

NIH Public Access

Author Manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 May 01

Published in final edited form as:

Cancer Epidemiol Biomarkers Prev. 2013 May ; 22(5): 756-764. doi:10.1158/1055-9965.EPI-12-1325.

The Effects of Aerobic Exercise on Estrogen Metabolism in Healthy Premenopausal Women

Alma J. Smith¹, William R. Phipps², William Thomas³, Kathryn H. Schmitz⁴, and Mindy S. Kurzer¹

¹Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA

²Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, USA

³Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA

⁴Department of Biostatistics and Epidemiology, University of Pennsylvania, PA, USA

Abstract

Background—It is well accepted that exercise can decrease breast cancer risk. Limited clinical evidence suggests that this risk could be mediated through changes in estrogen metabolism in premenopausal women. Our objective was to investigate the effects of exercise on premenopausal estrogen metabolism pertinent to breast cancer risk.

Methods—Sedentary, healthy, young eumenorrheic women were randomized into an intervention of 30 minutes of moderate-to-vigorous aerobic exercise 5 times a week for approximately 16 weeks (n = 212), or into a usual-lifestyle sedentary control group (n = 179). Urinary levels of estrogens (estrone [E₁], estradiol, and estriol) and nine estrogen metabolites were measured at baseline and at study end by liquid chromatography/tandem mass spectrometry. The ratios of 2-hydroxyestrone to 16 α -hydroxyestrone (2-OHE₁/16 α -OHE₁) and 2-OHE₁ to 4-hydroxyestrone (2-OHE₁/4-OHE₁) were also calculated.

Results—The exercise intervention resulted in significant increases in aerobic fitness and lean body mass, and a significant decrease in percent body fat. For exercisers who completed the study (n = 165), 2-OHE₁/16 α -OHE₁ increased significantly (P = 0.043), while E₁ decreased significantly (P = 0.030) in control participants (n = 153). The change from baseline in 2-OHE₁/16 α -OHE₁ was significantly different between groups (P = 0.045), even after adjustment for baseline values.

Conclusions—The exercise intervention resulted in a significant increase in the $2\text{-OHE}_1/16\alpha$ -OHE₁ ratio, but no differences in other estrogen metabolites or ratios.

Impact—Our results suggest that changes in premenopausal estrogen metabolism may be a mechanism by which increased physical activity lowers breast cancer risk.

Key Terms

Aerobic Exercise; Estrogen Metabolism; Randomized Clinical Trial; Breast Cancer Risk

Corresponding Author: Mindy S. Kurzer, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Ave, Saint Paul, MN 55108. mkurzer@umn.edu.

For reprint requests, please contact Dr. Mindy S. Kurzer.

Disclosure Summary: The authors have nothing to disclose.

Clinical Trial Registration Number: NCT00393172

INTRODUCTION

It is well accepted that lifetime estrogen exposure increases the risk for breast cancer as a result of cumulative stimulation of epithelial cell division by estrogen (1). It has also been suggested that some metabolites resulting from the biotransformation and inactivation of estrogen can play a significant role in breast carcinogenesis (2). Specifically, the products resulting from the oxidation of estradiol (E_2) and estrone (E_1) known as hydroxyestrogens have been shown to display varying degrees of carcinogenicity. For example, 2hydroxyestrone (2-OHE₁) partially antagonizes the growth-stimulatory effect of E₂ in cultured human MCF-7 breast cancer cells (3) while 2-hydroxyestradiol (2-OHE₂)has little or no carcinogenic activity in Syrian hamsters (4, 5). In cultured mouse mammary epithelial cells, 16a-hydroxyestrone (16a-OHE₁) increases unscheduled DNA synthesis and promoted anchorage-independent growth (6, 7). The metabolite 4-hydroxyestrone $(4-OHE_1)$ is considered genotoxic due to its redox cycling process, which generates reactive oxygen species (ROS) and highly cytotoxic semiquinone/quinone intermediates that react with DNA (2). The 2-hydroxyestrogens also undergo redox cycling, but appear to lack carcinogenic activity due to a more rapid clearance in vivo (8) associated with a faster rate of inactivation through O-methylation (9, 10). Finally, one product resulting from O-methylation, namely 2-methoxyestradiol (2-MeOE₂), has been shown to be a potent inhibitor of cell proliferation and angiogenesis (11, 12).

Despite evidence suggesting the possible importance of other aspects of estrogen metabolism on breast cancer, human studies have largely focused on the ratio of $2-OHE_1$ to 16a-OHE₁ (2-OHE₁/16a-OHE₁). Given the different genotoxic capacity of these metabolites, it has been hypothesized that metabolism favoring the production of $2-OHE_1$ over 16α -OHE₁ may be inversely associated with breast cancer risk (13). In premenopausal women, the strongest evidence in favor of this hypothesis comes from two early prospective studies in which urine specimens were collected several years prior to diagnosis. In the Guernsey III cohort study, women in the highest tertile of urinary 2-OHE $_1/16a$ -OHE $_1$ ratio had a non-significantly lower odds ratio (0.75) for breast cancer than women in the lowest two tertiles (14). Similarly, in a study reported by Muti et al., women in the highest quintile of the urinary $2-OHE_1/16\alpha-OHE_1$ ratio had an adjusted odds ratio for breast cancer of 0.58, although again this was not statistically significant (15). In contrast, in a more recent prospective study, a higher $2-OHE_1/16\alpha-OHE_1$ ratio was associated with an increase in premenopausal ER-positive breast cancer (16). However, the association was not statistically significant and estrogen metabolites were measured in serum and not in urine as in the two previous studies. Significant relationships between premenopausal breast cancer risk and urinary levels of estrogen metabolites and their ratios have been observed in some case-control studies, but findings have been inconsistent. The case-control studies of both Coker et al. (17) and Kabat et al. (18) found an increased risk in women with an increased 2-OHE₁/16 α -OHE₁ ratio, but other studies did not (19–21). As for other measures, in two other studies, control women had significantly higher levels of 2-hydroxyestrogens, 4hydroxyestrogens, 16α -OHE₁ (22), and 2-OHE₁/4-OHE₁ ratio (23) than women with breast cancer.

