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Introduction 

Vacanti et al introduced tissue engineering based on 
synthetic biodegradable polymer scaffolds in 1988 for 
potential replacement of missing or defective cartilage. 
Tissue engineering/regenerative medicine has the ulti-
mate goal of generating functional 3D constructs which 
can be utilized as replacement organs with normal func-
tion, or serve for in vitro study of drug toxicity, safety 
and efficacy (Unsworth and Lelkes 1998, Langer 1997). 
So far, three principal approaches have been followed in 
tissue engineering: I; direct implantation of freshly iso-
lated or cultured cells, II; in situ tissue regeneration, and 
III; assembly of cells and scaffolds in vitro (Korossis et 
al 2005). Novel model tissue engineering systems have 
two features: I; a biodegradable scaffold that determines 
the final shape and dimension of the constructs, and II; 
the culture environment that provides essential nutrients 
and appropriate mixing which will ensure a uniform cell 
seeding and proliferation (Freed and Vunjak-Novakovic 
1997b).  

Homotypic or heterotypic 3D multicellular spheroids 
provide a more natural cellular differentiation than 2D 

monolayer cultures and show improved mimicry of the 
behavior and function of actual tissues (Hoffman 1993). 
When spheroids are cultured in conventional Petri-dishes 
or bioreactors, the restricted nutrient and oxygen diffu-
sion into the spheroids results in a hypoxic, necrotic cen-
ter in constructs larger than 1 mm in size (Sutherland et 
al 1986) which limits the functional properties of the 
constructs. Microgravity has advanced the field of tissue 
engineering by facilitating diffusion of nutrients and 
oxygen into these spheroids and thus creating constructs 
devoid of necrotic centers (Unsworth and Lelkes 1998). 
Under microgravity conditions, aggregation of cells is 
also enhanced by induction of differentiative cellular 
signaling. These issues have led to achieving constructs 
larger than those engineered in conventional bioreactors 
or 2D cultures (Unsworth and Lelkes 1998).  
In this review article, we will discuss the development of 
microgravity bioreactors along with cartilage and bone 
tissue engineering under microgravity. Advances in pan-
creas and liver tissue engineering, their potential applica-
tions in treatment of diabetes and acute liver failure and 
the important role of tissue engineering in cancer re-
search and pharmaco-toxicology are also discussed. 

A B S T R A C T A R T I C L E  I N F O                            

Introduction: The severe need for constructing replacement tissues in organ transplanta-
tion has necessitated the development of tissue engineering approaches and bioreactors 
that can bring these approaches to reality. The inherent limitations of conventional bioreac-
tors in generating realistic tissue constructs led to the devise of the microgravity tissue 
engineering that uses Rotating Wall Vessel (RWV) bioreactors initially developed by 
NASA. Methods: In this review article, we intend to highlight some major advances and 
accomplishments in the rapidly-growing field of tissue engineering that could not be 
achieved without using microgravity. Results: Research is now focused on assembly of 3 
dimensional (3D) tissue fragments from various cell types in human body such as chon-
drocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas 
islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal 
bioartificial liver devices. Tissue constructs can be used not only in organ replacement 
therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of vari-
ous cancers may be used in studying cancer development and biology or in high-
throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies 
from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tis-
sue engineering in (simulated) microgravity has been one of the stunning impacts of space 
research on biomedical sciences and their applications on earth. 
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Microgravity bioreactors for tissue engineering  

Bioreactors are biomechanically active simulation sys-
tems that use mechanical means to influence biological 
processes. Bioreactors can contribute to in vitro forma-
tion of tissues by providing and tightly controlling the 
biochemical and physical regulatory signals to cells. The 
mechanical stimulation by bioreactor can encourage cells 
to differentiate (Altman et al 2002) and produce extra-
cellular matrix more quickly (Carver and Heath 1999). 
Bioreactors provide tissue cultures by required nutrients 
and gases and facilitate nutrient transport to and waste 
transport from the tissue. Bioreactors and especially mi-
crogravity bioreactors can maintain a spatially-uniform 
cell distribution throughout the tissue engineering scaf-
fold (Partap et al 2010, Goldstein et al 2001, Yu et al 
2004).  

