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Stimuli that animals encounter in the natural world are
frequently time-varying and activate multiple sensory
systems together. Such stimuli pose a major challenge
for the brain: Successful multisensory integration
requires subjects to estimate the reliability of each
modality and use these estimates to weight each signal
appropriately. Here, we examined whether humans and
rats can estimate the reliability of time-varying
multisensory stimuli when stimulus reliability changes
unpredictably from trial to trial. Using an existing
multisensory decision task that features time-varying
audiovisual stimuli, we independently manipulated the
signal-to-noise ratios of each modality and measured
subjects’ decisions on single- and multi-sensory trials.
We report three main findings: (a) Sensory reliability
influences how subjects weight multisensory evidence
even for time-varying, stochastic stimuli. (b) The ability
to exploit sensory reliability extends beyond human and
nonhuman primates: Rodents and humans both weight
incoming sensory information in a reliability-dependent
manner. (c) Regardless of sensory reliability, most
subjects are disinclined to make ‘‘snap judgments’’ and
instead base decisions on evidence presented over the
majority of the trial duration. Rare departures from this
trend highlight the importance of using time-varying
stimuli that permit this analysis. Taken together, these
results suggest that the brain’s ability to use stimulus
reliability to guide decision-making likely relies on
computations that are conserved across species and
operate over a wide range of stimulus conditions.

Introduction

Sensory information bearing on perceptual decisions
can vary greatly in its reliability. For example, the same
snippet of human speech can provide a reliable
auditory signal in quiet conditions but an extremely
unreliable signal in a crowded room. This creates a
challenge for decision-making: Noise interferes with a
subject’s perception, reducing decision accuracy. The
brain’s ability to estimate reliability and use this
estimate to guide decisions is not yet well understood.

Multisensory stimuli provide a tractable entry point
for understanding how reliability is estimated and used
to guide decisions (Shams, 2012). In some circum-
stances, one modality is naturally more reliable than
another and tends to dominate a subject’s percept. In
spatial localization tasks, vision tends to dominate
(Howard & Templeton, 1966), while in timing tasks,
auditory and tactile stimuli tend to dominate (Shams,
Kamitani, & Shimojo, 2000, 2002; Shams, Ma, &
Beierholm, 2005). It would be a mistake to think of
sensory perception as being dominated by one modality
or the other: Considerable evidence indicates that in
most situations, multiple modalities influence a sub-
ject’s decision. The degree to which a particular
modality influences a decision can accurately be
predicted by that modality’s reliability.

To measure the influence of each of two modalities,
subjects are presented with information from two
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sensory modalities (e.g., Alais & Burr, 2004; Ernst &
Banks, 2002). On some trials, the two modalities
convey consistent information supporting the same
decision outcome, but on ‘‘conflict’’ trials the infor-
mation in the two modalities differs. By examining
subjects’ decisions on conflict trials, researchers infer
the perceptual ‘‘weights’’ subjects assign to each
modality (Young, Landy, & Maloney, 1993). These
weights define the degree to which a particular
modality influences a subject’s decisions. Previous
studies demonstrate that humans weight incoming
stimuli in a way that depends on the reliability of each
stimulus. Humans frequently weight available sensory
cues in proportion to their reliabilities, a strategy that is
statistically optimal because it minimizes uncertainty in
the final perceptual estimate (Ernst & Banks, 2002;
Hillis, Watt, Landy, & Banks, 2004; Jacobs, 1999; Knill
& Saunders, 2003; Young et al., 1993). The ability to
weight sensory inputs according to their reliability is
referred to here as ‘‘dynamic weighting’’ because
subjects must change the weights assigned to each
modality on a trial-by-trial basis even when the
reliabilities change randomly on successive trials (e.g.,
Fetsch, Turner, DeAngelis, & Angelaki, 2009; Triesch,
Ballard, & Jacobs, 2002).

Existing work on the influence of reliability on
multisensory integration leaves several key questions
unanswered. First, the vast majority of studies on
multisensory integration have been limited to tasks
involving static stimuli (Alais & Burr, 2004; Ernst &
Banks, 2002). This is a shortcoming because many (if
not most) ecologically relevant stimuli in the world vary
over rapid timescales ranging from tens or hundreds of
milliseconds to a few seconds (Rieke, 1997). For
example, moving predators emit a time-varying stream
of auditory and visual signals, the dynamics of which
are informative about the animal’s trajectory and
identity (Maier, Chandrasekaran, & Ghazanfar, 2008;
Maier & Ghazanfar, 2007; Thomas & Shiffrar, 2010).
The behavioral and neural mechanisms relevant for
decisions about time-varying signals within one mo-
dality have been extensively studied (Cisek, Puskas, &
El-Murr, 2009; Gold & Shadlen, 2007; Huk & Meister,
2012). However, the effect of dynamic stimuli on
multisensory integration is only just beginning to be
studied. The ecological importance of time-varying
multisensory sensory signals for survival and repro-
duction suggests that animals may be able to rapidly
estimate the reliability of such stimuli and appropri-
ately combine the relevant information in a multisen-
sory context.

A second unanswered question is whether only
primates are capable of dynamic weighting. Existing
studies have focused on human and nonhuman
primates (for review, see Alais, Newell, & Mamassian,
2010). Observing dynamic weighting in other species,

such as rodents, would speak to the generality of the
computations that underlie this behavior.

A final unanswered question is of critical impor-
tance. It concerns whether subjects change the manner
in which they accumulate sensory evidence for reliable
versus unreliable stimuli. In the visual system, a class of
analyses has revealed that subjects often are strategic in
how they make use of time (Cisek et al., 2009; Kiani,
Hanks, & Shadlen, 2008; Nienborg & Cumming, 2009;
Raposo, Sheppard, Schrater, & Churchland, 2012;
Sugrue, Corrado, & Newsome, 2004). These analyses
suggest that subjects sometimes make fast decisions and
ignore large portions of the available evidence. By
contrast, the current framework for optimal multisen-
sory integration assumes that subjects make use of all
available information. In reality, subjects might make
fast decisions when presented with reliable stimuli,
causing them to ignore large portions of the available
information. This would lead experimenters to under-
estimate the perceived reliability of such stimuli,
leading, in turn, to inaccurate predictions for percep-
tual weights on multisensory trials. A failure of subjects
to meet these assumptions could be interpreted as
behavioral deviations from optimal cue weighting,
when, in fact, the integration process might be optimal
given the subjects’ strategy of evidence accumulation.

The current study addresses these unanswered
questions. We extended a task that we have recently
developed to study multisensory integration in rodents
and humans. Subjects are presented with time-varying
auditory and/or visual event streams amidst noise and
judge the stimulus event rates. In previous work, we
matched the reliability of auditory and visual stimuli
and demonstrated that subjects’ accuracy improved on
multisensory trials (Raposo et al., 2012). In the present
study, we challenged subjects to not only integrate
sensory information, but to do so in a way that takes
into account the reliability of each stimulus. To achieve
this, we systematically varied the sensory reliability of
auditory and visual evidence and placed the two
modalities in conflict with one another to gain insight
into how subjects exploited stimulus reliability as it
varied unpredictably from trial to trial.

We report three main conclusions: First, we ob-
served that dynamic weighting extends to the process-
ing of time-varying sensory information. Second, we
observed that dynamic weighting is evident in both
humans and rodents. Finally, we determined that most
subjects are influenced by sensory evidence throughout
the trial duration regardless of whether stimuli are
reliable or unreliable. Rare exceptions to this trend
illustrate the importance of using stimuli that permit
this analysis, and may offer insight into previous
deviations from optimal cue weighting that are
reported in the literature (Fetsch, Pouget, DeAngelis, &
Angelaki, 2012; Fetsch et al., 2009; Rosas, Wagemans,
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Ernst, & Wichmann, 2005; Rosas, Wichmann, &
Wagemans, 2007; Zalevski, Henning, & Hill, 2007).
Our findings indicate that dynamic weighting likely
relies on neural computations that are shared among
many species and are common to the processing of a
wide class of stimuli. Overall, this work offers insight
into a fundamental feature of the brain: the ability to
estimate the reliabilities of multiple incoming streams
of sensory evidence and use such estimates to optimize
behavior in an uncertain world.