While the association between estrogen metabolism and breast cancer risk needs further investigation, epidemiological evidence strongly supports the association between higher levels of aerobic exercise and reduced risk for breast cancer (24). However, whether exercise in premenopausal women results in what may be favorable effects on estrogen metabolism is not clear. For example, in one small study highly fit women exercising strenuously for 368 minutes a week had similar values of 2-OHE₁, 16 α -OHE₁, and 2-OHE₁/16 α -OHE₁ ratio than those of women exercising recreationally for only 60 minutes a week (25). In contrast, in another small study higher levels of self-reported physical activity

were associated with higher urinary concentrations of 2-OHE₁ and a higher 2-OHE₁/16α-OHE₁ ratio (26). Recently, a large study of 603 women from the Nurses' Health Study II found high levels of physical activity not only to be correlated with a higher 2-OHE₁/16α-OHE₁ ratio, but also significantly lower levels of E₂ and 16α-OHE₁ (27). In comparison, data from exercise intervention studies has been conflicting. For instance, in interventions lasting 12 weeks (28), 16 weeks (29), or even 6 months (30), moderate-to-vigorous intensity aerobic exercise in premenopausal women did not result in any significant changes in urinary concentrations of E₁, E₂, estriol (E₃), 2-hydroxyestrogens, 4-hydroxyestrogens, or 16α-OHE₁, or either 2-OHE₁/16α-OHE₁ or 2-OHE₁/4-OHE₁ ratios. In two small exercise interventions lasting 4 and 6 months, there were significant increases in urinary levels of luteal phase 16α -OHE₁ and 2-OHE₁/16α-OHE₁, respectively (31, 32).

Overall, the data on the effects of aerobic exercise on premenopausal estrogen metabolism are not only conflicting but also narrow in scope. With the exception of two studies (27, 29), all published studies to date have focused on a limited number of estrogen metabolites, namely 2-OHE₁ and 16 α -OHE₁, and their ratio. Furthermore, no study has yet investigated the levels of the 2- and 4- methylated catecholestrogens despite their purported role in breast carcinogenesis as suggested by culture and animal studies. The WISER (Women In Steady Exercise Research) study was a large, randomized, exercise-controlled, parallel-arm, clinical study investigating the effects of 16-weeks of moderate-to-vigorous intensity aerobic exercise on several parameters pertinent to breast cancer risk in sedentary, healthy, young eumenorrheic women. Here we report changes from baseline in urinary levels of estrogens (E₁, E₂, and E₃), nine estrogen metabolites (2-OHE₁, 2-OHE₂, 16 α -OHE₁, 4-OHE₁, 4hydroxyestradiol [4-OHE₂,], 2-methoxyestrone, [2-MeOE₁], 2-MeOE₂, 4-methoxyestrone [4-MeOE₁], and 4-methoxyestradiol [4-MeOE₂]), and two estrogen metabolite ratios (2-OHE₁/16 α -OHE₁, and 2-OHE₁/4-OHE₁).

SUBJECTS AND METHODS

Study design

The WISER study was a randomized clinical trial investigating the effects of a 16-week aerobic exercise intervention on breast cancer biomarkers of healthy, premenopausal women. All procedures were approved by the Human Subjects Review Committee at the University of Minnesota (Institutional Review Board; IRB ID#0505M69867). Written informed consent was obtained from each participant prior to participation. A complete description of the study design, including participant recruitment, screening, randomization, and retention has been published (33).

Briefly, WISER study investigators emailed more than 100,000 female residents of the Minneapolis-St. Paul metropolitan area regarding participation. Women who were interested were screened online based on age (18–30 years old), physical activity (two or less weekly sessions of moderate intensity exercise), smoking status (non-smoking), body mass index (BMI) (18–40 kg/m² inclusive), and self-reported menstrual cycle length (24 to 35 days). Women who met these criteria were further screened via telephone (n = 1684) and excluded based on previous hormonal contraception use (past three months or 12 months if depot-medroxyprogesterone acetate), gynecological problems, metabolic or endocrine-related diseases, current or recent (past 6 months) pregnancy, non-melanoma cancer in the past 5 years, alcohol consumption (more than 7 servings per week), and body weight changes (more than 10% over the past year).

