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Abstract: Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein

homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by
binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway.

P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid

residues involved have remained unclear. Using constant pH molecular dynamics simulations, we
have identified key pH-dependent residues that affect CIRV p19–siRNA binding stability at various

pH ranges based on calculated changes in the free energy contribution from each titratable

residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on
the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35,

and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and

His132 provide a small increase in the binding stability and we find that the optimal pH range for
siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and

are in excellent agreement with data on the pH-dependent binding profile.

Keywords: pH-dependence; CIRV p19; Constant pH molecular dynamics simulations; protein–RNA
interactions

Introduction
RNA silencing (or RNA interference [RNAi])1–3 is an

evolutionarily conserved gene inactivation pathway

in eukaryotes that involves the conversion of long

double-stranded RNA (dsRNA) into 21–24 nucleo-

tide-long short-interfering RNA (siRNA) or micro-

RNA (miRNA) by DICER, an enzyme that is a part

of the endoribonuclease family of proteins.4 These

small RNAs are then separated into individual

strands, incorporated into a multiprotein complex

called RNA-induced silencing complex (RISC),5 and

ultimately used to target the degradation of reason-

ably complementary messenger RNA (mRNA). In

plants, RNA silencing has evolved into a mechanism

that can respond to both endogenous and exogenous

dsRNA, the latter of which helps to defend against

transgenes, transposons, and infection by RNA

viruses. As a result, Tombusviruses such as Tomato

bushy stunt virus (TBSV) and Carnation Italian
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ringspot virus (CIRV) have evolved an elegant 19

kDa protein, aptly named p19, which is capable of

suppressing RNA silencing in its host by binding to

and sequestering siRNA from a RISC.6,7

X-ray structures of p19 bound to a 21 nucleotide

(nt) siRNA have been crystallized from TBSV8 and

CIRV.9 In both structures, p19 exists as a homo-

dimer and is composed of five a-helices and four

b-strands in each monomer (Fig. 1). Key tryptophan

residues, shown experimentally and computationally

to be crucial for siRNA recognition, form end-cap-

ping calipers around the RNA by stacking with the

exposed terminal base pairs.8–10 Three conserved

lysine residues (Lys60, Lys67, and Lys71) found in

the b-sheet–RNA interface form important sequence-

independent interactions with the siRNA phosphate

backbone.8,9 Mutations of Lys60 and Lys71 to ala-

nine in TBSV have displayed decreases in the lethal

necrosis phenotype.11,12 Recent experiments have

also identified two cysteine residues that appear to

be responsible for maintaining the overall structural

integrity of the p19 protein as modifications of these

cysteines (Cys110 and Cys134 in CIRV) resulted in a

reduction of siRNA binding activity.13,14

Over the past few years, p19 has been used in

several systems to suppress RNAi15–22 and has also

emerged as a valuable tool for characterizing small

RNAs.8,9,23–26 Furthermore, as environmental fac-

tors (e.g., acidity/alkalinity, salt concentration, water

levels, etc.) can vary significantly across different

plant hosts, it has become increasingly important to

understand how the protein environment can affect

the function of p19. Recent investigations using fluo-

rescence detection assays have revealed that CIRV

p19 has the most significant affinity for 21-nt siRNA

in the pH range from 6.0 to 9.0.27 More specifically,

it was shown that p19–siRNA binding is dependent

on three apparent pKa values, 7.1, 8.0, and 10.6,

that were hypothesized to correspond to one or more

histidine, cysteine, and lysine residues, respectively.

However, due to the limited resolution of the experi-

ment, the identity of these ionizable residues has

remained unknown. Therefore, it is necessary to

consider alternative approaches.

Computational methods using molecular dynam-

ics (MD) simulations an/or Monte Carlo (MC) sam-

pling have been developed with considerable success

for predicting protein pKa values (see reviews28–30).