Materials and methods

Overview of rate discrimination task

We examined the choice behavior of rodents and
humans on a multisensory rate discrimination task that
we have used previously (Raposo et al., 2012 and
Figure 1a). Stimuli consisted of 1-s streams of auditory
and/or visual events separated by random sequences of
short and long interevent intervals of fixed duration
(rats: 50, 100 ms; humans: 60, 120 ms). The ratio of
short to long intervals over the course of the whole trial
determined the average event rate of each trial. Trials
consisting solely of long intervals produced the lowest
possible event rates; trials consisting of only short
intervals produced the highest rates. Event rates ranged
from 7–15 events/s in humans (Figure 1b) and 9–16
events/s in rats. Subjects made two-alternative low-/
high-rate judgments by comparing the average rate of
each trial to an enforced category boundary (humans:
10.5 events/s; rats: 12.5 events/s). Stimuli with more
equal proportions of short and long intervals produced
intermediate event rates difficult to classify as low or
high.

To manipulate sensory reliability, we adjusted the
signal-to-noise ratios (SNRs) of the auditory and visual
stimuli. The SNR of either modality could be
independently manipulated since auditory and visual
stimuli were presented amidst background noise (see
below; Figure 1b). To gauge how strongly subjects
weighted evidence from one sensory modality relative
to the other for each pairing of sensory reliabilities, we
presented multisensory trials in which the auditory and
visual rates conflicted (Figure 1b, left and right
columns). To generate a multisensory trial, we first
randomly selected a conflict level (for example, 2
events/s). Next, we randomly selected a pair of rates
with the specified conflict (for example, 9 and 11 events/
s). Between the two event rates chosen, the lower and
higher rates were randomly assigned to the visual and
auditory stimuli, respectively, leading to ‘‘positive’’ or
‘‘negative’’ cue conflicts in equal proportions. When the
randomly selected conflict level was 0, the same rate

was assigned to both modalities. Mixtures of long and
short interevent intervals were then sampled randomly
to generate independent auditory and visual event
streams with the desired trial-averaged event rates.

Note that because event rates fluctuated in time due
to the random sequences of short and long intervals in
a trial, auditory and visual stimuli arrived at different
moments and had different instantaneous rates on
multisensory trials even when the trial-averaged event
rates were equal (Figure 1b, middle column). At the
lowest and highest event rates (when all intervals were
either short or long), auditory and visual stimuli still
arrived at different times since a brief offset (humans:
20 ms; rats: 0–50 ms randomly selected for each trial)
was imposed between the two event streams. Previous
work indicates that this configuration leads to multi-
sensory improvements in performance comparable to
that observed when auditory and visual events are
presented simultaneously (Raposo et al., 2012). This is
likely because the window of auditory-visual integra-
tion can be very flexible, depending on the task
(Powers, Hillock, & Wallace, 2009; Serwe, Kording, &
Trommershauser, 2011).

Psychophysical methods

Subject performance was characterized using psy-
chometric functions. For each type of visual, auditory,
or multisensory stimulus, we calculated the subject’s
proportion of high-rate decisions as a function of the
trial-averaged event rate (see Figures 2, 3). Standard
errors were computed for choice proportions using the
binomial distribution. We fit psychometric functions
using the psignifit version 3 toolbox (http://psignifit.
sourceforge.net/) for Matlabt (MathWorks, Natick,
MA). Four-parameter psychometric functions f were fit
to the choice data via maximum likelihood estimation
(Wichmann & Hill, 2001):

fðr;l;r; c; kÞ ¼ cþ ð1� c� kÞ 1þ erf
r� l

r
ffiffiffi

2
p

� �� �

;

ð1Þ
where r is the trial-averaged event rate (averaged
between visual and auditory rates for multisensory
trials), l and r are the first and second moments of a
cumulative Gaussian function, c and k are guessing and
lapse rates (i.e., lower and upper asymptotes of the
psychometric function, constrained such that 0 � c, k
� 0.1), and erf is the error function. r is referred to as
the psychophysical threshold and provides a metric of
subjects’ performance; smaller r indicates a steeper
psychometric function and hence improved discrimi-
nation performance (Ernst & Banks, 2002; Hillis, Ernst,
Banks, & Landy, 2002; Hillis et al., 2004; Jacobs, 1999;
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Young et al., 1993). Standard errors on model
parameters were obtained via bootstrapping with 2000
resamples of the choice data.

For a multisensory trial with auditory and visual
event rate estimates r̂A and r̂V, we model the subject’s
final rate estimate r̂ on a multisensory trial as

r̂ ¼ r̂AwA þ r̂VwV; ð2Þ
where wA and wV are linear weights such that wAþwV¼
1 (Ernst & Banks, 2002; Young et al., 1993). Assuming

r̂A and r̂V are unbiased, minimum variance in r̂ is
achieved by assigning sensory weights proportional to
the relative reliabilities (i.e., reciprocal variances) of the
estimates obtained from the two modalities (Landy &
Kojima, 2001; Young et al., 1993). As in previous
work, we estimated the single-sensory reliabilities (R) as
the squared reciprocal of subjects’ psychophysical
thresholds obtained from their single sensory psycho-
metric data: R ¼ 1/r2 (Ernst & Banks, 2002; Young et
al., 1993). Given only the single sensory thresholds rA

Figure 1. Rate discrimination decision task. (a) Schematic of rat behavioral setup. Rats were trained to perform a multisensory rate

discrimination task via operant conditioning. Rats initiated trials by inserting their snouts into a central port (left), triggering an

infrared sensor. After a randomized delay period, 1-s stimuli consisting of auditory and/or visual event streams were delivered

through a speaker and LED panel (middle). Rats were required to remain in the central port until the end of the stimulus, and were

provided with 20 lL of water reward when they selected the correct choice port (low-rate trials: left port; high-rate trials: right port).

Trials in which the rat did not remain in the central port for the full stimulus were punished with a 4-s timeout period before allowing

initiation of a new trial. (b) Example stimuli presented in human version of task. Time courses indicate arrival of events over the

course of the 1-second stimuli. 10 ms events were separated by either short (60 ms) or long (120 ms) intervals. Top: Values on the

ordinate indicate average luminance of events and background noise presented during high-reliability (black) and low-reliability (gray)

visual trials. Bottom: Spectrograms indicate spectral power of sound pressure fluctuations during auditory stimulus presentation

(color bar indicates signal power across frequency bands in units of dB SPL/Hz). Arrows indicate event (220 Hz tone) arrival times for

low- (middle) and high- (left, right) reliability auditory stimuli. Auditory events in rat experiments consisted of white noise bursts (not

shown). Note logarithmic scaling of frequency range. Multisensory trials consisted of visual (top) and auditory (bottom) stimuli

presented together, and included different pairings of auditory and visual reliabilities. Multisensory trials included cue conflict levels

ranging from�2 (left) to þ2 (right) events/second. Auditory and visual event streams were generated independently on all

multisensory trials.
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and rV, an optimal maximum likelihood estimator
assigns sensory weights

wA ¼
r2
V

r2
A þ r2

V

and

wV ¼
r2
A

r2
A þ r2

V

: ð3Þ

Predicted weights can be compared to estimates of
the subjects’ actual sensory weights obtained from
multisensory stimuli in which the conflict between
auditory and visual event rates is systematically
varied. In this conflict analysis, we assess each
subject’s point of subjective equality (PSE; the average
event rate for which the subject is equally likely to
make low- and high-rate decisions, estimated from the
psychometric function) as a function of the sensory
conflict D:

D ¼ rV � rA; ð4Þ
where rV and rA are the presented visual and auditory
rates. Rearranging Equation 2, we obtain

wV ¼
r̂� rA

D
: ð5Þ

Neglecting choice biases, r̂ will equal the category
boundary rate (rCB) when the average event rate, rMean,
is equal to PSEAV (where rMean¼ rAþD/2 and PSEAV is
the PSE for the given multisensory trial type; see Fetsch
et al., 2012; Young et al., 1993). Substituting these
terms into Equation 5 and solving for PSEAV yields

PSEAV ¼ D
1

2
� wV

� �

þ rCB: ð6Þ

One can thus estimate the perceptual weights by
measuring subjects’ PSEs for multisensory trials
presented across a range of conflict levels (Young et al.,
1993), since the slope obtained from simple linear
regression of PSEAV against D provides an empirical
estimate of wV:

ŵV ¼ 1=2� slope: ð7Þ
We used this approach to compare the empirically

estimated weights to the weights predicted from
subjects’ single sensory thresholds (henceforth, ob-
served and predicted weights; Figure 3e and f,
Figure 4). Standard errors for the predicted and
observed weights were estimated by propagating the
uncertainty associated with rA, rV, and PSEAV.
Statistical comparisons of observed and predicted
weights in individual subjects were performed using
Z-tests.