Of the 966 women who attended a 2-hour orientation, 391 provided written consent and were enrolled in the study. After baseline measurements, women were randomized into

either an exercise intervention (n = 212) or a no-exercise, usual-lifestyle control group (n = 179) for approximately 16 weeks. Randomization was stratified on baseline BMI tertiles (22.8, 22.8–26.3, 26.3) based on the 50th and 75th percentiles from NHANES I data and age (18–24 *vs.* 25–30). Participants who failed to return for follow-up measures were dropped from of the study. Additionally, exercisers were subject to study exclusion if they missed 15 or more exercise sessions. Figure 1 shows the recruitment, screening, randomization, retention, and completion of WISER participants.

Exercise intervention

Women randomized to the exercise intervention trained aerobically five times a week for 30 minutes on a treadmill, stair-stepper, or elliptical machine, at a specified intensity based on age-predicted maximal heart rate (max HR) for 16 weeks (\pm 2 weeks). The exercise intensity was initially set at 65%–70% of the age-predicted max HR and was gradually increased by 5% every four weeks until 80%–85% of age-predicted max HR was reached (stage 1 = 65%–70%; stage 2 = 70%–75%; stage 3 = 75%–80%; stage 4 = 80%–85%).

All training sessions took place at the University of Minnesota's Recreation Center. At the first training session, a certified personal trainer provided instruction on the proper use of the exercise machines, heart rate monitor and watch, and completion of an exercise log after each workout. Trainers supervised exercise sessions and reviewed the exercise logs at least once weekly to monitor adherence and safety. When not meeting with a trainer, participants were expected to complete the remaining of the workout sessions unsupervised. Exercise adherence was assessed using the data from the heart rate monitor (Polar Electro Inc., Lake Success, NY) and exercise logs.

Any physical activity performed after randomization and outside the prescribed exercise intervention was assessed at the end of the study with a physical activity questionnaire administered by a research staff member. All participants, regardless of randomization outcome, were asked to maintain their baseline body weight. Control participants were asked to not only to maintain their usual level of physical activity but also to not change their eating habits.

Anthropometrics

Body mass was measured to the nearest 0.1 kg using an electronic scale (Scale Tronix, White Plains, NY) 4 times throughout the study (baseline, intervention weeks 4 and 8, and follow-up). Height was measured without shoes to the nearest 0.1 cm (Scale Tronix, White Plains, NY) by a stadiometer at baseline. Body mass index was calculated by dividing body mass in kg by height in meters squared (kg/m²). Body composition was assessed at baseline and follow-up by dual energy x-ray absorptiometry (DXA) using a Lunar Prodigy DXA apparatus (Lunar Radiation Corp., Madison, WI).

Aerobic fitness and physical activity

Aerobic fitness was assessed at baseline and immediately after the intervention with a submaximal treadmill test described previously (33). This workload was then converted to metabolic equivalents (METs) by using a standard conversion formula (34). Self-reported physical activity performed a year prior to the study and during the 4-month follow-up period was assessed by a research staff using a modified version of the Modifiable Activity Questionnaire (35). This information was transformed into MET-hours per week (MET-hrs/ wk) using commonly accepted MET values (36).

Dietary intake

Usual dietary intake was assessed through self-reported, 3-day food records completed concomitantly with the urine collections at baseline and follow-up. Nutrient intake was determined using The Food Processor SQL[®] by ESHA Research (Salem, OR).

Urine collection

Forty-eight hours prior to the urine collection, participants were asked to avoid moderate or vigorous exercise and abstain from alcohol. Urine was collected for three consecutive 24-hour periods in the mid-follicular phase (follicular days 7 - 9 of baseline menstrual cycle 2 and follow-up menstrual cycle 6). Throughout each day, urine was collected in a 1-liter bottle and kept cold with ice packs inside an insulated bag. At the end of each collection day, urine was transferred into a 3-liter bottle containing ascorbic acid (1 mg/mL) to prevent oxidation, and stored in a home refrigerator or cooler provided by the study. Once the urine collection was completed, collection bottles were retrieved by a research staff member and brought to the General Clinical Research Center at the University of Minnesota for processing. Urine was refrigerated and 0.1% sodium azide was added before the three 24-hour collections were pooled. Aliquots were taken and stored at -20 °C until analysis.

Estrogen metabolites

Urinary estrogens (E_1 , E_2 , and E_3) and their metabolites (2-OHE₁, 2-OHE₂, 16α-OHE₁, 4-OHE₁, 4-OHE₂, 2-MeOE₁, 2-MeOE₂, 4-MeOE₁, and 4-MeOE₂) were analyzed in the midfollicular phase of baseline and follow-up cycles by liquid chromatography/tandem mass spectrometry (LC/MS-MS) performed using a Thermo Electron Quantum Discovery Max Triple Quadrupole LC-MS/MS instrument (37). Quantitative analysis was performed using Thermo Electron Xcalibur proprietary software.

Samples with non-detectable levels were assigned values of the lowest detectable standard (0.014 ng/mL urine). Concentrations were expressed both as nanomol per day (nmol/day) and nanograms per milligram of creatinine (ng/mg Cr). Urinary creatinine was analyzed at the Fairview University Diagnostic Laboratories.

Samples were run in duplicate and in batches such that each batch contained both baseline and follow-up samples from each participant and an equal number of exercise and control participants. One quality control sample was included in each batch. The mean intra-assay and inter-assay CVs were 5.1% and 13.4% for E_1 ; 5.2% and 16.0% for E_2 ; 5.6% and 11.4% for E_3 ; 4.2% and 12.3% for 2-OHE₁; 7.7% and 10.8% for 2-OHE₂; 6.2% and 18.7% for 16 α -OHE₁; 4.3% and 12.2% for 4-OHE₁; 14.0% and 51.2% for 4-OHE₂; 7.0% and 11.3% for 2-MeOE₁; 5.8% and 10.0% for 2-MeOE₂; 7.4% and 10.3% for 4-MeOE₁; and 6.9% and 7.9% for 4-MeOE₂.