Often referred to as constant pH MD (CPHMD) sim-

ulations, the titration coordinate is typically imple-

mented in either a discrete manner31–43 where pro-

tonation states are modified with an MC step at

some regular MD interval or using a continuous

function44–46 that describes the protonation state via

the k dynamics method developed by Brooks and

coworkers.47–49 Recent studies have shown that

CPHMD is a reliable and robust method that is ca-

pable of predicting pKa values in a variety of biomo-

lecular systems.50–56 Thus, to uncover the pH-

dependent residues in the CIRV p19 protein

involved in siRNA binding stability, we have carried

out CPHMD simulations44–46 of the p19 protein

dimer in both holo (siRNA-bound) and apo (siRNA-

free) forms and determined the pKa values for all ti-

tratable residues. These results were then used to

calculate the pH-dependent siRNA binding stability

profile and corresponding pH-dissociation constant

profile. Details of the conformational dynamics for

important titratable residues at different pH condi-

tions were also investigated and the results were

compared with experiment.

Results

CPHMD simulation stability

CPHMD simulations ranging from pH 1 to 14 were

performed for both apo and holo systems and the

Ca-root-mean-square deviation (RMSD) relative to

the crystal structure at different pHs is shown in

Supporting Information Figure S1. In general, the

apo simulations demonstrated larger average

Ca-RMSDs than the holo simulations. The largest

Ca-RMSD was �5.3 Å among all apo simulations (at

pH 2) and �3.7 Å from all holo simulations (at pH

14). Visual inspection of the protein structure from

the apo simulations revealed that the p19 core and

RNA-binding interface (residues 55–152) were very

stable. Instead, the elevated p19 Ca-RMSDs in the

apo systems came from the increased dynamics of

the a2-helix (residues 39–45) from both monomers

(Fig. 1 and Supporting Information Fig. S2). In the

holo system, a2 is connected to the N-terminal

a1-helix (residues 9–17) by a long flexible linker

(residues 18–38) and contains important tryptophan

residues (Trp39 and Trp42) that form end-capping

calipers around the terminal base pairs of the

siRNA.9 In the apo simulations, these base stacking

Figure 1. CIRV p19–siRNA complex. The complex has

been rotated by 180� (PDBID: 1RPU).
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interactions are lost due to the absence of RNA

which resulted in an increase in a2 dynamics and, to

a lesser extent, a1 dynamics.

pKa values calculated from holo and apo

simulations

The pKa values for each Glu, Asp, His, Cys, and Lys

residue were obtained by fitting their simulated

Sunprot
i values (combined from both monomers) to the

Henderson–Hasselbalch equation (see Materials

and Methods section). The calculated results are

summarized in Table I and Supporting Information

Table S1.

Effects of pH on p19–siRNA binding

The net charge of both holo and apo p19 as a func-

tion of pH was determined from the computed pKa

values [Fig. 2(A)]. Overall, both systems became pro-

gressively more negative as the pH was increased

until all 26 titratable residues were completely

deprotonated. The apo form of the protein was found

to be more negatively charged than the holo form

except between pH 6 and 8 where the total charge of

both forms of the protein was nearly the same. Sub-

stituting the pKa values into the Wyman–Tanford

linkage equation, we calculated the pH-dependent

changes in the total binding stability (DDGholo!apo)

as well as the individual contributions from each

titratable residue [Figs. 2(B) and 3]. At pH > 9, the

deprotonation of several conserved lysine residues

(Lys60, Lys67, and Lys71) and a nonconserved cyste-

ine residue (Cys134) led to a large destabilization in

siRNA binding by about 14.0 kcal/mol. Upon deproto-

nation at 4 < pH < 6, several acidic residues (Asp9,

Glu12, Asp20, Glu35, and Glu41) destabilized the

protein–siRNA complex by �7 kcal/mol. Changes in

the binding stability were smallest (<1.0 kcal/mol)

between pH 6 and 8, which is consistent with the

lack of difference in net charge between both apo

and holo systems in the same pH range. Only depro-

tonation of Glu17 and His132 contributed signifi-

cantly to stabilizing the siRNA-bound complex in

this pH range.