Estimating the timecourses of sensory evidence
accumulation

We performed an additional analysis to assess the
influence on subjects’ decisions of transient event rates
occurring at specific times throughout each trial. The
quantity we computed is closely related to the choice-
triggered average (Kiani et al., 2008; Nienborg &
Cumming, 2009; Sugrue et al., 2004), but is adapted for
our rate stimuli. The details of the analysis are
described elsewhere (Raposo et al., 2012). Briefly, we
first select trials that have neutral event rates (i.e., equal
to the category boundary rate) on average for all time
points falling outside a sliding temporal window of
interest. Next, we define the ‘‘excess rate’’ for each
temporal window as the difference in the mean
window-averaged event rates between the selected trials
that preceded high- versus low-rate decisions; repeating
this analysis for local windows centered at each time
point produces timecourses that indicate how the excess
rate fluctuates across the trial duration. Here, we used
this analysis to compare excess rate timecourses for
reliable versus unreliable stimuli. Window sizes were
333 ms (humans) or 280 ms (rats), which were specified
so that trials could be selected with neutral average
rates outside the windows for the presented event
streams. The difference in window size for humans
versus rats arises because slightly higher event rates
were used for rats. The shorter window size in rats
allowed us to compute a slightly longer excess rate
timecourse for rats as compared to the humans.

Because our goal was to assess the influence of
dynamic sensory evidence on subjects’ decisions under
different levels of sensory reliability, we limited our
analysis of excess rates to unisensory trials. Approxi-
mately 40% and 50% of single sensory trials possessed
the required neutral rates outside the sliding windows
for at least one point within the trial for humans and
rats, respectively. For each trial type, this resulted in
102 6 10 and 845 6 82 (mean 6 SE) trials per window
on average for the example human and rat (Figure 5c,
d), accounting for ; 980 of 2,200 and ; 7,500 of 14,500
total single sensory trials. We also computed excess rate
curves for which data were pooled across all human
and rat subjects (Figure 6); on average, the composite
human and rat datasets included 888 6 77 and 3,486 6
345 trials per window for each trial type.

To make statistical comparisons of the magnitude of
excess rate timecourses between low- and high-reli-
ability stimuli on unisensory auditory and visual trials
(see Figures 5, 6), we computed the mean excess rates
by averaging all window-averaged event rates included
across all sliding windows within the trial duration.
Standard errors for the mean excess rates averaged
across the trial duration were computed by boot-
strapping with 10,000 resamples of the single-sensory
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choice data. Statistical comparisons of average excess
rates between low- and high-reliability trials were
performed using two-tailed Z-tests.

Because visual and auditory events arrived at
discrete moments within each trial, the raw excess rate
curves contained peaks and troughs related to the
arrival of events. Since these peaks and troughs are
artifacts related to the event and interevent interval
lengths and do not reflect meaningful signatures of the
subjects’ decisions, we removed these high-frequency
artifacts from the plotted curves in Figures 5, 6 by
applying a 130-ms moving-average filter. This filter
width was chosen because it was small relative to the 1-
s trial duration, corresponding to the time-scale of
individual event arrival times. Smoothing was per-
formed for clarity of display only; all reported statistics
were performed on the raw, unfiltered excess rate data.

Human experiments

We collected data from seven adult human partic-
ipants (two male) with normal hearing and normal or
corrected-to-normal vision. One subject was an author;
the remaining six were naı̈ve to the purposes of the
experiment. We recruited subjects through fliers posted
at Cold Spring Harbor Laboratory and paid them for
their participation. All research performed on human
subjects was conducted in compliance with the Decla-
ration of Helsinki.

Experiments were conducted in a sound-isolating
booth (Industrial Acoustics, Bronx, NY). Subjects sat
in front of a computer monitor and speaker, and
registered their decisions with a keyboard. Prior to each
trial, subjects were cued to fixate a central black target
offset from the visual stimulus. Stimulus presentation
began 500 ms following the onset of the fixation target.
Stimulus presentation and data acquisition were
performed in Matlab using the Psychophysics Toolbox
package (Pelli, 1997).

Auditory events consisted of 220 Hz pure tones
played from a single speaker attached to the left side of
the monitor, directly adjacent to the visual stimulus.
Auditory events ranged in intensity from 35 to 57 dB
SPL, calibrated using a Brüel & Kjær pressure-field
microphone (Nærum, Denmark) placed ; 45 cm from
the speaker. Average auditory event intensity across
trials was 41.1 6 3.8 and 50.1 6 5.9 dB SPL for low-
and high-reliability auditory stimuli, respectively.
Corrupting white noise was sampled from a Gamma
distribution (shape, scale parameters¼ 5, 2) and
overlaid atop the auditory signal; noise levels averaged
54.9 6 0.1 dB SPL across trials, leading to unreliable
events that were 13.9 6 3.8 dB below background noise
levels and reliable events that were 4.7 6 6.1 dB below
background noise levels. Stimulus events were never-

theless detectable in noise because their power was
concentrated at a single frequency. Waveforms were
sampled at 44.1 kHz.

Visual stimuli were presented on a Dell M991 CRT
monitor (100 Hz refresh rate) (Dell, Round Rock, TX),
and consisted of a flashing square occupying 108 · 108
of visual angle at 17.28 azimuth. The visual stimulus
was positioned at the leftmost edge of the display to
minimize its distance from the speaker (3.5 cm). Visual
stimuli were presented atop Gaussian white noise
sampled independently for every pixel within the
stimulus. To estimate the SNR of visual stimuli, we
measured luminance directly at the monitor surface
using an Extech HD400 light meter (Nashua, NH).
Background visual noise was sampled from the same
distribution across visual trials and averaged 20.2 6 0.2
candela/m2 in luminance. Visual event luminance
ranged from 14.5 to 66.5 cd/m2; average visual signal-
to-noise ratios were 1.0 6 0.4 and 3.6 6 1.5 dB for low-
and high-reliability visual trials, respectively.

Human behavioral sessions lasted approximately 50
minutes and typically included 6 blocks of 140 trials
each. Initially, subjects were trained for 4–6 sessions to
familiarize themselves with the task. Initial training
consisted exclusively of single sensory trials (auditory
or visual in equal proportions), during which auditory
feedback was provided after each response: a high tone
(6400 Hz) indicated a correct choice while a low tone
(200 Hz) indicated an incorrect choice.