Statistical analyses

Unadjusted comparisons of baseline characteristics were performed using Student's *t*-tests for continuous variables and chi-square tests for categorical variables.

Two estrogen metabolite ratios of interest, namely the $2-OHE_1/16\alpha-OHE_1$ ratio and $2-OHE_1/4-OHE_1$ ratio, were calculated by dividing the concentration of $2-OHE_1$ by either $16\alpha-OHE_1$ or $4-OHE_1$, respectively.

Baseline associations between urinary estrogens, their metabolites, and metabolite ratios and measures of body composition, adiposity, fitness, reproductive characteristics, and diet were determined using Spearman correlation coefficients.

The main study analysis assessed the intervention effects using only data from participants who completed the baseline and follow-up urine collection regardless of compliance level. Baseline and follow-up comparisons were conducted using log-transformed values and results are presented as geometric means with 95% confidence intervals. Changes from baseline comparisons were compared on the original scale. All comparisons were adjusted for study-design age and BMI strata with a general linear model. When there were significant differences at baseline in an outcome, follow-up and change from baseline comparisons were additionally adjusted for baseline values. Linear models were calculated using SAS software, version 9.2 (SAS institute Inc., 2008, Cary, NC). P < 0.05 was considered statistically significant.

Estrogen metabolite data were analyzed as both nmol/day and ng/mg Cr. Results from the two analyses did not differ significantly, and we report results as nmol/day.

RESULTS

Study participants

Of the 212 and 179 women randomized into the exercise and control groups, 165 (77.8%) and 153 (85.5%), respectively, completed the WISER study. With the exception of education (47% of drop-outs had some college education *vs.* 27% of study completers P= 0.002), drop-outs were no different from women who completed the study in any of the baseline demographic characteristic measured (data not shown). Also, there were no significant differences between exercisers and controls in baseline demographic characteristics (Table 1). In general, women who completed the study were mostly Caucasian (72%), single (82%), nulliparous (93%), had education beyond high school (96%), and had no first-degree relatives with breast cancer (97%).

Baseline estrogen metabolism

With the exception of 2-OHE₁ (P = 0.084) and 2-OHE₁/16 α -OHE₁ ratio (P = 0.044), exercisers had similar levels of urinary estrogens, estrogen metabolites, and 2-OHE₁/4-OHE₁ ratio than control participants at baseline (Table 2). No significant baseline associations between any of the urinary endpoints and measures of body composition, adiposity, fitness, reproductive characteristics, and diet were found.

Overall, the concentration of estrone and its metabolites were higher than their estradiol counterparts, especially for E_1 , 2-OHE₁, 4-OHE₁, and 4-MeOE₁ as compared to E_2 , 2-OHE₂, 4-OHE₂, and 4-MeOE₂, respectively. Estrogen hydroxylation showed an isomeric preference for the C-2 position. Specifically, concentrations of 2-OHE₁ were about 14- and 20-fold higher than those of 16 α -OHE₁ and 4-OHE₁, respectively, and concentration of 2-OHE₂ about 40-fold those of 4-OHE₂.

Exercise adherence

On average, exercise participants completed 127 minutes per week of the assigned 150 minutes of exercise intervention. Details about exercise adherence and compliance can be found elsewhere (38).

Intervention effects

The exercise intervention resulted in significant improvements in body composition and aerobic fitness without changes in body weight. As previously reported, exercisers experienced significant increases in aerobic fitness (0.90 METs reached at 85% of max HR *vs.* 0.12 METs in controls) and lean body mass (0.55kg *vs.* 0.07 kg), as well as significant decreases in fat mass (0.57 kg *vs.* 0.04 kg) and percent body fat (0.95% *vs.* 0.09%). In

contrast, control participants experienced no changes in body composition, aerobic fitness, and body weight despite a significant reduction in daily caloric intake (-224 kcal/day). Exercisers also reduced their food consumption, but only by 18 kcal/day (P > 0.05). Details on the effects of this intervention on body composition, body weight, aerobic fitness, and energy intake have been published previously (39).

As previously reported, the exercise intervention resulted in no significant changes in endogenous levels of E_2 , estrone sulfate, progesterone, T, or SHBG (38). Exercisers, however, did experience a significant increase in urinary 2-OHE₁/16α-OHE₁ ratio (P = 0.043) while controls had a non-significant decrease in 2-OHE₁/16α-OHE₁ ratio. The difference in the change from baseline in 2-OHE₁/16α-OHE₁ ratio between groups was significant (P = 0.045), even after adjustment for baseline values. Figure 2 shows that many, but no all, of the participants who experienced an absolute change in 2-OHE₁/16α-OHE₁ ratio. Levels of E_1 remained unchanged in exercisers but decreased in controls resulting in a statistically significant change from baseline between the groups (P = 0.042). No significant within-group changes or between-group differences at follow-up were observed for other estrogens, estrogen metabolites, or ratios.

