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Abstract
Joint impedance is an important property of the human muscular system and plays a role in the
control of movement and posture Previous studies showed that joint impedance varies with the
position of the joint and activation level of the surrounding muscles; however, it remains unknown
how it varies during movement. Non-parametric algorithms that estimate time-varying impedance
do exist; however these algorithms require hundreds of realizations of the same time-varying
behavior. In this paper we develop a non-parametric algorithm that can estimate slowly time-
varying impedance using multiple short data segments. Using simulated data we evaluate the
desired data segment length and the number of realizations needed to yield accurate estimates.

I. Introduction
Joint impedance is an important property of the human muscular system and plays a role in
the control of posture and movement. Joint impedance, also referred to as dynamic joint
stiffness, relates the position of the joint and the torque acting about it. One source of joint
impedance is the intrinsic properties of the joint and tissues such as the viscoelastic
properties of the joint, muscles and connective tissues and limb inertia. Another source of
joint impedance is the stretch reflex: the muscles respond to stretches by producing
counteracting torques [1].

Previous studies showed that joint impedance varies with the position of the joint, as well as
the activation level of surrounding muscles [2]. Other studies showed that joint impedance
varies with time during cyclic and catching tasks [3, 4]. However, the analyses for those
time-varying studies were performed using parametric methods; to our knowledge, no
studies to date have estimated time-varying joint impedance using non-parametric methods.
In contrast to parametric methods, non-parametric methods do not require a priori
knowledge of the order of the system, thus are extremely useful for situations where the
order of the system is unknown.

To estimate joint impedance during movement requires an algorithm that can estimate time-
varying dynamics. Ludvig et al. [5] designed a non-parametric algorithm that can estimate
time-varying joint impedance. However, their algorithm requires hundreds of realizations of
identical movements. This is both time consuming and very demanding of the subject, as the
subject must vary their joint impedance in nearly identical fashion hundreds of times.
Furthermore, their algorithm produces impedance estimates at every sample point, and
impedance may change very little between sample points.
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In this paper, we present a novel algorithm to estimate joint impedance using multiple short
segments of data. This non-parametric algorithm will have the advantage over time-invariant
methods as it requires only short segments of stationarity over which impedance estimates
will be generated; it will also have an advantage over the time-varying algorithm as only a
limited number of realizations are needed to yield accurate estimates.

II. Multi-Segment Identification Algorithm
Previous studies [6–8] have estimated the intrinsic component of joint impedance by
computing a 2-sided impulse response function (IRF) between the position and the intrinsic
torque. This IRF can be estimated directly from the data; alternatively it can be estimated by
computing the IRF between the position auto-correlation and the position-torque cross-
correlation.

Under time-invariant conditions, the cross-correlation for each lag can be estimated by
multiplying the lagged input with the output and then averaging along the entire data length.
This can be formulated in discrete terms as

(1)

where ϕxy(k) is the cross-correlation at lag k, x(i-k) is the input at time i-k, y(i) is the output
at time i, and N is the number of points. This cross-correlation assumes that the relationship
between input and output does not vary with time, and thus cannot account for the
correlations between the input and output that vary with time.

Under time-varying conditions, the cross-correlation is computed using multiple realizations
of input-output data, where the behavior of the underlying system presents the same time-
varying behavior. The discrete time-varying correlation can be formulated as

(2)

where ϕxy(i,k) is the cross-correlation at time i and lag k, x(ik, r) is the input at time i-k and
realization r, y(i,r) is the output at time i and realization r, and R is the total number of
realizations. In contrast to the time-invariant cross-correlation, the time-varying correlation
averages the product of the input and output across the ensemble instead of along the data
length.

The time-varying cross-correlation is a powerful method as it provides an estimate of the
correlation between the input and output at each time point. However, it requires many
realizations to perform the required averaging, and may result in very long experimental
times. Furthermore, if the underlying system is only slowly time-varying, or has short
periods where it is stationary—which we will refer to as quasi-stationary periods—then the
time-varying algorithm will produce numerous redundant computations and is thus
inefficient. Instead, we propose to combine both time-invariant and time-varying cross-
correlations to estimate the behavior of the system during these quasi-stationary periods.

To estimate the correlation between the input and the output during these quasi-stationary
periods, we averaged the product of the input and output both along time points during this
period as well as across realizations. We define this cross-correlation as the multi-segment
cross-correlation and is formulated as
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(3)

where t is the beginning of the quasi-stationary periods and N is number of points in the
quasi-stationary period. Similarly the multi-segment auto-correlation can be computed as in
(3), except substituting the output y(i,r) with the input x(i,r).