During initial training, we first familiarized subjects
with the single sensory version of the task and then
implemented ‘‘tracking’’ blocks featuring an adaptive
staircase procedure (Kesten, 1958) in which auditory
and visual SNRs were adjusted to achieve target
performance levels for the easiest trials (7, 8, 14, 15 Hz).
For both sensory modalities, target accuracy levels
were approximately 70% and 90% for low- and high-
reliability trials, respectively. After initial training, we
introduced testing blocks into the behavioral sessions,
during which both single- and multi-sensory trials were
randomly interleaved (trial composition: 20% auditory,
20% visual, 60% multisensory). Once training was
complete, behavioral sessions began with a warm-up
block followed by one tracking block (all single-sensory
trials) and subsequently four testing blocks. Auditory
and visual SNRs were only changed during tracking
blocks, and were held fixed across all testing blocks in a
behavioral session. Multisensory cue conflicts of 0, 61
and 62 events/s were presented. No response feedback
was provided during testing blocks for five of the seven
human subjects. For the last two participants in our
study, we added response feedback during testing
blocks in order to minimize subjects’ uncertainty about
the category boundary separating low- and high-rate
trials. In doing this, we intended to minimize biases
observed with these particular subjects prior to

Journal of Vision (2013) 13(6):4, 1–19 Sheppard, Raposo, & Churchland 6



incorporating response feedback, which were initially
greater in magnitude than in our previous subjects; we
therefore omitted the initial testing sessions conducted
without response feedback in these two subjects from
our analysis. Random feedback was provided on
multisensory conflict trials in which the auditory and
visual rates fell on opposite sides of the category
boundary. We observed no systematic differences
between the subjects who received response feedback
during testing sessions as compared to the other
humans. Only data collected during testing blocks were
included in our analyses.

Rat experiments

Data were collected from five adult male Long Evans
rats (240–310 g, Taconic Farms, Hudson, NY) trained
to do a similar version of the task. Animals initiated
trials and registered decisions by inserting their snouts
into choice ports outfitted with infrared sensors (Island
Motion, Tappan, NY). These methods are similar to
those we have reported previously (see Figure 1d in
Raposo et al., 2012). All animal experiments were
approved by the Cold Spring Harbor Animal Care and
Use Committee, and complied with the NIH Guide for
the Care and Use of Laboratory Animals as well as the
ARVO Statement for the Use of Animals in Ophthal-
mic and Vision Research.

Auditory events consisted of white noise bursts
produced by a single speaker (Harmon Kardon,
Stamford, CT) positioned behind the central port; the
speaker was calibrated with a pressure-field micro-
phone (Brüel & Kjær, Naerum, Denmark). Auditory
stimuli in these experiments were played amidst white
noise (sampled from a uniform distribution with an
average intensity of 16.4 dB SPL); however, this level
was very low relative to the auditory event intensity.
Low- and high-reliability auditory stimuli were pro-
duced by varying the loudness of auditory events in the
range of 74 - 88 dB. Across rats, event loudness was
76.0 6 1.6 dB (mean 6 SD) and 86.9 6 0.8 dB SPL for
the two reliability levels, never exceeding 88.4 dB SPL.

Visual stimuli were produced via a centrally posi-
tioned panel of 96 LEDs (6 cm high · 17 cm wide). The
bottom of the LED panel was ; 4 cm above the rats’
eyes. Since visual stimuli were presented in a dark
sound-isolating booth, rats did not need to fixate on the
LED panel to perceive the flashing visual stimuli.
Furthermore, the stationary, full-field nature of the
LED flashes made it unlikely that small changes in eye
or head position would substantially alter perception of
the visual stimuli. Unlike the human experiments,
visual stimuli included only a single reliability level and
were not corrupted with added visual noise. Visual
stimuli were delivered to the LED panel via the same

sound card used to deliver auditory stimuli, but using
the other channel. At the approximate level of the rats’
eyes, visual stimulus luminance in the behavioral rigs
ranged from 112 to 144 cd/m2 (rig 1: 112 cd/m2; rig 2:
144 cd/m2; rig 3: 116 cd/m2). Across all trials, average
luminance was 124.5 6 14.6 cd/m2 (mean 6 SD).

Naı̈ve animals typically required 1–2 months of
behavioral training before reaching stable performance
levels on all trial types. Training began with short,
reliable single sensory trials in one modality only. After
good performance was achieved, trial durations were
gradually extended to 1000 ms. Next, multisensory
trials were added; once stable multisensory perfor-
mance was achieved, the remaining single sensory
modality was introduced until rats stably performed the
task for all trial types. For two of the five rats, training
began instead with multisensory stimuli in which the
auditory and visual event streams were synchronized
(see Raposo et al., 2012); for these rats, single-sensory
auditory and visual stimuli were introduced subse-
quently, after which the synchronized multisensory
stimuli were replaced with multisensory stimuli featur-
ing independently generated auditory and visual event
streams. For all five rats, all auditory stimuli were
limited to the high-reliability condition during initial
training; low-reliability auditory stimuli were subse-
quently introduced on both single- and multi-sensory
trials once stable performance was attained for high-
reliability stimuli. The long training times were required
to minimize biases and achieve the desired performance
levels for all trial types simultaneously. The ability to
learn the category boundary for a unisensory condition
came easily to most animals. Further, the transition
between unisensory and multisensory stimuli was
typically seamless. This suggests that although the task
is not ecological in nature, it makes use of existing
circuitry for combining auditory and visual signals.

We began collecting testing data for the sensory
weighting experiments only after stable performance
was reached on all single- (low-reliability auditory,
high-reliability auditory, visual) and multi-sensory
(visual/low-reliability auditory, visual/high-reliability
auditory) trial types. Testing sessions included inter-
leaved trials of all types, including multisensory trials
with conflicting auditory and visual rates. Only
completed trials in which rats waited the required 1000
ms in the center port and registered a decision (i.e.,
entered a reward port) within 2 s following stimulus
offset were included in the analysis. Trials where the
rats withdrew early from the center port or waited too
long to make a choice (. 2 s after stimulus offset) were
not rewarded. Rats received feedback on all trials since
water rewards motivated them to perform the task.
Multisensory conflict trials in which auditory and
visual event rates fell on opposite sides of the category
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boundary were rewarded randomly. Multisensory cue
conflicts of 0 and 62 events/s were presented.

Results

We examined the decisions of rat and human
subjects on a rate discrimination decision task in which
we systematically varied both the stimulus strength
(i.e., the trial-averaged event rate) and the reliability
(i.e., SNR) of auditory and visual stimuli. We first
describe subjects’ performance on single sensory trials.
Next, we describe results obtained on multisensory
trials. When the reliability of auditory and visual
stimuli differed, rats and humans assigned more weight
to the reliable modality. Finally, we consider whether
stimulus reliability affected the moments within the
trial that influenced subjects’ decisions. For most
subjects, stimuli throughout the trial influenced the
decision, an effect consistently observed for both low-
and high-reliability stimuli.

Perceptual weights change with stimulus
reliability

We first quantified subjects’ performance by com-
puting their probabilities of high-rate decisions across
the range of trial event rates and fitting psychometric
functions to the choice data using standard psycho-
physical techniques (Materials and methods). On single
sensory trials, estimated psychophysical thresholds
were comparable across modalities for matched reli-
ability trials but significantly smaller for high- relative
to low-reliability trials of either modality, as high-
lighted in a representative human subject (Figure 2a,
green and black lines steeper than blue and gray lines; r̂
6 SE: high-reliability auditory: 1.01 6 0.12 , low-
reliability auditory: 3.20 6 0.21, p , 10�5; high-
reliability visual: 1.24 6 0.11 , low-reliability visual:
3.40 6 0.30, p , 10�5). Rats were similarly presented
low-reliability and high-reliability auditory stimuli, but
only a single reliability level was used for the visual
stimuli. Rats’ thresholds also differed significantly
between the two auditory reliability levels, as demon-
strated in an example rat (Figure 2b, green line steeper
than blue line; high-reliability auditory: 1.93 6 0.35 ,
low-reliability auditory: 5.32 6 0.95, p ¼ 0.0004), with
an intermediate threshold for visual trials (black line;
visual: 2.72 6 0.31). In both species, we attempted to
minimize bias; however, achieving zero bias for all
three (rat) or four (human) single sensory trial types
proved challenging. Analyses that could in principle be
affected by subject bias were always repeated in
subsampled data where biases were minimal (below).