Table I. pKa Valuesa Calculated from CPHMD for the
Holo and Apo States

Residue pKholo
a pKapo

a DpKb
a

Asp9 4.17 3.51 0.66
Glu12 5.29 4.30 1.00
Glu17 4.94 6.15 -1.20
Asp20 5.54 4.48 1.06
Asp34 3.56 2.41 1.15
Glu35 5.97 5.20 0.77
Glu41 4.75 4.24 0.51
Lys60 11.11 8.94 2.17
Lys67 11.43 10.26 1.18
Lys71 12.00 9.93 2.06
His132 5.76 6.39 -0.63
Cys134 10.93 10.05 0.88
Glu151 5.15 4.59 0.56

a Only pKa values with DpKa � 0:5 are displayed. A full

list pKa values for all titratable residues is provided in

Supporting Information Table S1.
bDpKa ¼ pKholo

a � pKapo
a .

Figure 2. Effects of pH on p19–siRNA binding. (A) Net

charge of the holo and apo p19. (B) Total binding stability

(white) and per residue contributions to binding stability

(colors). Positive DDG values increase binding stabil-

ity (i.e., favors holo form) while negative DDG values

destabilizes binding (i.e., favors apo form). (C) pH-

dependent dissociation constant profiles compared

with experiment. CPHMDshifted (red) is identical to

CPHMD (yellow) except that it is shifted to the right

by 1.5 pH units for comparison with experiment

(black).
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Figure 2(C) shows the dissociation constant pro-

file and a modified profile in comparison with the

experimentally determined profile from Koukiekolo

et al.27 The unmodified log Kd profile showed mini-

mal change over the last 5 ns of production simula-

tion (see Supporting Information Fig. S3) and was in

close agreement with the experimental profile. A

much better match with experiment was achieved in

the modified profile (CPHMDshifted), which was

shifted by 1.5 pH units relative to the unmodified

profile [see Fig. 2(C) and inset].

pH-dependent conformational dynamics

Various pH-dependent intraprotein and protein–

RNA interactions were assessed from the holo simu-

lations (Fig. 4). Deprotonation of Lys60 and Lys67

showed a drastic decrease in Lys–RNA salt bridge

formation [Supporting Information Fig. S2 and Fig.

4(A, B)]. However, Lys71, in its neutral form, only

displayed a moderate decrease in Lys–RNA interac-

tions [Fig. 4(C)]. Next, measuring the solvent acces-

sible surface area (SASA) for the Cys134 sulfur atom

revealed that its side chain was essentially buried

when in its reduced form and was much more sol-

vent exposed when negatively charged [Fig. 4(D)].

Upon ionization, Glu17 and Glu35 formed more sta-

ble salt bridges with Arg72 and Arg85, respectively

[Supporting Information Fig. S2 and Fig. 4(E, F)].

Formation of the Glu35–Arg85 salt bridge also

appears to stabilize the Trp39–RNA base stacking

interactions but has little to no effect on Trp42–RNA

interactions [Supporting Information Fig. S2 and

Fig. 4(G, H)].

Discussion
The primary goal of this study was to assess the

overall p19–siRNA binding stability and to identify

the important pH-sensitive residues that affect

siRNA binding. Previously, Koukiekolo et al.

hypothesized that p19–siRNA binding is dependent

on the ionization of one or more histidine, cysteine,

and lysine residues.27 They determined this by fit-

ting fluorescence data to an equation that represents

the titration of three apparent pKa values (found to

be 7.1, 8.0, and 10.6) and then attributed these num-

bers to a particular type of residue based on each

residue’s reference pKa value. However, the detailed

resolution needed to pinpoint the residues associated

with these experimental pKa values is well beyond

the capacity of their assays. Thus, using atomic-level

resolution CPHMD simulations, we have computed

pKa values for 26 titratable residues from the p19

protein dimer in both holo and apo systems and com-

pared our results with the current literature. As

pointed out previously, the observed changes in the

binding stability are likely the result of the deproto-

nation/protonation of titratable residues that

interact with the siRNA and/or the result of local

pH-sensitive changes that affect the structural in-

tegrity of the p19 protein.27

Overall, the 14 holo and 14 apo CPHMD simula-

tions showed remarkable stability in the p19 struc-

ture as demonstrated by their Ca-RMSD in different

pH environments (Supporting Information Fig. S1).