The relationship between the multi-segment autocorrelation and cross correlation is given by

(4)

where h(j) is the IRF at lag j, and M1 and M2 are the minimum and maximum lag of the
IRF. Thus, the IRF can be estimated by solving the following equation

(5)

where

III. Simulation Studies
A number of simulation studies were run to evaluate the performance of the multi-segment
algorithm. The first two simulations were run on stationary data: the first compared the
performance of the algorithm to both the time-invariant and time-varying algorithm; the
second determined the length of time segments and the number of realizations needed to
produce reliable estimates of the underlying system. The final simulation was run on time-
varying data with goal of evaluating the performance of the algorithm in estimating time-
varying systems.

A. Simulation Methods
The model shown in Fig. 1 was used to generate simulated data. The simulations were
carried out using Simulink (The Mathworks inc.) running at a fixed rate of 1 kHz. Each
simulation set consisted of a series of realizations of the same length; each simulation in a
set contained identical parameters, but different random values were used for the position
and noise signals. The joint impedance was simulated as a 2nd order differential equation
shown in Fig. 1. The simulated position was Gaussian noise filtered with a single pole at 4
Hz, and having a standard deviation of 0.015 rad. The noise was Gaussian noise filtered at 5
Hz with an 8-pole Bessel filter. The power of the noise was set to produce a resultant signal-
to-noise ratio of 10 dB. Following the simulation, the data were filtered by a 400 Hz, 8th

order Chebyshev filter and then decimated to 100 Hz.

Three different simulation sets were run. In the first set, 10 realizations of 0.1 s were
simulated with the parameters of the impedance set to K = 75 Nm/rad, B = 0.63 Nm/rad/s
and I = 0.0137 kgm2. These values were selected based on previous experiments at the ankle
[2]. The purpose of this simulation was to compare the estimates produced by the multi-
segment algorithm to those produced by the time-invariant and time-varying algorithms, for
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the same number of time points or number of realizations respectively. Therefore, the multi-
segment algorithm computed a single IRF using all the data, while the time-invariant
algorithm computed IRFs for each realization and the time-varying algorithm computed
IRFs for each time point.

In the second simulation set, 100 realizations of 10 seconds were simulated with the
parameters of the impedance the same as in the previous simulation set. The multi-segment
algorithm was run on subsets of this data numerous times. The subsets were generated by
systematically altering the segment length and number of realizations.

The third simulation set simulated a slow change in impedance. 20 realizations of 8 seconds
were simulated, where K was simulated to vary with the following behavior

(6)

For this simulation set, the algorithm was run multiple times with segments of 3 different
lengths: 0.1 s, 0.25 s and 0.5 s. For each segment length the data were segmented into
windows spaced 0.05 s apart.

For the second and third simulations sets, the quality of the estimation was evaluated in two
ways. First the %VAF between the torque predicted by the algorithm (T̂q) and the simulated
noise free torque (Tq) is computed as

(9)

The quality of the algorithm was also evaluated by estimating the simulated steady-state
impedance. This was done by integrating the impedance impulse response function.

B. Simulation Results
1) Algorithm Comparison—The first set of simulations compared the performance of
the multi-segment algorithm to that of the time-invariant and time-varying algorithms. All
algorithms were evaluated on the same set of stationary data. Fig. 2, shows the estimated
IRFs from the three estimation methods along with the theoretical impulse response. The
time-invariant IRF shown in Fig. 2 is the average of the IRFs computed for each realization;
similarly, the time-varying IRF shown in Fig. 2 is the average of the IRFs computed for each
time point. This ensured that all three methods had access to the same amount of data. It is
clear that the multi-segment algorithm performed better than the time-invariant algorithm for
the short segment lengths; similarly the multi-segment algorithm performed better than the
time-varying algorithm when only a limited number of realizations were available.

2) Number of Data Points—The previous subsection showed that the multi-segment
algorithm can outperform the time-variant and time-varying algorithm when only short
segments and limited realizations are available. Thus, the next aspect of the algorithm that
was tested was the minimum segment length and number of realizations needed to yield
accurate results. Fig. 3A shows the %VAF of the multi-segment algorithm as a function of
the segment length and the number of realizations. Clearly the performance of the algorithm
improved with an increasing amount of data. However, under closer inspection it can be
seen that for a given amount of data—the product of segment length and number of
realizations, shown by black lines in the figure—the algorithm performed better with shorter
segment lengths and greater numbers of realizations.
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Fig. 3B shows the standard deviation of the K estimate; it decreased with increasing segment
length and numbers of realizations. However, unlike the %VAF, the standard deviation of
the K estimate did not show a strong preference for shorter segment lengths and greater
numbers of realizations.