Next, we examined decisions on multisensory trials.
As in previous experiments (Raposo et al., 2012), both
rats’ and humans’ performances improved on multi-
sensory trials, and the performances were frequently
close to the optimal prediction. The magnitude of the
multisensory improvement (rpredicted/robserved; Materials
and methods) was unrelated to the magnitude of the
cue conflict (mean correlations averaged across trial
types, 95% CIs; humans: r¼ 0.07 [�0.13, 0.26], rats: r¼
0.03 [�0.25, 0.31]). We took advantage of cue conflict
trials and asked whether subjects’ multisensory deci-
sions reflected the relative reliabilities of the auditory
and visual stimuli as estimated from subjects’ single
sensory psychophysical thresholds. On conflict trials,
the trial-averaged event rates for auditory and visual
stimuli differed (Materials and methods, Figure 1b). To
assess the relative weights subjects assigned to the
auditory and visual stimuli, we compared subjects’
decisions on multisensory trials across a range of
conflict levels for each of the possible reliability
pairings (Materials and methods).

Both humans’ and rats’ decisions on multisensory
trials were influenced by the relative reliabilities of the
auditory and visual stimuli. The effects of stimulus
reliability on subjects’ decisions can be visualized by
comparing subjects’ choice data on trials with different
levels of conflict between the auditory and visual event
rates. When auditory and visual reliabilities are
matched, subjects should weight both modalities
equally. Indeed, on matched reliability trials, conflict in
the event rates did not systematically bias subjects’
decisions towards either cue. When sensory reliabilities
were unequal, however, subjects preferentially weighted
the more reliable modality, and their PSEs were
systematically shifted towards this cue on conflict trials
(Figure 3a, b; red, blue curves). These results are in
agreement with previous observations from experi-
ments using static stimuli (e.g., Ernst & Banks, 2002;
Jacobs, 1999). The shifts in the psychometric functions
for the example rat subject were smaller than in the
human (Figure 3b). The smaller magnitude of the shift
in the rat relative to the human reflects the fact that the
single sensory thresholds (and thus the sensory
reliabilities) were more disparate between the two
modalities in the human than in the rat (i.e., compare
human and rat psychometric curves in Figure 2a, c).

The magnitude and direction of the shift in PSE
depended on the magnitude and direction of the
stimulus conflict as well as the relative reliabilities of
the two modalities. Figure 3c and d displays the
example subjects’ estimated PSEs as a function of
conflict level for two multisensory trial types. For
multisensory trials featuring low-reliability visual and
high-reliability auditory stimuli in the example human,
linear regression of PSE against conflict level (D)
produced slopes significantly greater than zero (Figure
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3c, left; slopes, 95% CIs: 0.36 [0.26, 0.46]). On the other
hand, the slope of this regression was significantly less
than zero for multisensory trials featuring high-
reliability visual and low-reliability auditory stimuli
(Figure 3c, right; slopes, 95% CIs: �0.46 [�0.59,
�0.33]). The positive and negative slopes of the
regression lines indicate stronger and weaker weighting
of the auditory stimulus (respectively) relative to the
visual stimulus; thus, this subject weighted the high-
reliability modality more strongly than the low-
reliability modality in either case. Similarly, slopes of
the PSE versus D regression lines differed significantly
between the two multisensory trial types in the example

rat, reflecting the relative reliabilities of auditory and
visual stimuli (Figure 3d: visual/high-reliability audi-
tory: 0.09 [0.005, 0.18]; visual/low-reliability auditory:
�0.22 [�0.32, �0.12], p , 10�5).

The changes in subjects’ PSEs across the range of cue
conflicts agreed well with predictions based upon the
sensory reliabilities we inferred from subjects’ perfor-
mance on single sensory trials. To test whether subjects’
cue weighting approximated statistically optimal be-
havior, we compared the observed sensory weights
estimated from the slopes of the regression lines with
the theoretical weights predicted by subjects’ thresholds
on the corresponding unisensory auditory and visual

Figure 2. Single sensory performance on rate discrimination task depends on sensory reliability. (a) Performance of an individual

human subject, displayed as the proportion of high-rate decisions plotted against the trial-averaged event rate. Data are presented

separately for each single sensory trial type. Lines indicate psychometric functions fit via maximum likelihood estimation. Data were

combined across multiple behavioral sessions (2,161 trials). (b) Psychophysical thresholds obtained from seven human subjects for

each single sensory trial type (low/high reliability auditory: blue/green; low/high reliability visual: gray/black). Symbols depict

individual subjects. (c) Single sensory performance in an individual rat, pooled from two consecutive sessions (975 trials). (d) Single

sensory thresholds obtained across cohort of 5 rat subjects (symbols). Thresholds in (b) and (d) were estimated from data combined

across multiple behavioral sessions (humans/rats: 19,143/62,363 total single sensory trials). Star symbols indicate the example human

and rat subjects used in (a) and (c). Error bars indicate standard errors in all panels.
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trials (Materials and methods; Young et al., 1993). The
observed and predicted weights were in close agreement
for all multisensory trial types in both example subjects
(Figure 3e, f).

The weighting of multisensory stimuli seen in the
example human and rat was typical: Nearly all humans
and rats weighted sensory information in a manner that
reflected the relative reliabilities of auditory and visual
stimuli (Figure 4). For each subject, we computed the
difference in wV between multisensory trials consisting
of high-reliability auditory/low-reliability visual versus
low-reliability auditory/high-reliability visual stimulus
pairings. This change was significantly greater than

zero for six of seven individual humans (Figure 4a, p ,

0.007, one-tailed Z-tests). This indicates that nearly all
human subjects increasingly relied on the visual or
auditory evidence when its reliability was increased
relative to the other modality. The increase in wV

between multisensory trials containing low- versus
high-reliability auditory stimuli was likewise significant
in four out of five rats (Figure 4d; p , 0.032, Z-tests).
The remaining human and rat also showed changes in
wV in the expected direction, but the changes did not
reach significance (p . 0.19).

Having established that both humans and rats
dynamically changed their perceptual weights on

Figure 3. Subjects weight auditory and visual evidence in proportion to sensory reliability. (a) Performance on multisensory trials in an

individual human pooled over multiple sessions (values on abscissae indicate mean trial event rates averaged between auditory and

visual stimuli). Colors indicate level of conflict between modalities (D ¼ visual rate – auditory rate). Presented human data were

obtained from the low-reliability visual/high-reliability auditory condition. (b) Same as (a) but for one rat. Data were obtained from

the visual/high-reliability auditory condition. (c) Points of subjective equality (PSEs) from multisensory trials plotted as a function of

conflict level for different pairings of auditory and visual stimulus reliabilities, shown for the same subject as in (a). Fitted lines were

obtained via linear regression. Plotted data correspond to trials consisting of low- and high-reliability auditory stimuli paired with

high- and low-reliability visual stimuli, respectively. Analogous fits were obtained for the other pairings of auditory and visual

reliabilities presented to human subjects (see Figure 4b). (d) Same as (c) but for the single rat subject in (b). (e) Comparisons of the

observed visual weights to the values predicted from the example human’s single sensory thresholds. Data pertain to the same two

multisensory trial types reported in (c). N ¼ 3,861 trials. (f) same as (e) but for the rat in (b) and (d). N ¼ 4,018 trials. Error bars

indicate standard errors in all panels.

Journal of Vision (2013) 13(6):4, 1–19 Sheppard, Raposo, & Churchland 10



multisensory trials in a manner that reflected the
relative reliabilities of the auditory and visual evidence,
we examined the degree to which these changes
matched the statistically optimal predictions. These
predictions are based on the sensory reliabilities
inferred by subjects’ performance on single sensory
trials (Material and methods). In humans, observed
visual weights were generally closely matched to
predictions within the individual subjects (Figure 4b);
seven of 28 comparisons (7 subjects · 4 multisensory
trial types) exhibited significant deviations between
predicted and observed weights (p , 0.05, Z-tests). The
observed deviations were distributed across four
subjects. Interestingly, six of the seven deviations
involved overweighting of visual evidence relative to
predictions when the auditory reliability was high
(Figure 4b, green and orange symbols). The remaining
21 comparisons for the other human subjects revealed
no significant differences between observed and pre-

dicted weights. A limitation of our analysis is that we
cannot rule out the possibility that some of the
apparent deviations from optimality were, in fact, false
positives arising from the large number of comparisons;
however, all seven deviations remained robust to
multiple comparisons correction after allowing for a
false discovery rate of 20% (Benjamini & Hochberg,
1995).