DISCUSSION

We found that in healthy premenopausal women, an exercise regimen of 150 minutes of moderate-to-vigorous aerobic exercise per week for 16 weeks resulted in significant changes in estrogen metabolism in a direction consistent with reduction of breast cancer risk. Specifically, exercise participants experienced a significant increase in urinary levels of 2-OHE₁ and a small non-significant decrease in 16α -OHE₁ levels. These changes resulted in a significant increase in the 2-OHE₁/ 16α -OHE₁ ratio. In contrast, women in the control group had a non-significant decrease in 2-OHE₁/ 16α -OHE₁ ratio largely attributable to those few controls with large baseline ratio having large decreases in the ratio. Controls also had an unexplained significant decrease in E₁. We did not find evidence for exercise resulting in changes in the 4-hydroxylation pathway or other differences that conceivably could have been found.

Overall, our results differ from those of other exercise intervention studies investigating the effects of aerobic exercise on premenopausal estrogen metabolism. For instance, in a small 5-month weight-loss clinical trial involving moderate-intensity exercise, both controls and exercisers had significant increases in the urinary 2-OHE₁/16 α -OHE₁ ratio, but in contrast to our results, the change in ratio between the groups was not statistically significant (32). In a small pre-post design study, 4 months of moderate exercise coupled with calorie restriction resulted in non-significantly higher urinary levels of 2-OHE1 and 16a-OHE1 and the ratio (31). In our study, both 2-OHE₁ and the 2-OHE₁/ 16α -OHE₁ ratio increased significantly, whereas 16a-OHE₁ decreased non-significantly. Both of these studies differed from our study in that aerobic exercise was coupled with significant calorie restriction making it impossible to discern whether the changes reported were the result of the exercise or diet. When compared to exercise-only interventions, our study remains the only one to report significant changes in estrogen metabolism. For example, in a moderate-to-vigorous aerobic exercise intervention lasting 12 weeks (30-45 minutes, 4 days per week), Campbell and colleagues reported no significant changes in urinary premenopausal levels of 2-OHE₁, 16a- OHE_1 , or 2- $OHE_1/16\alpha$ - OHE_1 ratio (28). Similarly, in a pilot study carried out by our research group, total levels of 2-OHE (2-OHE₁ + 2-OHE₂), 4-OHE (4-OHE₁ + 4-OHE₂), and the 2-OHE₁/16a-OHE₁ ratio remained unchanged in 15 young women exercising aerobically for 30 minutes a day, 5 times a week for 16 weeks (29). Similarly, Robles-Gil et

al. did not find significant changes in E_1 , E_2 , or E_3 in 20 premenopausal women after 6 months of 60 minutes of moderate-intensity exercise 3 days/week (30).

A possible explanation for the disparity between the results reported by these exercise intervention studies and our study may be found in the choice of study design and methodology. The WISER study had many methodological advantages over previously published research. First, the sample size in our study (n = 318) was an order of magnitude or more larger than those of the other three studies. Second, our study design utilized randomized controls (only Campbell et al. study was randomized). Third, unlike the studies of Campbell et al. and Robles-Gil et al., in which first morning urine samples were used, WISER participants collected three 24-hour urine collections allowing for a more robust and representative analysis of the chronic effect of aerobic exercise on estrogen metabolism. Finally, our study provides the most comprehensive analysis on the effects of exercise on estrogen metabolism to date. We have analyzed urinary levels of the major parent estrogens $(E_1, E_2 \text{ and } E_3)$ and nine of their estrogen metabolites by LC/MS-MS. This newer methodology is considered to be superior not only to the ELISA methods employed by these studies but also to the current gold standard GC-MS due to its increased sensitivity and sample throughput (37, 40). Unlike Xu and colleagues, we were able to quantify and report 4-OHE₂, concentrations, although its lack of detection in 53.4% of our samples resulted in a higher-than-expected inter-assay CV.

Altogether, the findings of the WISER study are significant because they provide the first clinical evidence that aerobic exercise can significantly change estrogen metabolism in premenopausal women. Specifically, our results show that such an exercise intervention can lead to increases in 2-OHE₁ and possible decreases in 16α -OHE₁ ultimately resulting in significant increases in the 2-OHE₁/ 16α -OHE₁ ratio. Importantly, increases in this ratio have been associated with a significant reduction in breast cancer risk. From a clinical point of view, the assessment of urinary 2-OHE₁/ 16α -OHE₁ ratio is also relevant as it has been found to be a good approximation to the 2-OHE₁/ 16α -OHE₁ ratio of breast tissue (41). Perhaps one mechanism by which exercise mediates estrogen metabolism is through the regulation of P-450 cytochrome enzymes responsible for controlling estrogen hydroxylation and catecholestrogen methylation. Given the implication these results have for breast cancer prevention efforts, future studies should not only attempt to corroborate our results, but also investigate the exact mechanisms by which exercise leads to these favorable estrogen metabolism changes.

Acknowledgments

The project was funded by the National Institutes of Health/National Cancer Institute grant 1U54CA116849-010003, the Department of Defense/U.S. Army Medical Research and Materiel Command Congressionally Directed Medical Research Programs award #W81XWH-08-1-0301, and the National Institutes of Health/National Center for Research Resources grant M01-RR00400.