Space research contributed to the expanding field of tis-
sue engineering by combining cell culture and micro-
gravity. Years ago, it was recognized that microgravity 
might benefit tissue engineering by promoting cell-cell 
association while minimizing turbulence and shear 
stress. Indeed, cells in suspension tend to aggregate 
when exposed to microgravity (Hymer et al 1996, 
Dintenfass 1986). Microgravity promotes co-location of 
cells and initiation of differentiative cellular signaling 
via induction of specialized cell adhesion molecules and 
extracellular matrix proteins. These in turn, may lead to 
establishment of 3D tissue constructs (Freed and 
Vunjak−Novakovic 1995). Microgravity has also been 
shown to potentiate stem cell proliferation while sustain-
ing their capability for differentiation (Yuge et al 2006), 
which can be of utmost importance in tissue engineering. 

First examples of microgravity devices fabricated by 
researchers at NASA were Slow-Turning Lateral Vessel 
(STLV) and the High Aspect Ratio Vessel (HARV) (EL-
Haj AJ and Cartmell 2010, Martin and Vermette 2005). 
RWV bioreactor was introduced for studying tissue gen-
eration and cell behavior under microgravity (Schwarz et 
al 1992). In a RWV bioreactor, two concentric cylinders 
exist: an inner cylinder from silicone rubber that is sta-
tionary and is meant for gas exchange and the outer cy-
linder capable of rotating at a constant angular speed. 
Rotation of the vessel provides an upward hydrodynamic 
drag force against the downward gravitational force. 
When the gravitational forces are balanced with centri-
fugal forces, a microgravity-like culture condition is 
created within the cylinders in the annular space (Partap 
et al 2010). With gradual increase in the size of the tis-
sues in bioreactor, the rotation speed must increase to 
balance the gravitational force and maintain the scaffold 
in suspension (Partap et al 2010, Kwon et al 2008). Me-
dia can be exchanged through a fluid pump. RWV bio-
reactor is now commercially available from Synthecon 
in USA (Houston, Texas) and from Cellon in Europe 

(Luxembourg). Fig. 1 shows a schematic representation 
of RWV bioreactor, which is often used in tissue engi-
neering under, simulated microgravity. 

 

 
Fig. 1. RWV microgravity bioreactor developed by NASA. 

 
The fluid dynamics of RWV bioreactors allows for dif-
fusion of oxygen and nutrients to the cell aggregates and 
results in tissue constructs devoid of necrotic cores 
(Hammond and Hammond 2001, Unsworth and Lelkes 
2000). Shear stress can be harmful to the engineered 
tissue constructs. Recently, the safe range of microcar-
rier radius or tissue size to avoid shear stress in RWV 
bioreactors has been determined (Farrag 2009). In anoth-
er attempt, appropriate operating parameters for a RWV 
bioreactor such as oxygen transport and consumption 
and optimal rotation speed were determined (Kwon et al 
2008). In a numerical simulation, different parameters 
involved in a successful simulation of microgravity such 
as fluid shear, mass transport, collisions between 
microcarriers and between the microcarrier and walls of 
the cylinder, and the use of adequate and appropriate 
controls have been discussed (Ayyaswamy and 
Mukundakrishnan 2007). One of the limitations of RWV 
bioreactors is that when tissue engineering scaffolds with 
more density than the culture environment is used, cell 
aggregates fall to the bottom of the cylinder.  

As first attempts of tissue engineering in microgravity, 
RWV bioreactors were used for formation of cartilagin-
ous constructs composed of round cells, collagen and 
glycosaminoglycan, and cardiac tissue constructs con-
tracting spontaneously and synchronously (Freed and 
Vunjak-Novakovic 1997b). In this study, constructs 
grown in microgravity had the highest fractions of rege-
nerated tissue and glycosaminoglycan content (the com-
ponent required for cartilage to endure compressive 
forces) compared to constructs grown in rotating bio-
reactors, turbulent mixers and Petri-dishes (Freed and 
Vunjak-Novakovic 1997b). However, 3D aggregates did 
not form in every case, e.g. the insect ovary cell line SF-
9 did not aggregate in RWV bioreactor (Francis et al 
1997). A good list of early examples of cells and tissues 
cultivated in (simulated) microgravity has been pre-
sented by Unsworth et al (1998). 