In rats, as in humans, the perceptual weights for
many individual subjects were close to the optimal
predictions (Figure 4e). In general, rats came closest to
the optimal prediction on high-reliability auditory trials
(observed visual weights did not differ significantly
from predictions in any of the rats; p . 0.18, two-tailed
Z-tests). Deviations from the optimal prediction were
observed more frequently on trials where the auditory
stimulus reliability was low. On such trials, the
perceptual weights for three of five rats differed
significantly from optimality (p , 0.05, Z-tests). One

Figure 4. Reliability-based sensory weighting is observed consistently across subjects. Cue weights were estimated from data pooled

over multiple behavioral sessions (humans/rats ¼ 23,873/17,984 total multisensory trials). (a) Data points indicate the change in

observed cue weights observed in seven individual human subjects, computed as the differences in subjects’ visual cue weights

between high-reliability visual/low-reliability auditory and low-reliability visual/high-reliability auditory trials. * indicates significant

change in visual cue weights ( p , 0.05, within-subjects one-tailed Z-tests). (b) Scatterplot compares observed visual cue weights

(ordinate) to predicted values (abscissa) for all multisensory trial types in the individual human subjects. Legend indicates colors

corresponding to each multisensory trial type. (c) Comparison of the observed visual cue weights (ordinate) to the PSE for unisensory

auditory trials (abscissa). Color conventions are the same as in (b). (d) Same as (a) but for five individual rats. (e) Same as (b) but

showing data for five rats. (f) Same as (c) but for five rats. Error bars indicate 95% confidence intervals in all panels.
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other rat’s perceptual weights also differed from the
optimal prediction on such trials, though the effect was
only marginally significant (p¼ 0.07). In all four of
these cases, observed visual weights were lower than
predicted, suggesting that rats may systematically
under-weight visual evidence relative to the optimal
prediction when auditory reliability is low (Figure 4e:
black square, triangle, diamond, and circle). This
contrasted with the deviations from optimality ob-
served in humans, in which subjects occasionally over-
weighted visual evidence when auditory reliability was
high (above). Note that these observations do not mean
that the rats ignored the visual stimulus; when auditory
reliability was low, rats generally relied more heavily on
the visual stimulus than on the auditory stimulus (i.e.,
wV . 0.5). The deviations from optimality here imply
that the rats would have made better use of the
available information had they relied even more heavily
on the visual stimulus than observed.

It is unlikely that our changing cue weights were
driven by unisensory biases. First, unisensory biases
have previously been shown to have very little effect
on weights measured during multisensory trials
(Fetsch et al., 2012). This is because although non-
negligible single sensory biases are assumed to
systematically shift the PSE on multisensory trials in
proportion to the relative reliabilities of either cue
(e.g., Fetsch et al., 2012), such biases should shift the
PSE in an identical manner on conflict trials and
nonconflict trials. Therefore, our estimates of wV and
wA, which are generated by taking the slope of the line
relating PSE and cue conflict (Figure 3c), should not
be affected by unisensory bias under the classic cue
integration framework (Young et al., 1993). Never-
theless, we took two additional steps to guard against
the possibility that our results were confounded by
single sensory bias. The first step was to examine
whether wV (and by extension wA) was related to
unisensory bias. We found that for every multisensory
trial type considered individually in both rats and
humans, wV was unrelated to the PSE measured from
corresponding unisensory auditory trials (all p-values
. 0.05, across-subject Pearson’s correlations, Figure
4c, f). In other words, subjects who had a slight bias
on auditory trials were just as likely as any other
subject to demonstrate a particular cue weight. This
was also true for the relationship between wV and
visual PSE (all p-values . 0.05). These observations
are consistent with theoretical predictions and provide
reassurance that discrepant biases on the two uni-
sensory conditions had no systematic effects on cue
weights. Our second step to guard against artifacts
from unisensory bias was to recompute wV for humans
and rats after restricting the included data to
behavioral sessions for which subjects’ single-sensory
PSEs were all equal within a tolerance of 62 events/

second (i.e., less than the range of cue conflicts
presented), and obtained nearly equivalent results in
both species.

We performed one final analysis on subject bias to
provide insight into its source. Specifically, we tested
whether subject bias could be interpreted as a
(misguided) prior expectation about the stimulus rate.
We compared the measured bias between easy trials
(i.e., trials with average rates . 2 events/second from
category boundary) and difficult trials (i.e., , 2 events/
second from category boundary) across subjects for
every unisensory and multisensory trial type. We found
no significant differences for any of the eight human
trial types (p . 0.05, t-tests), and only one significant
difference among the five rat trial types (difficult trial
bias . easy trial bias, uncorrected p¼ 0.03). This single
significant observation was of little practical conse-
quence, corresponding roughly to a 2% difference in
the rats’ probability of making a particular choice.
Because a prior expectation on the stimulus would tend
to influence the decision more when the sensory
evidence is weak (Battaglia et al., 2010; Weiss,
Simoncelli, & Adelson, 2002), our observations of
similar biases on trials with strong and weak evidence
argues against the possibility that biases were driven by
a non-uniform prior expectation on stimulus rate. An
alternative explanation for the stimulus biases is that
they were driven by uncertainty about which event rate
corresponded to the category boundary (Vicente,
Mendonca, Pouget, & Mainen, 2012).

Subjects accumulate sensory evidence similarly
for low- and high-reliability stimuli

We previously demonstrated that our stimuli invite
animals to accumulate sensory evidence over the
majority of the trial (Raposo et al., 2012). We
demonstrated this by computing a quantity, excess rate,
which reveals the degree to which a particular moment
in time influences the subject’s eventual decision. Our
quantity, excess rate, is similar to the quantity
computed in a choice-triggered average (Kiani et al.,
2008; Nienborg & Cumming, 2009; Sugrue et al., 2004)
in that it considers the influence on subjects’ decisions
of events occurring within local temporal windows
(Materials and methods). When excess rate . 0 at a
particular time point, we conclude that stimuli at that
time influence the decision. By comparing the time-
course of the excess rate curves between different trial
types, we gain insight into the animals’ strategies. Here,
we evaluate whether animals use time differently for
high- versus low-reliability stimuli. If reliable and
unreliable stimuli lead to similar strategies for evidence
accumulation, the excess rate curves should be elevated
above zero for the majority of the trial duration
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regardless of stimulus reliability (Figure 5a). On the
other hand, if reliable stimuli lead subjects to make
faster decisions compared to less reliable stimuli, the
excess rate curve for reliable stimuli will approach zero
late in the trial (Figure 5b).

Because individual subjects may employ different
strategies, we computed the excess rate for each subject
separately. Examples are shown in Figure 5c through e.
The excess rate curves for auditory trials in an example
human (same subject used in Figures 2, 3) were
elevated above 0 for nearly the entire trial duration
(Figure 5c), indicating that this subject based decisions
on evidence presented at all times. This confirms our
previous observations in human subjects (Raposo et
al., 2012). Further, the timecourses of the curves were
similar for low- and high-reliability stimuli. This
observation is novel: It refutes the possibility that the
subject made faster decisions on high-reliability trials.
If the subject had done so, the excess rate curve should
have approached zero by midtrial for the high-

reliability stimuli, as shown in the simulated example
(Figure 5b). An individual rat subject showed a similar
profile of evidence accumulation on auditory trials
(Figure 5d). Excess rates were elevated above zero at all
timepoints, and showed a similar timecourse for
reliable and unreliable stimuli. However, this rat
differed from the human example in one respect: The
excess rate curves decreased during the last 200 ms of
the trial for high-reliability stimuli. We and others have
previously observed a decline in excess rate during this
period (Nienborg & Cumming, 2009; Raposo et al.,
2012); we speculated that sensory stimuli influence the
decision less during this time because the animals
devote some cognitive resources to planning the full
body movements required to communicate their
decisions. Here, we note that the declines in excess rate
differentially impacted the excess rate curves in the rats
depending on sensory reliability: high-reliability trials
suffered the greatest declines in excess rate relative to
their levels earlier in the trial (Figure 5d). However,