This structural stability is consistent with tradi-

tional explicit solvent MD simulations of CIRV p19

with fixed protonation states.10 The holo simulations

displayed slightly lower Ca-RMSD values compared

with the apo systems due to the presence of the

siRNA. Visual inspection of the apo p19 simulations

showed that the differences in RMSD were caused

by the loss of Trp39/Trp42–RNA end-capping inter-

actions which resulted in a significant increase in

the a2-helix dynamics along with added mobility in

the a1-helix (Fig. 1 and Supporting Information Fig.

S2). The flexibility found in the N-terminal region of

p19 is in line with a model where a negatively

charged siRNA first binds to the positively charged

p19 b-sheet surface and then the tryptophan resi-

dues act as calipers to measure the length of the

bound dsRNA by stacking with the terminal base

pairs.9,10

Using the pKa values calculated from all 26

titratable residues in the holo and apo p19 simula-

tions (Table I and Supporting Information Table S1),

we computed the net charge of both p19 systems as

well as the pH-dependent binding stability

(DDGholo!apo) of the entire system and for each ti-

tratable residue [Fig. 2(A, B)]. DDGholo!apo > 0

increases binding stability while DDGholo!apo < 0

decreases binding stability. Overall, both systems

became more negative as each titratable residue was

deprotonated due to an increase in pH and, in gen-

eral, the net charge of the holo system was more

positive than the apo system [Fig. 2(A)]. This was

expected as a more negative net charge would result

in siRNA dissociation due to the charge–charge

repulsion between the negatively charged siRNA

and the protein in the holo system. Between pH 6

and pH 8, the total charge for both systems was

nearly identical. It is also interesting to note that,

with the exception of Cys134 (not conserved) and

His132 (charged conserved as arginine), 11 of the 13

titratable residues found to contribute significantly

to the binding stability (Table I) are well conserved

across the Tombusvirus p19 family9 which generally

implies some level of functional importance.

At pH > 9, the side chains of Lys60, Lys67, and

Lys71 become neutralized and, as a result, their

direct interactions with the negatively charged

siRNA backbone are reduced [Figs. 3 and 4(A–C)].

Deprotonation of these three conserved residues has

the largest destabilizing effect on siRNA binding as

reflected in the 14.0 kcal/mol drop in free energy

[Fig. 2(B)]. This is consistent with past mutations of

Lys60 and Lys71 that resulted in decreases in the
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lethal necrosis phenotype.11,12 Thus, we hypothesize

that mutating one or more of these lysine residues

to arginine, which has a much higher pKa and there-

fore would remain positively charged, may help to

increase the binding stability at higher pH ranges.

In addition, Cys134 was found to be highly solvent

exposed when it is deprotonated [Figs 3 and 4(D)].

Koukiekolo et al. suggested that the role of the cys-

teine amino acid is to preserve the structural integ-

rity of the protein and that the deprotonation of cys-

teine (or other titratable residues) could lead to

structural changes that could either destabilize the

p19 dimer or the p19–siRNA complex.13,14,27 From

our simulations, we suggest that Cys134 becomes

more solvent exposed to prevent having a buried

charge that could affect the stability of the local p19

structure. Therefore, we proffer that mutation of

Cys134 to its isosteric equivalent, serine, may be

beneficial to the CIRV p19 binding affinity.

At 4 < pH < 6, deprotonation of Glu35 not only

facilitates the formation of a salt bridge with Arg85

[Figs 3 and 4(F)] but it also leads to an increase in

base stacking interactions between the nearby Trp39

and terminal RNA base pair [Fig. 4(G)]. Surpris-

ingly, the Trp42–RNA base stacking interactions

were not affected [Fig. 4(H)]. Glu12 and Asp20 are

located near the p19–siRNA binding surface and

likely destabilize the complex once they are deproto-

nated by conferring strong electrostatic repulsion

with the siRNA (Fig. 3). Based on this observation,

we hypothesize that replacing Glu12 and/or Asp20

to neutral glutamine and asparagine, respectively,

would increase the overall binding stability.