 

     | 25 BioImpacts, 2012, 2(1), 23-32 Copyright © 2012 by Tabriz University of Medical Sciences 

Tissue engineering in (simulated) microgravity 

Cartilage tissue engineering in microgravity 

Chondrocyte aggregates have been generated on beads 
(Duke et al 1996), meshes (Hu and Athanasiou 2005) 
and novel porous biopolymers such as chitosan (Nettles 
et al 2002) in RWV bioreactors. Ohyabu et al reported 
the rapid regeneration of 3D large cartilaginous tissue 
from rabbit bone marrow cells (without a scaffold) using 
a RWV bioreactor (Ohyabu et al 2006). The same group 
succeeded to control the cartilage tissue shape from rab-
bit bone marrow cells by RWV bioreactor using a colla-
gen sponge scaffold which enhanced the glycosaminog-
lycan content of the generated tissues and strengthened 
the compression strength of the product (Ohyabu et al 
2009). The cartilaginous tissue aggregates formed with-
out scaffold from bone marrow-derived cells using the 
RWV bioreactor were placed in critical osteochondral 
defects in rabbit femur and rapid regeneration of defects 
were reported (Yoshioka et al 2007). In an attempt to 
engineer rat articular cartilage articular chondrocytes 
were cultured on 3D macroporous poly(DL-lactic-co-
glycolic acid) (PLGA) sponges under microgravity with 
chondrogenic medium (containing TGF-β1) which led to 
redifferentiation of rat chondrocytes and formation of 
hyaline-like rat cartilage (Emin et al 2008). In RWV 
bioreactor, a hyaline cartilage tissue, which possessed 
favorable morphological properties, was engineered 
from human bone marrow-derived cells (Sakai et al 
2009).  

However, cartilage constructs flown in space are me-
chanically inferior to constructs grown on earth while 
those built in RWV bioreactors are quite similar in both 
composition and mechanical strength to natural cartilage 
(Freed et al 1997a, Freed et al 1998). This inferior quali-
ty of space-flown cartilage is in line with the widely-
known adverse effect of space on bone, cartilage and 
even muscles (Stamenkovic et al 2010, Rucci et al 2007, 
Nabavi et al 2011). 

 
Bone tissue engineering in microgravity 

RWV bioreactors have been used to generate microcar-
rier-based (Granet et al 1998, Botchwey et al 2001) and 
porous scaffold-based (Turhani et al 2005, Song et al 
2006, Song et al 2008, Kyriakidou et al 2008) osteoblas-
tic cell culture. HARV bioreactor has been used for bone 
tissue engineering using poly(lactic acid glycolic ac-
id)/nano-hydroxyapatite composite microsphere-based 
scaffolds (Lv et al 2008). 3D osteoblast cell cultures on 
bioceramic microspheres and degradable composite mi-
crospheres were obtained in RWV bioreactor (Qiu et al 
1999, Qiu et al 2001). Bone tissue engineering has also 
proved promising with mesenchymal stem cells grown 
on mineralized PLGA scaffolds (Koc et al 2008). Undif-
ferentiated embryonic stem cells were encapsulated 
within alginate hydrogels and cultured in a rotary cell 

culture microgravity bioreactor. The generated con-
structs displayed the morphological, phenotypic, me-
chanical and molecular properties of the osteogenic li-
neage (Hwang et al 2009). Bone constructs engineered 
by culturing bone marrow mesenchymal stem cells on 
ceramic bovine bone scaffolds in static flasks and in ro-
tating vessels were transplanted into Sprague-Dawley rat 
cranial bone defects. The engineered bone constructs 
under dynamic culture were found to repair the defects 
better than static counterparts after 24 weeks of in vivo 
implantation (Jin et al 2010). 3D environments such as 
Rotary Cell Culture System (RCCS), enhances osteob-
last cell aggregation and mineralization (Facer et al 
2005). Osseous-like tissues were also engineered in 
small volumes from preosteoblasts cultured in RWV 
bioreactors (Schneider et al 2011). Hydrodynamic mi-
crogravity can thus modulate the composition, morphol-
ogy, and function of the engineered bone (Song et al 
2006).  