Figure 5. Excess rates: Predictions and individual subject examples. (a) Simulated excess rate curve for a decision process that is based

on all evidence presented over a 1000-ms trial duration. Solid curve reflects stimuli from 2000 simulated trials assigned to a ‘‘high
rate decision’’ or ‘‘low rate decision’’ pool based on the value of a decision variable at the end of the trial. Dashed curve reflects a

shuffle control (Materials and methods). (b) Same as (a) but for a decision process that only considers evidence arriving in the first

500 ms of the trial. (c) Excess rate results for a single human subject on auditory trials. Abscissae indicate centers of sliding windows

(milliseconds preceding end of stimulus). Shaded regions provide confidence bounds (mean 6 SE) on excess rate curves at each time

point. Colors indicate reliability. Dashed lines: shuffle controls. (d) Results for a single rat on auditory trials. Conventions are the same

as in (b). (e) Visual performance in a second human subject demonstrating an atypical evidence accumulation strategy. Note that the

high-reliability visual trace is only elevated early in the trial for this subject.
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because the observed declines in excess rate begin at
roughly the same moments in time for high- and low-
reliability trials (see Figure 6, below), the steeper
declines for high-reliability stimuli likely reflect the fact
that excess rates were higher for those stimuli
throughout earlier parts of the trial (differences in
excess rate magnitude are discussed in more detail
below).

A final example illustrates a second human subject
with a noticeably different strategy (Figure 5e). For this
subject, the excess rate timecourses for visual stimuli
differed strikingly depending on whether sensory
reliability was high or low. For high-reliability (but not
low-reliability) visual trials, the subject’s excess rate
curve decreased dramatically over the course of the trial
(Figure 5e, dark gray trace). This temporal profile
resembles our simulated example of decisions based
only on evidence presented early in the trial (Figure
5b). Interestingly, this individual also overweighted
visual evidence on multisensory trials (Figure 4b,
triangles). Inability to accumulate evidence stably
throughout the trial could thus potentially be a factor
associated with nonoptimal cue combination on our
task, though larger cohorts would be needed to draw
conclusions regarding these uncommon departures
from optimality (see Discussion).

Auditory data pooled across all human and rat
subjects are shown in Figure 6. For both the composite
human (Figure 6a) and rat (Figure 6b) datasets, excess
rate curves were elevated over the entire course of the
trial, and showed similar timecourses for reliable and
unreliable stimuli. A similar timecourse was evident for
visual stimuli (data not shown), except that the outlying

human subject depicted in Figure 5f drove a decrease
late in the trial for high-reliability stimuli. A scatter plot
including all subjects and single sensory trial types
highlights that deviations from this tendency were rare
(Figure 6c). Points near the x¼ y line indicate subjects
whose excess rate values were similar early and late in
the trial. Most subjects’ results fell close to this line.
Points below the x ¼ y line indicate subjects who had
lower excess rate curves late in the trial compared to
early in the trial. The human subject with the unusual
excess rate timecourses (Figure 5e) is indicated by an
arrow.

In addition to our observations regarding the time-
courses of excess rates for reliable and unreliable
stimuli, we also evaluated the magnitude of excess
rates. We found that excess rates were greater in
magnitude for reliable compared to unreliable stimuli
in both the humans and rats (Figure 6a, b: compare
green and blue curves). This effect was significant for
the data pooled across all seven humans (Figure 6a;
low-reliability auditory: 0.98 [0.78, 1.18], high-reliabil-
ity auditory: 2.33 [2.13, 2.53], 95% CIs; p , 10�5) and
also in the data pooled across the five rats (Figure 6b;
low-reliability auditory: 0.74 [0.62, 0.86]; high-reliabil-
ity auditory: 1.11 [0.99, 1.23]; p , 10�5). These
differences in excess rate magnitude were expected; they
indicate that fluctuations in event rate occurring
throughout the trial more strongly discriminated
subjects’ decisions when sensory reliability was high,
whereas subjects’ abilities to discriminate higher and
lower event rates suffered on low-reliability trials across
the entire stimulus duration, likely due to increased
levels of sensory noise.

Figure 6. Pooled data indicate that most subjects integrate sensory evidence over the entire course of the trial. (a) Pooled auditory

data from all seven humans. Line/color conventions are the same as in Figure 5. (b) Pooled auditory data for the five rats. (c) Scatter

plot with data for all subjects comparing the value of excess rates early in the trial (700 ms before stimulus offset) and late in the trial

(300 ms before stimulus offset). Color indicates unisensory trial type. Blue: low-reliability auditory; green: high-reliability auditory;

gray: low-reliability visual; black: high-reliability visual. Shape indicates species. Circles: humans. Squares: rats. Arrow highlights a

single human subject with unusual behavior for high-reliability visual trials. This is the same subject represented in Figure 5e.
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Discussion

In this study, we measured how humans and rats
weighted time-varying auditory and visual stimuli on a
rate estimation task. This was accomplished using
established methods for estimating subjects’ perceptual
weights and applying the methods to a novel paradigm
we have developed to study decision-making in humans
and rodents. We report three main findings: (a)
Dynamic weighting of sensory inputs extends to time-
varying stimuli. (b) Dynamic weighting of sensory
stimuli is not restricted to primates. (c) Regardless of
reliability, most subjects based decisions on sensory
evidence presented throughout the trial duration.
Subjects who accumulated sensory evidence in a
nonstandard way were rare, but underscore the
importance of using stimuli that allow one to investi-
gate the temporal dynamics of multisensory processing.
The importance of each of these conclusions is
described below.

Our conclusions about time-varying stimuli demon-
strate that dynamic weighting extends to a much
broader class of stimuli than have been studied
previously. Time-varying stimuli represent a particu-
larly important subset of multisensory stimuli because
they are encountered in many, if not most, ecological
situations, including predator movement and conspe-
cific vocalizations (Ghazanfar et al., 2007; Maier et al.,
2008; Maier & Ghazanfar, 2007; Sugihara, Diltz,
Averbeck, & Romanski, 2006; Thomas & Shiffrar,
2010). Observing dynamic weighting on a decision task
featuring stochastic, time-varying stimuli suggests that
these behaviors are supported by highly flexible neural
computations. Given that dynamic weighting in hu-
mans has also been reported for many other within-
and cross-modal cue integration tasks (albeit typically
involving static stimuli; see Trommershauser, Kording,
& Landy, 2011 for review), the underlying computa-
tions may be a widespread feature of neural circuits
across many brain areas involved in processing
different types of sensory stimuli.

Extending dynamic weighting to rodents indicates
that the ability to estimate stimulus reliability for
dynamic stimuli is conserved across diverse species in
the mammalian lineage. Although previous behavioral
studies on multisensory integration have been con-
ducted in rats (Hirokawa, Bosch, Sakata, Sakurai, &
Yamamori, 2008; Hirokawa et al., 2011; Sakata,
Yamamori, & Sakurai, 2004), they have not systemat-
ically varied stimulus reliability in a way that made it
possible to estimate perceptual weights. The dynamic
weighting we observed in rats suggests that the ability
to estimate reliability and use such estimates to guide
decisions likely relies on neural mechanisms common
across many species. Further, by establishing dynamic
weighting for rodents, we open the possibility of using

this species to examine the underlying neural circuits
that drive this behavior.