3) Estimation of Time-Varying Impedance—The previous subsection showed that
with increasing segment lengths the algorithm performance improved. However, if the data
segments are too long, the time-varying behavior of the underlying system may be missed.
Thus, what is the best segment length?

To assess this, we simulated K to vary sinusoidally with a frequency of 1 Hz. Fig. 4 shows K
estimated with 3 different segment lengths. Longer data segments will benefit from better
algorithm performance, as demonstrated in the previous section, but may miss the time-
varying behavior. Shorter data segments will result in estimates that capture the time-
varying behavior but will have increased random error. We can see that when the segments
were 0.5 s long— half the period—the K estimate showed little variability, but it did not
correctly estimate stiffness. When the segments were 0.1 s long, the algorithm correctly
estimated K, but there was great variability in the estimates. Thus, under these conditions,
using segments of 0.25 s long, resulted in estimates that were accurate and had low
variability, and therefore the best of the three choices.

IV. Discussion
In this paper, we presented a novel way to measure the joint impedance using multiple
realizations of short data segments. We formulated auto and cross-correlations by averaging
both along the data lengths and across the ensemble of realizations. Using these multi-
segment auto and cross-correlations, we computed impulse response functions as estimates
of joint impedance. We found that the performance of the algorithm improved as the
segment length and number of realizations increased. Furthermore, for a given number of
points, the algorithm accounted for a greater amount of torque variance when a greater
number of shorter segments were used. Finally, we showed that using segments of properly
selected lengths, the multi-segment algorithm can estimate time-varying impedance
accurately.

A. Segment Length and Number
We showed that increasing the segment length and number of realizations improved
performance, but taking segments too long may result in inaccurate estimates of time-
varying impedance. So, how does one choose the proper values for segment length and
number of realizations? The first step is to determine the dynamics of the time-varying
behavior. In many situations these dynamics are unknown, thus a full time-varying analysis
may need to be carried out to determine this time-varying behavior. In our simulation we
found that the best performance was obtained by using segments one quarter of the period of
the time-varying behavior.

Once the desired segment length is chosen, the number of realizations can be chosen based
on the data shown in Fig. 3. This figure was generated for a SNR of 10 dB, and the exact
number of realizations will depend on the SNR of the experiment.

B. Advantage of Non-Parametric Algorithm
The multi-segment algorithm has the advantage over the time-varying algorithm as it
requires much less data. However, there are parametric algorithms that can estimate stiffness
using the same limited amount of data [3, 4]. The multi-segment algorithm has the
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advantage of being nonparametric; this means that the multi-segment algorithm will still
successfully estimate impedance even if the stiffness is not fully described by the 2nd order
differential equation that the parametric approaches assume. A further benefit of the non-
parametric approach is that it easily adapted to estimate other linear—and possible even
non-linear—systems. One example where it could be useful would be to estimate time-
varying reflex stiffness, which has been modeled as a Hammerstein system where the linear
element can be 2nd or 3rd order [2].

C. Applications of the Multi-Segment Algorithm
We foresee a number of applications for the multi-segment algorithm. The first application
would be to estimate slowly time-varying impedance. Since the impedance varies little
between each sample time, producing impedance estimates at every time point is overkill.
The multi-segment algorithm can estimate the general behavior of the time-varying
impedance, however doing so with fewer data points.

Another application for the multi-segment algorithm would be to estimate the impedance of
subjects in closed loop. By switching the environment from closed-loop to open-loop for
short periods, it may be possible to estimate the subjects’ impedance prior to them altering
their impedance in response to the change in environment.
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Fig. 1.
Schematic of simulations. Multiple realizations of simulated position signals were used to
compute multiple realizations of simulated torque using the shown 2nd order differential.
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Fig. 2.
Joint impedance IRFs. The multi-segment IRF (red) accurately estimated the impedance and
matched the ideal IRF (black). The time-invariant (blue) and time-varying IRFs (green)
produced estimates of impedance with greater variability, as evident by the larger standard
deviations of the estimates (shaded regions equals ± 2 standard deviations).
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Fig. 3.
Performance of multi-segment algorithm. A) The algorithm accounted for more variance for
a given number of points (black curves) when shorter segment lengths and greater numbers
of realizations were used. B) The standard deviation of the K estimate decreased with the
number of points, but there was no clear preference for longer segment lengths or greater
numbers of realizations.
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Fig. 4.
Estimation of time-varying behavior. Time-varying data was segmented into data segments
of different length and the multi-segment algorithm was run on the data segments. The black
lines show the simulated K, the red lines shows the K estimates and the shaded red regions
show 1 standard deviation of the estimates.
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