Improved mass transfer in the microgravity bioreactor 
and appropriate scaffold material have been suggested as 
decisive factors in bone tissue engineering (Araujo et al 
2010). Shear stress is also known to have a role in os-
teoblastic differentiation, mineralization and calcium 
deposition of stem cells and has been reviewed compre-
hensively along with bioreactors used in bone tissue en-
gineering by Yeatte and Fisher (2011).   

 
Liver tissue engineering in microgravity 

3D assemblies of human liver cells (up to 3 cm long) 
were achieved in simulated microgravity. Bile duct-like 
structures, cohesive hepatocytes, complex stromal struc-
tures, reticulin fibers, bile canaliculi, and tight cellular 
junctions were identified in the 3D assemblies by elec-
tron microscopy (Khaoustov et al 1999). Later, simu-
lated microgravity environment was shown to maintain 
key metabolic functions and promote aggregation of 
primary porcine hepatocytes (which are difficult to 
maintain in normal culture) (Dabos et al 2001). Low-
shear modeled microgravity has also been shown to 
maintain morphology and differentiated functionality of 
primary porcine hepatocyte cultures which is hard to 
achieve in normal culture (Nelson et al 2010). Rat hepa-
tocytes cultured initially as spheroids on culture plates 
and then transferred into HARV, retain cellular and phy-
siological properties of the intact liver, including drug-
metabolizing enzyme activities, plasma protein produc-
tion, and long-term viability (Brown et al 2003).  

Entrapment of hepatocyte spheroids in a hollow fiber 
bioreactor was hypothesized as a potential bioartificial 
liver (BAL) in 1995 (Wu et al 1995). In an attempt to 
design an extracorporeal BAL device (Innsbruck Bioar-
tificial Liver or IBAL), Hochleitner et al designed a bio-
reactor containing aggregates of porcine hepatocytes 
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grown under simulated microgravity. Cell culture was 
possible for at least 10 days in the device (Hochleitner et 
al 2005). IBAL was then tested in pigs through induction 
of fulminant hepatic failure. The survival of pigs was 
significantly prolonged by about 150% with IBAL 
treatment as compared to controls (Hochleitner et al 
2006). Small human hepatocytes in rotary culture were 
then utilized to construct a prototype BAL support sys-
tem, in which cells demonstrated high viability (90-
95%), and thus proved promising in establishment of a 
fully autonomous BAL as a bridge to transplantation 
(Wurm et al 2009). Very recently, a simple dummy liver 
assist device was shown to prolong anhepatic survival in 
a porcine model of total hepatectomy (Thiel et al 2011). 

 
Microgravity tissue engineering and diabetes 
Xenogeneic islets have been considered for transplanta-
tion in patients with insulin-dependent diabetes mellitus 
(Thompson and Mandel 1990). Allogeneic islet trans-
plants have been successfully used in diabetic recipients, 
but chronic immunosuppressive agents are needed to 
prevent the rejection of transplanted cells (Ryan et al 
2002, Shapiro and Lakey 2000a, Shapiro et al 2000b). 
Microgravity not only enhances the survival or prolifera-
tion of beta islet cells (Song et al 2004a, Song et al 
2004b), but also reduces their immunogenicity by deplet-
ing dendritic cells which express the class II MHC 
(Rutzky et al 2002). Besides, islets have a better mor-
phological, insulin normalizing and secretory profile 
under microgravity (Hou et al 2009).  

Pancreatic islets from neonatal pigs, and Sertoli cells 
from prepubertal rats co-cultured in simulated micro-
gravity, have been shown to form insulin-secreting, Ser-
toli-enriched tissue constructs (Cameron et al 2001a), 
which have been suggested for long-term transplantation 
treatment of diabetes (Cameron et al 2001b).  Han et al 
transplanted islets and Sertoli cell aggregates co-cultured 
under microgravity to streptozotocin (STZ)-induced di-
abetic rats (Han et al 2009). STZ is used to induce di-
abetes in rats (Ghaffari et al 2012). During the in vivo 
studies, the animals remained euglycemic and the Serto-
li-islets cell aggregates did not elicit allogeneic trans-
plantation rejection, reducing the need for immunosup-
pressive agents (Han et al 2009). 