At neutral pH, there was a small increase in

DDGholo!apo that was caused by the deprotonation of

Glu17 and His132 [Figs. 2(B) and 3]. In the crystal

structure, His132 is positioned beside a buried

Arg117 which is expected to be structurally less sta-

ble when both residues are protonated.9 We specu-

late that the neutralization of His132 reduces the

local concentration of positive charges and ulti-

mately stabilizes the p19 structure. In contrast, ion-

ized Glu17 appears to facilitate the positioning of

key lysine residues (Lys60, Lys67, and Lys71) along

the protein–RNA interface by forming salt bridge

interactions with Arg72 [Supporting Information

Fig. S2 and Fig. 4(E)]. However, detailed correlation

analyses revealed that the Glu17–Arg72 salt bridge

Figure 4. Conformational dynamics of key intraprotein and

protein–RNA interactions. Lys–RNA and Glu–Arg distances

correspond to salt bridge interactions. Trp–RNA distances

and Cys SASA correspond to end-capping interactions and

the solvent accessible surface area (SASA) for the cysteine

sulfur atom, respectively. See Materials and Methods

section for more detail.

Figure 3. Individual contributions to binding stability at

different pH ranges. Negative and positive contributions to

binding stability will have DDG < 0 and DDG > 0,

respectively, for a given titratable residue. Only

residues with DDGj j > kBT. are shown where kB.

is the Boltzmann constant and T is the temperature

(298 K).
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formation and the Lys–RNA interactions are basi-

cally uncorrelated (with correlation coefficients, R,

between �0.04 and 0.22). Alternatively, it has also

been proposed that the Glu17–Arg72 salt bridge

(and possibly Glu35–Arg85 and Glu41–Arg75 salt

bridges) may play a role in positioning the end-

capping tryptophan residues.9,10 The importance of

this specific salt bridge is further illustrated by

previous studies that swapped Arg72 for glycine

and found that the activity of p19 was severely

compromised.11,12,57,58

The computed dissociation constant profile [Fig.

2(C)] showed little change after the first 15 ns of

production simulation time (Supporting Information

Fig. S3) and was in good agreement with experi-

ment.13 This suggests that the results from the

CPHMD simulations were converged. Also, a much

better correspondence with experiment was obtained

when we shifted the dissociation constant profile

horizontally by 1.5 pH units [see ‘‘CPHMDshifted’’ in

Fig. 2(C) and inset]. The shift in the log Kd profile

can be attributed to an underestimation of the desol-

vation energy and has been shown to lead to a sys-

tematic underestimation of the pKa values (from

which the dissociation constant profiles are

derived).59 Henceforth, discussions of the computed

dissociation constant profile will be in reference to

the shifted profile (CPHMDshifted).

The optimal range for siRNA binding appears to

be between pH 7 and 10 where the binding stability

fluctuates between �7.0 � log Kd � �6.5 [Fig. 2(C)].

From our simulations, we can attribute the highest

experimentally observed pKa of 10.627 to residues

Lys60, Lys67, Lys71, and Cys134 (Fig. 3). These resi-

dues demonstrated the largest reduction in binding

stability at high pH [Fig. 2(B)] and are excellent can-

didates for further mutational studies (see discussion

above). Similarly, the lowest experimental pKa value,

7.1, can be assigned to multiple residues (i.e., Asp9,

Glu12, Asp20, Glu35, and/or Glu41) (Fig. 3). Ioniza-

tion of all these residues appeared to have a syner-

gistic destabilizing effect on the p19–siRNA complex.

Finally, the last observed apparent pKa of 8.0 corre-

sponded to residues Glu17 and His132. These two

residues were the only groups that were beneficial

for significantly increasing the binding affinity upon

deprotonation and we found them to be important for

maintaining the structural integrity of p19.

Conclusions
In summary, we presented CPHMD simulations of a

large protein–RNA complex in implicit solvent.

Overall, the results agree well with experiment. We

identified several titratable residues that are highly

pH-dependent and that could be assigned to experi-

mentally observed pKa values. Lys60, Lys67, Lys71,

and Cys134 appear to affect binding stability at pH

> 9 while several glutamic and aspartic acids desta-

bilize the complex at pH < 6. These residues were

found to be important for maintaining the stability

of the protein structure and/or for siRNA binding.

