGIT components are indicated. Corresponding steps from the Procedure section are
listed.
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Figure 3.

Output of the PAGIT test script displayed in ACT. In this three-way view, different
sequences are compared. On top is the ABACAS result, in the middle the reference genome
(P. falciparum 3D7) and below the final sequence after the application of IMAGE, ICORN
and RATT to the ABACAS output sequence. The orange boxes on the reference are gene
models that were transferred by RATT onto the new sequence. In the top sequence the light
blue box shows contigs ordered by ABACAS. The white boxes are sequencing gaps,
subsequently closed by IMAGE. The small horizontal blue and green bars are sequencing
reads mapped onto the sequences. Small red spots on the reads indicate base differences
between the read and the sequence. The graphs show the logarithm of the perfect mapping
read coverage. The vertical red bars are BLAST similarity hits between the sequences.
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Figure4.
The 182 scaffolds in the £. coli assembly contain 342 gaps after being mapped to the
reference genome. After 18 iterations of IMAGE, 223 of the gaps have been closed.
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Figureb5.
The increase in the average contig size for a series of iterations of IMAGE.
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Example of models in the £.coliexample that were not transferred in RATT displayed in
ACT. The top sequence is the £. colireference, with models that couldn’t be transferred and
the bottom sequence is the improved assembly with the transferred annotation. The selected
box “Synteny “ indicates that this region is has no synteny with the references. This region is
smaller in the new assembly. It is also likely to be repetitive because it has several BLAST
hits (yellow lines) to other positions in the genome.
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Figure7.

View of an example of a frameshift in a gene model, visualized using ACT. The top
sequence is one of the original 454 contigs and at the bottom is the corrected sequence. In
the 454 assembly the gene model in the middle has a frame shift: an indel has broken the
conceptual open reading frame. The top graph shows the logarithms of the coverage of
perfect mapping reads. Over this position there is a sink in the coverage, compared to the
graph over the corrected sequence. Therefore, due to the change, the frameshift has been
corrected.
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Table 1

The essential input data and hardware requirements for each software tool in the protocol. Where “Low” is
given, the requirement is for much less than 1 Gb of RAM or hard disk. Please note that for larger genomes it
will be essential to use parallel versions of the tools. The superscript “Para” indicates that the requirements
refer to the parallel version using about 100 CPU cores.

Genomesize4 Mbp to Genome size several Gbp
25Mbp
Reference | Paired- Sequencing | RAM | Time Disk | RAM | Time Disk
Genome endreads | technology | (Gb) (Gb) | (Gb) (hours) | (Gb)
needed? needed?
ABACAS | Yes No None Low 2t060 | Low | 100 24 20
mins
IMAGE No Yes Ilumina Upto | 8to48 | 50to | gPara 120Para | 5oQPara
2 hours 100
ICORN No Preferred IHlumina 10to 5to72 | 10to | N/A N/A N/A
60 hours 100
RATT Yes No None 2t06 | 2 to 30 | Low | 100 4t012 5
mins
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Page 49

Table 2

Steps

Problem

Possible reason(s) and solution(s)

10
and
Box3

ABACAS is running slowly

The sequences being compared are large, and ABACAS is conducting a search (via the
alignment software NUCmer or PROmer) that is much finer and more sensitive than is
necessary.

Using the “-d” option in ABACAS may be faster. This option uses the default options for
PROmer or NUCmer (it turns off sensitive mappings). Type the following command in a
terminal window:

perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta —q assembly.fasta -p nucmer
—d —b —o myPrefix

The contig alignments output from
ABACAS are less than hoped for.

The reference genome is highly divergent when compared to the assembly.

Various parameters can be used to optimize the alignment process. These include “—i” for the
minimum percentage identity (the default is for 40% sequence identity between the mapped
sequence and the reference); “~v” for the minimum sequence coverage (i.e. proportion of a
contig matching to a reference; the default is that 40% of the sequence should be mapped to
the reference); and “~s” to change the minimum length of a matching word in NUCmer or
PROmer (the defaults are 12 and 4 respectively). They can be used by typing the following
command in a terminal window:

perl $PAGIT_HOME/ABACAS/abacas.pl -r U00096.fna -q contigs.fa -p nucmer -s 10 -m -b
-i 25 -v 30 -0 myPrefix

21A,
22B,
23,
and
Box5

The summary of results given in the
output file “walk2.summary” show
that all results for gap closing, and

extended contigs, and so on are zero.