 

Microgravity tissue engineering for generation of 
model tissues 

3D tissue models mimic specific tissue-like structures 
and functions better than two-dimensional (2D) cultures. 
2D cultures are easy to set up, but lack tumor cell–tumor 
cell, tumor cell–stromal cell, and tumor cell–
extracellular matrix interactions of a typical tumor 
(Kurioka et al 2011). 3D tissue technology may be used 

to produce tissue models of cancer, which may help 
glean new information about cancer development and 
biology by recreating the in vivo tumor phenotype 
(Hutmacher et al 2010, Jessup et al 1993, Jong Bin 
2005, Ingram et al 2010). A cancer model may also be 
used for high-throughput pre-animal and preclinical 
evaluation of anticancer drug candidates because 3D 
tissues can mimic the tissue response and drug resistance 
better than 2D cultures (Burdett et al 2010, Kunz-
Schughart et al 2004). 3D co-cultures may contribute to 
cancer research when heterogeneous cell populations 
(cancer along with cancer stem/tumor-initiating cell 
populations) are used to generate multicellular heterotyp-
ic spheroids (Hirschhaeuser et al 2010, Friedrich et al 
2007). Cancer stem cells are now considered as adjunct 
targets that must be shut down to decrease the possibility 
of tumor relapse after chemotherapy or immunotherapy. 
Tumor-immune cell co-cultures can be considered as 
models for testing novel immunotherapeutic treatment 
strategies. 3-D model tissue constructs may as well, pro-
vide in vitro systems to improve the predictive value of 
cell-based assays in toxicology and food research 
(Mazzoleni et al 2009) 

Model endothelial cells (Sanford et al 2002), skeletal 
muscle (Marquette et al 2007), erythroid cells 
(Sytkowski and Davis 2001), adipose tissue (Frye and 
Patrick 2006), cortical-like tissues (Ma 2008), hepatic 
tissue (Ishikawa 2011), vaginal epithelial cells (Hjelm et 
al 2009), human intestinal epithelial cells (Skardal et al 
2010), cardiac cells (Rungarunlert et al 2011), retina-like 
structures  (Dutt et al 2003) and lacrimal gland acinar 
cells (Schrader et al 2009) have been constructed under 
microgravity conditions. 3D models of melanoma 
(Marrero et al 2009, Licato et al 2001), carcinoma (Na-
kamura et al 2002), colon carcinoma (Goodwin et al 
1992), breast cancer (Vamvakidou et al 2007), lung can-
cer (Vertrees et al 2009), neuroblastoma (Redden and 
Doolin 2011), hepatocellular carcinoma (Tang et al 
2011) and ovarian and endometrial cancer (Grun et al 
2009, Goodwin et al 1997) have been engineered using 
microgravity bioreactors.  
Carvalho et al have expanded the application of micro-
gravity tissue engineering by developing a 3D tissue 
culture model from human intestinal epithelial HCT-8 
cells using RCCS for the study of attach and efface le-
sion formation by enteropathogenic and enterohemorr-
hagic Escherichia coli (Carvalho et al 2005). A 3D Huh7 
cell culture system was also engineered for the study of 
hepatitis C virus infection (Sainz et al 2009). Human 
norovirus infection of Caco-2 cells was modeled by 
growing tissue in a RWV bioreactor to develop an infec-
tivity assays (Straub et al 2011). Researchers have simu-
lated the HIV pathogenesis in artificial lymphoid tissue 
(Margolis et al 1997), Borrelia burgdorferi virulence in 
human tonsillar tissue (Duray et al 2005) and cryptospo-
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ridiosis in the HCT-8 (intestinal cells) organoid model 
(Alcantara Warren et al 2008). Cyclospora parasite has 
been grown with cells from the small intestine in micro-
gravity bioreactors (Vastag 2001). Applications of RWV 
bioreactor in establishing organotypic 3D cell culture 
models to study host–pathogen interactions has been 
reviewed by Barrila et al (2010). 