The optimal pH range for siRNA binding is from

about 7.0 to 10.0 and is largely stabilized by Glu17

and His132.

The CPHMD method has developed into an

accurate and powerful tool for predicting protein

pKa values30 and for generating pH-dependent bind-

ing stability curves that can be directly compared

with experiment. Ultimately, identifying the key pH-

sensitive residues using the CPHMD approach

would allow us to design p19 proteins that have a

higher affinity for siRNA which could be used to

characterize RNA silencing complexes, to manage

cellular levels of siRNA levels, and for discriminat-

ing between single-stranded RNA and dsRNA, and

so forth.13,23,26,60 Furthermore, understanding the

pH-dependence of the viral protein could enable us

to engineer plants that can survive outside of the

virulent pH range and avoid infection altogether.

This study clearly illustrates the value of comple-

menting experiment with theoretical techniques and

offers results that can be further validated.

Materials and Methods

Simulation setup

The CIRV p19 X-ray crystal structure bound to a 21-

nt siRNA (PDBID: 1RPU)9 was used as our model.

The unresolved short linker (residues 49–54) in each

protein monomer was constructed using MODEL-

LER61,62 and the loop modeling facility in the

MMTSB Tool Set.63 Missing hydrogen atoms were

added using the HBUILD algorithm in the

CHARMM simulation package.64 The holo (siRNA-

bound) and apo (siRNA-free) systems contain 5889

and 4551 atoms, respectively. All simulations were

performed in implicit solvent using the generalized

born with a simple switching (GBSW) model65,66

implemented in CHARMM along with the

CHARMM27 protein–nucleic acid force field67,68 and

an energy correction map (CMAP).69 A 50 ps�1

friction coefficient was used for Langevin dynamics

and the experimental salt concentration of 0.1 M27

was simulated using the Debye–Hückel model for

screening charge–charge interactions.70 Consistent

with previous GBSW simulations, the nonpolar sur-

face tension coefficient was set to 0.005 kcal/mol/Å2

53,65,71,72 and a switching cutoff that reduces the

electrostatic solvation and van der Waals contribu-

tions to zero beginning from 20 Å to 24 Å was used.

Optimized atomic radii for proteins65,73 and nucleic

acids74 were used in place of the standard van der

Waals radii for the GBSW calculations. The siRNA

was harmonically restrained to its initial starting

position using a 2 kcal/mol/Å2 force constant to pre-

vent large structural changes in the RNA. Both holo
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and apo systems were energy minimized and heated

up slowly to a final temperature of 298 K followed

by 500 ps of equilibration using a 1 fs simulation

time step. All molecular images were created using

PyMOL.75

Constant pH MD simulations and pKa

calculations

A total of 28 independent simulations (14 for siRNA-

bound and 14 for siRNA-free) ranging from pH 1 to

14 were conducted using the CPHMD methodol-

ogy.44–46 Each simulation was 25 ns long and

resulted in a cumulative simulation time of 0.7 ls.

The first 5 ns of each simulation were discarded in

the analysis so that all 28 production simulations

were each 20 ns long. Atomic charges for protonated

and unprotonated states of aspartic acid, glutamic

acid, histidine, lysine, and cysteine have been

described previously.44,68,76,77 Arginines, whose model

pKa value is typically �12,78 were kept permanently

in its protonated form because CIRV p19 was found

experimentally to be unstable at pH > 1227 All titrat-

able residues were simulated following the CPHMD

method originally developed in the Brooks research

group where a continuous titration coordinate, 0 > ki
� 1, controls the protonation state for the ith titrata-

ble residue.44–46 In that model, ki ¼ 1 and ki ¼ 0

correspond to the fully unprotonated and fully proto-

nated states, respectively, and N(ki) is the number of

simulation snapshots with protonation state k. How-

ever, to increase the number of times that a titratable

residue is considered to be fully protonated (Nunprot
i )

or fully unprotonated (Nprot
i ), we have defined a more

generous cutoff for k:

Nunprot
i ¼ N ki � 0:9ð Þ

Nprot
i ¼ N ki � 0:1ð Þ

(1)