Comparing the timecourses of decision-making for
reliable versus unreliable stimuli is critical because it
allows us to identify differences in the strategies
subjects use to accumulate evidence for their decisions.
Previous studies of visual decision-making using
dynamic random-dot stimuli revealed that decisions are
sometimes influenced most by information presented at
the beginning of the trial (Kiani et al., 2008). Those
results argue that, for some stimuli, subjects might
accumulate evidence up to a threshold level, even in
tasks such as ours where experimenters impose a fixed
trial duration. This could have important consequences
for comparisons of responses to reliable versus less
reliable stimuli, which are standard in multisensory
paradigms. Specifically, it raises the possibility that
evidence accumulation might not only stop part way
through the trial, but might stop at different times
depending on stimulus reliability. This could have
profound implications for the framework of optimal
integration, which does not consider the possibility that
subjects use time in a reliability-dependent manner.
Our analyses revealed that most subjects were influ-
enced by sensory evidence occurring at similar times
within the trial for both low- and high-reliability
stimuli. This provides reassurance that, at least for
fixed-duration stimuli that invite evidence accumula-
tion over time, subjects generally harvest information
in a similar manner regardless of sensory reliability.

The tendency to integrate incoming sensory stimuli
over an entire trial likely depends strongly on the type
of stimulus used. Decisions that are made about
suprathreshold stimuli are likely made very quickly,
because integrating over longer time periods would
provide only negligible improvements in accuracy. In
future studies, we plan to explicitly vary the degree to
which different times within the trial are informative
for making the correct decision. Such manipulations
might lead subjects to have shorter, more concentrated
integration times. However, our current stimulus was
designed to encourage subjects to integrate over long
time periods and our analysis indicates that subjects did
indeed integrate over the entire trial. Stimuli like ours
that are dynamic and time-varying will tend to invite
long integration times, and can therefore offer insight
into cognitive processes that operate on more flexible
timescales than sensorimotor reflexes.

Although we found that both humans and rats
accumulated evidence over most of the trial, we did
observe some deviations from this trend. The largest
deviation was evident in a single human subject: for
high-reliability visual trials, this subject tended to
ignore evidence late in the trial (Figure 5e, dark gray
trace). Interestingly, this subject also showed pro-
nounced deviations from optimality on multisensory
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trials featuring high-reliability visual stimuli (Figure 4b,
triangles). Indeed, this subject had the largest deviations
from the optimal prediction of any subject tested, rat or
human. The current experimental design does not
provide direct evidence as to whether deviations from
optimal cue integration arose from unequal utilization
of evidence across the stimulus duration. Nevertheless,
the coincidence is intriguing. One possibility is that this
subject’s tendency to make ‘‘snap’’ decisions on high-
reliability visual trials led us to under-estimate his true
reliability for those stimuli. When visual stimuli were
presented in a multisensory context, they may then have
influenced the decision more than we predicted. By our
analysis, this appeared as a deviation from optimality,
but it could alternatively have reflected our inability to
characterize sensory reliability for subjects with unusual
evidence accumulation strategies. In any case, these
observations serve as a cautionary tale: Although
subjects may generally accumulate information stably
over time on perceptual tasks, this is by no means
guaranteed and may lead to marked departures from
optimality in the context of cue integration. Indeed, it is
possible that these effects may explain deviations from
optimality that have been reported in other human
papers as well (Rosas et al., 2005; Rosas et al., 2007;
Zalevski et al., 2007). However, the stimuli used in past
human studies did not permit the opportunity to test, as
we have here, how subjects accumulated information
over time during the trial. This underscores the
importance of utilizing time-varying stimuli in studies
of multisensory decision-making.

Like most human subjects, rats’ decisions were also
influenced by evidence presented throughout the entire
trial duration. There was a tendency for rats to down-
weight sensory evidence arriving near the end of the
trial, but this was evident for both reliable and
unreliable stimuli of either modality (Figure 6b), and so
is unlikely to have produced any systematic effects on
subjects’ perceptual weights. A more systematic devi-
ation in the rats was evident in the magnitude of their
perceptual weights: Rats tended to slightly underweight
reliable visual stimuli when they were presented
alongside less reliable auditory stimuli (Figure 4d).
Note that rats did not ignore the visual stimulus;
indeed, it influenced their decisions more strongly than
the auditory stimulus on these trials. However, the
predicted optimal solution would have been to weight
the visual stimulus even more than observed in the rats’
decisions. Although deviations from optimality in our
human cohort were somewhat more idiosyncratic,
humans tended to show the opposite deviations: They
occasionally overweighted visual evidence when audi-
tory reliability was high. These contrasting deviations
from optimality between rats and humans are intrigu-
ing given the differences in visual acuity between
rodents and humans (Busse et al., 2011; Chalupa &

Williams, 2008; Prusky, West, & Douglas, 2000). One
possibility is that humans and rodents have natural
tendencies to over- or under-weight visual inputs
(respectively) because of lifetimes of experience with
either high- or low-acuity visual systems. However, the
abilities of both rats and humans to use time-varying
auditory and visual stimuli and weight them according
to sensory reliability is clear from this study (Figure 4a,
c). The ease with which rats dynamically reweighted
inputs, even when reliability levels changed unpredict-
ably from trial to trial, suggests that rodents, like
primates, possess flexible neural circuits that are
designed to exploit all incoming sensory information
regardless of its modality.

What neural mechanisms might underlie this ability
to flexibly adjust perceptual weights? Although a
wealth of multisensory experiments have been carried
out in anesthetized animals (Jiang, Wallace, Jiang,
Vaughan, & Stein, 2001; Meredith, Nemitz, & Stein,
1987; Stanford, Quessy, & Stein, 2005), many fewer
have been carried out in behaving animals; as a result,
much about the underlying neural mechanisms for
optimal integration remain unknown. Here, our
subjects reweighted sensory inputs even when the
relative reliabilities varied from trial to trial, suggesting
that the dynamic weighting could not have resulted
from long-term changes in synaptic strengths (for
instance, between primary sensory areas and down-
stream targets). The required timescales of such
mechanisms are far too long to explain dynamic
weighting. One possibility is that populations of
cortical neurons automatically encode stimulus reli-
ability due to the firing rate statistics of cortical
neurons. Assuming Poisson-like firing statistics, neural
populations naturally reflect probability distributions
(Salinas & Abbott, 1994; Sanger, 1996). Unreliable
stimuli may generate population responses with re-
duced gain and increased variability at the population
level (Beck et al., 2008; Deneve, Latham, & Pouget,
2001; Ma, Beck, Latham, & Pouget, 2006). Such
models of probabilistic population coding offer an
explanation for how dynamic cue weighting might be
automatically implemented as a circuit mechanism
without changes in synaptic strengths. A plausible
circuit implementation of such a coding scheme has
been recently described in the context of multisensory
integration (Ohshiro, Angelaki, & DeAngelis, 2011);
this model allows for random connectivity among
populations of sensory neurons and achieves sensitivity
to stimulus reliability using well-established mecha-
nisms of divisive normalization (Carandini, Heeger, &
Movshon, 1997; Heeger, 1993; Sclar & Freeman, 1982).

A competing explanation for multisensory enhance-
ment is that it arises from synchronous activity between
areas responsive to each individual sensory modality
(for review, see Senkowski, Schneider, Foxe, & Engel,
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2008). Indeed, classic work in the superior colliculus
suggests that precise timing of sensory inputs is crucial
for multisensory enhancement of neural responses
(Meredith et al., 1987), and psychophysical effects can
likewise require precise timing of the relevant inputs
(Lovelace, Stein, & Wallace, 2003; Shams et al., 2002).
By contrast, multisensory improvements on our task do
not require synchronous auditory and visual stimuli
(Raposo et al., 2012 and current study). Our subjects’
ability to combine independent streams of stochastic
auditory and visual information bearing on a single
perceptual judgment is testament to the flexibility of
multisensory machinery in the mammalian brain.

Conclusions

Multisensory research has the potential to provide
insight into a very general problem in neuroscience:
How can the brain make the best decisions possible in
light of the inevitable uncertainty inherent to sensory
signals from our environments? In natural behaviors,
subjects must often make inferences based on noisy
stimuli that change rapidly over time (Rieke, 1997).
Our findings make clear that diverse mammalian
species possess the circuitry needed to use reliability to
guide decisions involving such time-varying stimuli.
Further, by demonstrating this ability in both humans
and rats, our experiments suggest that dynamic
weighting may rely on neural computations that are
conserved across these species.

Keywords: decision-making, multisensory integration,
rodent, sensory reliability, cue weighting, psychophysics
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