 
Current commercial tissue products  
Many commercial tissue engineering products are cur-
rently available in clinic, however most are not from 
microgravity origin. The presence of these products de-
monstrates that tissue engineering is a viable medical 
and commercial approach.  

Carticel®, as the first cell therapy (cartilage) product 
approved by the FDA, has proved very successful clini-
cally; no reports of serious adverse effects exist. In this 
approach, autologous chondrocytes are grown in vitro 
and then grafted into a cartilage defects (Gillogly and 
Myers 2005). Matrix-induced Autologous Chondrocyte 
Implantation (MACI), ChondroArt, co.don chondro-
transplant, co.don chondrosphere, BioSeed®-C, NOVO-
CART®, Cartilage Repair System (CaRe S), ArthroMa-
trix® and ChondroCelect® are all similar commercial 
products prepared in a similar approach as Carticel® 
(Samadikuchaksaraei 2010). 

Skin replacement therapies are intended for treatment of 
acute or chronic skin disorders and cosmetic surgeries. 
Integra, EpicelTM, Biobrane®, Suprathel®, Matriderm® 
and Transcyte® are examples of products targeted to 
burn victims (Hentze et al 2007, Dieckmann et al 2010). 
Dermagraft®, EpiDex®, Epibase, Laserskin, Permacol®, 
Oasis® and Apligraf® are available for patients with 
chronic skin ulcers. BioSeed-MTM and MelanoSeedTM are 
the two products being used in cosmetic surgery 
(Samadikuchaksaraei 2010). For an excellent and up to 
date review of the regenerative medicine in dermatology 
refer to (Dieckmann et al 2010). Tissue engineered bone 
products include BioSeed-Oral Bone®, co.don osteo-
transplant® and Osteocel. Hepatocyte preparations have 
also shown promise as extracorporeal BALs. These sys-
tems are now under study as Extracorporeal Liver Assist 
Device (ELAD), HepatAssist, Bioartificial Liver Support 
System (BLSS) and Extracorporeal Liver System 
(MELS). Tissue engineered vascular products, neural 
products (for treatment of spinal cord injury) and cellular 
products for the constructive functional remodeling of 
the heart after a myocardial infarction seem to be 
achievable targets for regenerative medicine (Badylak 
and Nerem 2010). 

Future outlook 

In this review article, we focused on microgravity tissue 
engineering of cartilage, bone, liver and pancreas as well 
as 3D models of different organs; however, other tissues 
such as epidermis, periodontal ligament and arteries have 
also been constructed in microgravity (Gao et al 2012, 
Lei et al 2011, Li et al 2009). The culture of whole sen-
sory organs and other high-density structures in rotating 
bioreactors can provide in vitro models for physiological 
and pathophysiological investigations (Arnold et al 
2010, Hahn 2008). Very recently, a 3D cell biology 
model of human hepatocellular carcinoma was con-
structed in vitro by culturing MHCC97H cells on mole-
cular scaffolds within a RWV bioreactor (Tang et al 
2011). A modified RCCS bioreactor, Rotary Cell Culture 
System! (RCCS!), was used to engineer a 3D model of 
bone matrix for studying osteocytes’ differentiation and 
bone matrix formation (Mazzolenia et al 2011). Some 
researchers speculate that microgravity tissue engineer-
ing will allow for testing chemotherapeutics on cells 
taken from an individual patient and grown in vitro. 

However, there are yet some obstacles to overcome after 
achieving tissue constructs of desired sizes and qualities. 
One of these issues is the variability of patient response 
regarding resorption, recellularisation and regeneration 
of the implanted tissue (Korossis et al 2005). Spontane-
ous vascularisation of the in vitro grown tissue also re-
mains an issue (Korossis et al 2005). One question that 
remains to be answered is whether the differences in cell 
physiology and gene expression in cells and tissues con-
structed under microgravity could adversely affect pa-
tients treated with these products. Bone loss in space for 
example, has been attributed to changes in gene expres-
sion in osteoclasts (Sambandam 2010, Tamma et al 
2009). With advances in the field and overcoming these 
obstacles in near future, we may witness a golden era in 
which tissue replacement therapy of defective organs 
will be a viable option.  
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