Thus, the fraction of unprotonated states,

Sunprot
i , is given by:

Sunprot
i pHð Þ ¼ Nunprot

i

Nunprot
i þNprot

i

(2)

and the pKa of the ith titratable residue can be cal-

culated by fitting a set of Sunprot (at different pH val-

ues) to the standard Hendersen–Hasselbalch

equation:

Sunprot ¼ 1

1 þ 10n pKa�pHð Þ (3)

where n represents the Hill coefficient. It has been

discussed previously that small deviations in the

Hill coefficient away from 1 have a negligible

effect on the free energy53,54 and, indeed, we

find only small differences in n during the curve

fitting process. Thus, we have set n ¼ 1 for all our

calculations. Finally, due to the fact that the

experimentally determined pKa values were

extracted from a homodimer, we have combined

the data from both monomers to effectively double

the sampling for calculating Sunprot
i and its corre-

sponding pKa.

pH-dependent binding stability

and pH-dissociation constant profiles

The pH-dependent binding stability profile was calcu-

lated using the Wyman–Tanford linkage equation79,80:

@DG=@pH ¼ ln 10ð ÞRTDQ pHð Þholo!apo

¼ ln 10ð ÞRT Q pHð Þapo�Q pHð Þholo
� �

ð4Þ

where DG is the dissociation free energy, R is the

gas constant, and T is the temperature in Kelvins.

DQ pHð Þholo!apo is the difference in the net charge

between the holo and apo states at a particular pH

and is calculated from:

DQholo!apo ¼
X
i

q ið Þh iapo �
X
i

q ið Þh iholo (5)

The average charge of the system, q ið Þh i, is

obtained from:

q ið Þh i ¼ �Sunprot
i þ c ið Þ þ 1

2
(6)

where c ið Þ, defined previously,81 is equal to 1 or �1

for a basic and acidic group, respectively. Integrating

Eq. (4) after substituting in Eqs. (5) and (6) gives

the dissociation free energy at a given pH relative to

a reference pH (pHref):

DDGholo!apo ¼ DGholo!apo pHð Þ � DGholo!apo pHrefð Þ

¼ ln 10ð ÞRT

ZpH

pHref

DQholo!apopH

¼ RT
X
i

ln
1 þ 10pKholo

a ið Þ�pH
� �

1 þ 10pKapo
a ið Þ�pHref

� �

1 þ 10pKapo
a ið Þ�pH

� �
1 þ 10pKholo

a ið Þ�pHref

� � ð7Þ

where pKholo
a ið Þ and pKapo

a ið Þ are the pKas for the

holo and apo states, respectively. The final summa-

tion in Eq. (7) allows the binding stability to be

decomposed into contributions from each titratable

residue. The final dissociation constant profile was

then computed by applying the basic relation:

logKd ¼ ln 10ð Þ�DG
RT

¼ ln 10ð Þ
� DDGholo!apo þ DGholo!apo pHrefð Þ
� �

RT
ð8Þ

where Kd is the dissociation constant. However, as

Eq. (7) gives us DDGholo!apo, then the resulting
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logKd pHð Þ in Eq. (8) at any given pH depends on

DDGholo!apo pHð Þ and DGholo!apo pHrefð Þ, the latter of

which is a constant. Thus, DGholo!apo pHrefð Þ was cho-

sen to allow the best match of logKd pHð Þ to

experiment.

Side chain conformational dynamics

Motivated by previous discussions,8,9,27 the confor-

mational dynamics of several different intraprotein

and protein–RNA interactions were analyzed (from

the holo simulations) by comparing the normalized

probability of an interaction when a particular ti-

tratable side chain is either fully protonated

(pH � pKa) or fully deprotonated (pH � pKa). Glu–

Arg salt bridge distances were measured from the

Glu-Cd atom to the Arg-Cf atom. Trp–RNA base

stacking distances were measured from the center-

of-mass of the Trp side chain (not titrated) to the

center-of-mass of the closest RNA base. Lys–RNA

salt bridges were measured from the Lys-Nf atom to

the closest RNA backbone phosphorus atom. The

SASA was measured for the Cys-Sc atom.
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