The authors wish to acknowledge the General Clinical Research Center at the University of Minnesota, the Minneapolis YWCAs, and the study participants. We would also like to thank the WISER administrative and laboratory staff, especially Mike Wachter and Steve McColley.

References

- McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008 Mar; 8(3): 205–11. [PubMed: 18235448]
- Yager JD. Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr. 2000; (27):67–73. [PubMed: 10963620]
- 3. Schneider J, Huh MM, Bradlow HL, Fishman J. Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells. J Biol Chem. 1984 Apr 25; 259(8):4840–5. [PubMed: 6325410]

- Li JJ, Li SA. Estrogen carcinogenesis in Syrian hamster tissues: role of metabolism. Fed Proc. 1987 Apr; 46(5):1858–63. [PubMed: 3030825]
- Liehr JG, Fang WF, Sirbasku DA, Ari-Ulubelen A. Carcinogenicity of catechol estrogens in Syrian hamsters. J Steroid Biochem. 1986 Jan; 24(1):353–6. [PubMed: 3009986]
- Suto A, Bradlow HL, Wong GY, Osborne MP, Telang NT. Experimental down-regulation of intermediate biomarkers of carcinogenesis in mouse mammary epithelial cells. Breast Cancer Res Treat. 1993 Sep; 27(3):193–202. [PubMed: 8312577]
- Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992 Apr 15; 84(8):634–8. [PubMed: 1556774]
- Lipsett, MB.; Merriam, GR.; Kono, S.; Brandon, DD.; Pfeiffer, DG.; Loriaux, DL. Catechol Estrogens. New York: Raven Press; 1983.
- Li SA, Purdy RH, Li JJ. Variations in catechol O-methyltransferase activity in rodent tissues: possible role in estrogen carcinogenicity. Carcinogenesis. 1989 Jan; 10(1):63–7. [PubMed: 2910532]
- Roy D, Weisz J, Liehr JG. The O-methylation of 4-hydroxyestradiol is inhibited by 2hydroxyestradiol: implications for estrogen-induced carcinogenesis. Carcinogenesis. 1990 Mar; 11(3):459–62. [PubMed: 2311190]
- Fotsis T, Zhang Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994 Mar 17; 368(6468):237–9. [PubMed: 7511798]
- Klauber N, Parangi S, Flynn E, Hamel E, D'Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997 Jan 1; 57(1):81–6. [PubMed: 8988045]
- Bradlow HL, Hershcopf RJ, Martucci CP, Fishman J. Estradiol 16 alpha-hydroxylation in the mouse correlates with mammary tumor incidence and presence of murine mammary tumor virus: a possible model for the hormonal etiology of breast cancer in humans. Proc Natl Acad Sci U S A. 1985 Sep; 82(18):6295–9. [PubMed: 2994069]
- Meilahn EN, De Stavola B, Allen DS, et al. Do urinary oestrogen metabolites predict breast cancer? Guernsey III cohort follow-up. Br J Cancer. 1998 Nov; 78(9):1250–5. [PubMed: 9820189]
- Muti P, Bradlow HL, Micheli A, et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000 Nov; 11(6):635–40. [PubMed: 11055622]
- Arslan AA, Shore RE, Afanasyeva Y, Koenig KL, Toniolo P, Zeleniuch-Jacquotte A. Circulating estrogen metabolites and risk for breast cancer in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009 Aug; 18(8):2273–9. [PubMed: 19661086]
- 17. Coker AL, Crane MM, Sticca RP, Sepkovic DW. Re: Ethnic differences in estrogen metabolism in healthy women. J Natl Cancer Inst. 1997 Jan 1; 89(1):89–90. [PubMed: 8978414]
- Kabat GC, O'Leary ES, Gammon MD, et al. Estrogen metabolism and breast cancer. Epidemiology. 2006 Jan; 17(1):80–8. [PubMed: 16357599]
- Fowke JH, Qi D, Bradlow HL, et al. Urinary estrogen metabolites and breast cancer: differential pattern of risk found with pre- versus post-treatment collection. Steroids. 2003 Jan; 68(1):65–72. [PubMed: 12475724]
- 20. Kabat GC, Chang CJ, Sparano JA, et al. Urinary estrogen metabolites and breast cancer: a casecontrol study. Cancer Epidemiol Biomarkers Prev. 1997 Jul; 6(7):505–9. [PubMed: 9232337]
- Ursin G, London S, Yang D, et al. Urinary 2-hydroxyestrone/16alpha-hydroxyestrone ratio and family history of breast cancer in premenopausal women. Breast Cancer Res Treat. 2002 Mar; 72(2):139–43. [PubMed: 12038704]
- Adlercreutz H, Fotsis T, Hockerstedt K, et al. Diet and urinary estrogen profile in premenopausal omnivorous and vegetarian women and in premenopausal women with breast cancer. J Steroid Biochem. 1989; 34(1–6):527–30. [PubMed: 2626046]
- 23. Gaikwad NW, Yang L, Muti P, et al. The molecular etiology of breast cancer: evidence from biomarkers of risk. Int J Cancer. 2008 May 1; 122(9):1949–57. [PubMed: 18098283]