The k-mer parameter specified in the IMAGE command line arguments is used by the Velvet
assembler. If the k-mer parameter is longer than the length of the reads used for gap-closing
then Velvet will be unable to produce any assemblies at all. Specify a shorter k-mer using the
IMAGE command line.

The read alignment software used by IMAGE, which is called smalt, may fail. Check the
contents of the “sam” directory in the first IMAGE iteration directory: if the “final.sam” file
is empty there is a problem with smalt. Also, the actual smalt command used by IMAGE on
your system, executed from the “sam” directory, will be printed to standard output. Try
executing this command manually to locate the problem.

The Velvet assembly software may fail. Investigate the contents of the velvet*.auto directory
in the (first) iteration directory. The velvet “Log” file may indicate the problem. Also, some
velvet messages get directed to standard output and these should be checked for possible
problems.

28A,
28B,
28C,
30,
Box7

According to the contents of the file
“Stats.Mapping.csv” relatively low
numbers of reads have mapped.

The coverage of the available reads is not high enough.
There is no solution apart from obtaining more reads.

According to the contents of the file
“Stats.Mapping.csv” the number of
uniquely mapped reads is
significantly lower than the number
of mapped reads

ICORN may have been executed with the wrong the insert size.
Re-run ICORN with a different (preferably correct) insert size.

ICORN runs through very quickly
but nothing is corrected and low or
zero genome coverage is reported in
the file “Stats.Mapping.csv”

It may be the case that SSAHA_pileup crashed, possibly due to a lack of RAM. Another

common reason is that a read occurs more than once in the FASTQ file, which invariably
leads into a crash of SSAHA _pileup.

Obtain access to a machine with more RAM, or remove the problematic read(s) from the
FASTQ file.

38A,
38B,
and

38C

Too few annotations are transferred.

Reference and query might be too distant.

The query sequence has significant insertions (or new plasmids) compared to the nearest
reference genome.

If multiple genomes exist that may be used as a reference, then RATT is able to use the best
regions of each reference strain to transfer annotations and the results are improved. See Box
9 for further information on RATT transfer parameters and Step 38C.

The “*.final.embl” files are empty
even though the statistics say that
gene models were transferred

Strange or non-standard annotations in the reference annotation EMBL file. The most
important regions to check are the lines that specify the positions of the features.
Edit or remove the non-standard annotations.

The results are incomplete or RATT
didn’t run through all stages.

The amount of RAM might not have been high enough.
Obtain access to a machine with more RAM.
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Requirements for RAM, hard-disk space, and the timings for each section of the protocol when applied to £.

coli. For IMAGE and ICORN the timings are given for each iteration.

E. coli (genome size about 4.7 Mbp)

RAM (Gb) | Hard-disk (Gb) | Timings (mins)
ABACAS | 0.02 0.008 <05
IMAGE 15 40 254 (itel)
20 per ite
ICORN 10.3 19 140 per ite
RATT 0.7 0.049 3
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Results for RATT, showing the annotations that can be transferred to the Velvet assembly as corrected using
the PAGIT tools, and to the uncorrected Velvet assembly.

Elements Uncorrected | Corrected
All annotations 9885 9885
Transferred 9711 9800
Partially transferred 2 2
Split 188 0
Parts not transferred 175 85
Whole not transferred | 172 83
Coding sequences

All gene models 4320 4320
Transferred 4269 4297
Partially transferred 1 1
Exons not transferred | 1 1
Whole not transferred | 50 22
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Assembly statistics for the initial assembly and the first two stages of PAGIT.

Table 5

NScoéf?I)l ds chegfol ds C'\:J(r){t%s Ccl)\InSt?gs Av. Contig Ibaér%?g
Velvet 182 70.3 338 334 135 116.4
PAGIT: ABACAS | 4 4659.5 338 334 135 116.4
PAGIT: IMAGE 4 4626.7 115 815 39.9 221.6
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