- 24. Friedenreich CM, Cust AE. Physical activity and breast cancer risk: impact of timing, type and dose of activity and population subgroup effects. Br J Sports Med. 2008 Aug; 42(8):636–47. [PubMed: 18487249]
- Campbell KL, Westerlind KC, Harber VJ, Friedenreich CM, Courneya KS. Associations between aerobic fitness and estrogen metabolites in premenopausal women. Med Sci Sports Exerc. 2005 Apr; 37(4):585–92. [PubMed: 15809556]
- 26. Bentz AT, Schneider CM, Westerlind KC. The relationship between physical activity and 2hydroxyestrone, 16alpha-hydroxyestrone, and the 2/16 ratio in premenopausal women (United States). Cancer Causes Control. 2005 May; 16(4):455–61. [PubMed: 15953988]
- Matthews CE, Fortner RT, Xu X, Hankinson SE, Eliassen AH, Ziegler RG. Association between physical activity and urinary estrogens and estrogen metabolites in premenopausal women. J Clin Endocrinol Metab. 2012 Oct; 97(10):3724–33. [PubMed: 22855335]
- Campbell KL, Westerlind KC, Harber VJ, Bell GJ, Mackey JR, Courneya KS. Effects of aerobic exercise training on estrogen metabolism in premenopausal women: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev. 2007 Apr; 16(4):731–9. [PubMed: 17416764]
- Schmitz KH, Warren M, Rundle AG, Williams NI, Gross MD, Kurzer MS. Exercise effect on oxidative stress is independent of change in estrogen metabolism. Cancer Epidemiol Biomarkers Prev. 2008 Jan; 17(1):220–3. [PubMed: 18199727]
- Robles Gil MC, Timon R, Toribio AF, et al. Effects of aerobic exercise on urinary estrogens and progestagens in pre and postmenopausal women. Eur J Appl Physiol. 2012 Jan; 112(1):357–64. [PubMed: 21559948]
- 31. Westerlind KC, Williams NI. Effect of energy deficiency on estrogen metabolism in premenopausal women. Med Sci Sports Exerc. 2007 Jul; 39(7):1090–7. [PubMed: 17596776]
- Pasagian-Macaulay A, Meilahn EN, Bradlow HL, et al. Urinary markers of estrogen metabolism 2and 16 alpha-hydroxylation in premenopausal women. Steroids. 1996 Aug; 61(8):461–7. [PubMed: 8870165]
- Arikawa AY, O'Dougherty M, Kaufman B, et al. Women in Steady Exercise Research (WISER): Study design and methods. Contemp Clin Trials. 2010 Sep; 31(5):457–65. [PubMed: 20576482]
- 34. American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. 6. Philadelphia, PA: Lippincott, Williams & Wilkins; 2000.
- Kriska AM, Knowler WC, LaPorte RE, et al. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care. 1990 Apr; 13(4): 401–11. [PubMed: 2318100]
- Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000 Sep; 32(9 Suppl):S498–504. [PubMed: 10993420]
- Xu X, Veenstra TD, Fox SD, et al. Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Anal Chem. 2005 Oct 15; 77(20):6646–54. [PubMed: 16223252]
- Arikawa AY, O'Dougherty M, Kaufman BC, Schmitz KH, Kurzer MS. Attrition and adherence of young women to aerobic exercise: lessons from the WISER study. Contemp Clin Trials. Mar; 33(2):298–301. [PubMed: 22138444]
- 39. Smith AJ, Phipps WR, Arikawa AY, et al. Effects of aerobic exercise on premenopausal sex hormone levels: results of the WISER study, a randomized clinical trial in healthy, sedentary, eumenorrheic women. Cancer Epidemiol Biomarkers Prev. Jun; 20(6):1098–106. [PubMed: 21467231]
- Nelson RE, Grebe SK, DJOK, Singh RJ. Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem. 2004 Feb; 50(2):373–84. [PubMed: 14656902]
- 41. Taioli E, Im A, Xu X, Veenstra TD, Ahrendt G, Garte S. Comparison of estrogens and estrogen metabolites in human breast tissue and urine. Reprod Biol Endocrinol. 2010 Aug 2.8:93. [PubMed: 20678202]

Smith et al.

CONSORT diagram showing participant recruitment, screening, randomization, and retention.

Smith et al.

Figure 2. Changes in Baseline vs. Baseline in 2-OHE1/16α-OHE1 Ratio

Table 1

Baseline Characteristics of Randomized WISER Participants (n = 318)

	Exercisers $n = 165$	Controls $n = 153$			
Demographics					
Age, years (mean \pm SE)	25.4 ± 0.3	25.2 ± 0.3			
Not Married or Partnered (n, %)	137 (83%)	124 (81%)			
Education beyond High School (<i>n</i> , %)	157 (95.2%)	148 (96.7%)			
Caucasian (<i>n</i> , %)	123 (75%)	107 (70%)			
Body Composition (mean ± SE)	Body Composition (mean ± SE)				
Weight (kg)	67.5 ± 1.1	67.6 ± 1.2			
BMI (kg/m ²)	24.8 ± 0.4	24.7 ± 0.4			
% Body Fat	36.4 ± 0.7	36.1 ± 0.7			
Fat Mass (kg)	24.3 ± 0.9	24.1 ± 0.9			
Lean Mass (kg)	39.8 ± 0.4	40.1 ± 0.4			
Reproductive Characteristics	Reproductive Characteristics				
Age at Menarche, years (mean \pm SE) ^{<i>a</i>}	12.7 ± 0.12	12.7 ± 0.11			
Nulliparous (<i>n</i> , %)	153 (93%)	144 (94%)			
Previous Contraceptive Use (n, %)	84 (51%)	82 (54%)			
Family History of Breast Cancer ^b					
No (<i>n</i> , %)	129 (96%)	114 (97%)			
Physical Activity, Fitness & Diet (mean ± SE)					
Moderate Exercise (MET-hrs/wk)	1902 ± 421	1933 ± 525			
Aerobic Fitness (METs at 85% max HR)	21.9 ± 1.3	21.8 ± 1.4			
Total calorie intake (kcal/day) ^C	6.9 ± 0.1	7.1 ± 0.1			

Note: There were no significant differences at baseline between study groups for any of these variables

'n	=	310,

b n = 251,

^c_{n = 312}

Table 2

Effects of 16 Weeks of Aerobic Exercise on Estrogen Metabolism of WISER participants

	Baseline Geometric Mean (05% CD	<i>P</i> -value for Baseline Differences	Follow Un Geometrie Mean (05% CD)	<i>P</i> -value for Differences in Mean Change	
Baseline Geometric Mean (95% CI) Differences Follow Up Geometric Mean (95% CI) Mean Chang					
Exercisers	231(100, 282)	0.586	23.0 (18.9 28.0)	0.042	
Controls	25.0(20.3 - 30.8)	0.500	$23.0(10.5 - 20.0)^{3}$	0.042	
Estradial E	2010 (2010 - 2010)		23.0 (18.8 – 28.2) "		
Exoreisers	7 8 (6 8 - 8 8)	0.786	8 3 (7 2 0 5)	0.725	
Controls	80(70-91)	0.780	8.9(72 - 9.3)	0.725	
Estrial E ₂	(nmol/dav)		0.0 (7.2 7.2)		
Exercisers	21 3 (16 5 – 27 4)	0.963	186(144 - 242)	0.715	
Controls	21.3(16.3 - 27.5)	0.705	21.0(16.0 - 27.5)	0.715	
16 a -OHE ₁	(nmol/day)				
Exercisers	2.9 (2.3 – 3.7)	0.303	2.6 (2.1 – 3.4)	0.971	
Controls	2.5 (1.9 – 3.1)		2.5 (1.9 – 3.2)		
2- OHE ₁ (n.	mol/day)				
Exercisers	39.3 (33.7 – 45.8)	0.084	44.2 (38.4 - 50.8)	0.098	
Control	47.6 (40.5 - 55.8)		45.5 (39.3 – 52.6)		
4- OHE ₁ (n.	mol/day)				
Exercisers	2.3 (2.1 – 2.7)	0.647	2.4 (2.1 – 2.7)	0.362	
Controls	2.4 (2.1 – 2.8)		2.4 (2.1 – 2.7)		
2-0HE ₂ (nr	nol/day)				
Exercisers	3.4 (2.4 - 5.0)	0.209	3.5 (2.4 – 5.1)	0.194	
Controls	2.5 (1.7 – 3.6)		2.9 (1.9 – 4.2)		
4-0HE ₂ (nn	nol/day)				
Exercisers	0.7 (0.4 – 1.0)	0.767	0.8 (0.5 – 1.3)	0.898	
Controls	0.7 (0.5 – 1.2)		0.5 (0.3 – 0.8)		
2-MeOE ₁ (1	ımol/day)				
Exercisers	8.2 (6.5 – 10.4)	0.312	9.3 (7.4 – 11.8)	0406	
Controls	6.9 (5.4 – 8.8)		8.6 (6.8 – 10.9)		
4-MeOE ₁ (n	nmol/day)				
Exercisers	1.9 (1.4 – 2.6)	0.562	1.7 (1.2 – 2.4)	0.488	
Controls	2.2 (1.6 - 3.0)		1.5 (1.1 – 2.1)		
2-MeOE ₂ (1	ımol/day)				
Exercisers	7.1 (5.4 – 9.3)	0.269	7.0 (5.4 – 9.1)	0.556	
Controls	5.8 (4.3 – 7.6)		6.6 (5.1 – 8.7)		
4-MeOE ₂ (n	ımol/day)				
Exercisers	1.6 (1.2 – 2.3)	0.254	1.5 (1.0 – 2.1)	0.552	
Controls	1.2 (0.9 – 1.8)		0.9 (0.7 – 1.4)		
2-OHE1/16	a-OHE ₁				

	Baseline Geometric Mean (95% CI)	<i>P</i> -value for Baseline Differences	Follow Up Geometric Mean (95% CI)	<i>P</i> -value for Differences in Mean Change
Exercisers	13.4 (10.4 – 17.2)	0.044	16.8 (13.1 – 21.4) <i>b</i>	0.045
Controls	19.3 (14.8 – 25.1)		18.5 (14.3 – 24.0)	
2-OHE ₁ /4-0	OHE ₁			
Exercisers	16.8 (14.8 – 19.0)	0.104	18.7 (16.8 – 20.9)	0.123
Controls	19.5 (17.1 – 22.2)		18.9 (16.9 – 21.2)	

NOTE: Values are age- and BMI-adjusted geometric means (95% CI). Follow-up and mean change from baseline comparisons in 2-OHE1 and 2-OHE1/16 α -OHE1 were additionally adjusted for baseline values.

Within-group differences:

 a *P*-value = 0.030,

 ^{b}P -value = 0.043

NIH-PA Author Manuscript