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Abstract: An elastic network model (ENM), usually Ca coarse-grained one, has been widely used to

study protein dynamics as an alternative to classical molecular dynamics simulation. This simple

approach dramatically saves the computational cost, but sometimes fails to describe a feasible
conformational change due to unrealistically excessive spring connections. To overcome this

limitation, we propose a mass-weighted chemical elastic network model (MWCENM) in which the

total mass of each residue is assumed to be concentrated on the representative alpha carbon
atom and various stiffness values are precisely assigned according to the types of chemical

interactions. We test MWCENM on several well-known proteins of which both closed and open
conformations are available as well as three a-helix rich proteins. Their normal mode analysis

reveals that MWCENM not only generates more plausible conformational changes, especially for

closed forms of proteins, but also preserves protein secondary structures thus distinguishing
MWCENM from traditional ENMs. In addition, MWCENM also reduces computational burden by

using a more sparse stiffness matrix.

Keywords: elastic network model; normal mode analysis; protein dynamics; closed protein
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Introduction
Most proteins undergo conformational changes,

which are closely related to their specific biological

functions such as catalysis and regulation.1,2 There-

fore, in the past decades, a number of experimental

and theoretical approaches have been proposed to

understand the functional dynamics of proteins. Var-

ious experimental techniques including Cryo-EM, X-

ray crystallography, and NMR have succeeded in

determining protein structures at the atomic level.

Although these structures provide good starting

points for molecular dynamics simulations and the

elucidation of protein dynamics,3–6 limitations

regarding the simulation time scale, data size, and

computational cost still exist.7,8

Elastic network model (ENM) based normal

mode analysis (NMA) was proposed as an alterna-

tive method that is better suited for the study of the

collective motions in macromolecules.9–12 In ENM,

the system is constructed using a virtual spring net-

work among point masses, which represent the pro-

tein residues and their interactions.13–17 To reduce

computational cost, this coarse-grained protein

model adopts a simplified Hookean potential instead
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of using an all-atom empirical potential function.18,19

Moreover, various types of connection rules have

been proposed to capture biologically relevant collec-

tive modes.

The most common and simplest method is the

distance-cutoff rule. Both empirical and theoretical

studies have suggested that the minimum cutoff

value should be at least 11 Å to guarantee system

stability.19–21 However, this traditional method

sometimes fails to capture biologically important

functional modes on the low-frequency normal

modes, especially for closed forms in proteins. This

failure results from the discrepancy between the vir-

tual spring connections in ENM and the actual

chemical interactions of native protein structures.

For example, in the case of the closed form of lacto-

ferrin, the distance-cutoff method does not show the

expected ‘‘tweezers’’ movement, because of the unre-

alistic constraints between the two closed lobes.22

Moreover, the rigidity of protein structures is not

given careful consideration because the traditional

connection rule for ENM uses a uniform spring con-

stant for all types of interactions. However, protein

secondary structures are thought to behave as rigid

bodies under thermal fluctuation because of their

relatively strong covalent and hydrogen bond con-

nections.23–25

To improve the accuracy of stiffness and connec-

tivity, the chemical-bond based connection rule was

proposed, in which the various stiffness values are

assigned according to the type of chemical bond,

including disulfide bonds, covalent bonds, hydrogen

bonds, salt-bridges, and Van der Waals interac-

tions.20 In this model, one can reduce the computa-

tion time by using smaller and more realistic

distance-cutoff values of less than 8 Å without a loss

of generality. Figure 1 compares traditional dis-

tance-cutoff based ENM with chemical bond based

ENM. In both cases, the orange spheres and lines

represent the alpha carbons and their interactions,

respectively.

In this article, we propose a more elaborate con-

nection rule that represents not only chemical inter-

actions but also the inertial effect by assuming that

the entire mass of an amino acid is concentrated on

its alpha carbons atom. This mass-weighted chemi-

cal ENM, called MWCENM, maintains a sparse

stiffness (Hessian) matrix and enables us to analyze

protein dynamics more precisely. To verify the pro-

posed methodology, we compute overlap values

between normal modes and conformational changes

of several proteins for which both open and closed

conformations are available. Moreover, three alpha

helix rich proteins are also tested in order to com-

pare the torsion angle distortion between the tradi-

tional distance-cutoff method and the proposed

MWCENM. Lastly, the computation time for both

approaches is compared.

Results
To verify the proposed method, we determined the

overlap values of the 10 closed-form proteins, which

have their clearly distinguished open form proteins

listed in Table I. Here, we precisely discuss the fol-

lowing three closed-form proteins: SARS prote-

ase,26,27 threonyl-tRNA synthetase,28 and lactofer-

rin.29 We also measured the torsion angle changes

in three alpha helix rich proteins: myoglobin,30

calmodulim,31 and human UMP/CMP kinase.32

These proteins were selected from the Macromolecu-

lar Movements Database.33,34 The overlap tests are

intended to evaluate how precisely the proposed

method can capture the conformational changes

observed in proteins, especially for the closed forms.

Figure 1. Schematic of coarse-grained ENMs using the traditional distance-cutoff method (left) and chemical bond

information (right). The representative alpha carbons are shown as orange spheres. In traditional ENM, the interactions within

the cutoff distance of 11 Å are shown as blue solid lines. In chemical bond based ENM, various types of lines depict the

various chemical interactions. Black, green, cyan, and yellow solid lines, and blue dotted lines represent backbone, hydrogen

bonds, ionic bonds, disulfide bonds, and van der Waals interactions, respectively. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Traditional connection rules have often failed to cap-

ture conformational changes in the closed forms of

protein.35,36 A torsion angle measurement for alpha

helix rich proteins can show quantitatively whether

the protein secondary structures are preserved in

the MWCENM based NMA.

All structural information was obtained from

the Protein Data Bank37 and MWCENM based NMA

was performed using Matlab. All protein images

were generated by Visual Molecular Dynamics.38

Matlab code for both MWCENM and traditional

ENM were taken from the online morph server

KOSMOS (http://bioengineering.ac.kr/kosmos).39

NMA with various simulation options can be

requested from KOSMOS, and the simulation

results can be downloaded and visualized using a 3D

interactive viewer.

Figure 2 compares the NMA results of closed-

form proteins by representing CSO (see Methods

section) distributions over the first twenty lowest

modes. CSO results from MWCENM are shown as a

blue solid line, while the red dashed line represents

those from traditional ENM, with a distance cutoff

of 11 Å. The first six zeros in the CSO values indi-

cate rigid-body motions.

The MWCENM method clearly gives similar or

even higher CSO values than traditional ENM. In

the case of SARS protease, the CSO value from

MWCENM is more than 0.66, whereas the value

from traditional ENM is only 0.53. Both methods

have the largest increase in the CSO value at the

8th mode. Additionally, two other increases in the

CSO value occur at the 10th and the 18th modes of

MWCENM. Figure 2(B) shows a more impressive

result for threonyl-tRNA synthetase. Both methods

show the similar CSO profiles until MWCENM has

the largest increase in the CSO value at the 16th

mode. MWCENM ultimately achieves the CSO value

to 0.85, as compared with 0.63 from traditional

ENM, when the first 20 lowest modes are accumu-

lated. As lower frequency modes are closely corre-

lated with more significant functional motions, these

high overlap values strongly demonstrate the better

simulation accuracy of the proposed MWCENM.36,40

We also test the closed-form of lactoferrin [Fig.

2(C)]. Unlike the results for SARS protease and

threonyl-tRNA synthetase, both traditional ENM

and MWCENM achieved nearly the same CSO dis-

tribution. Although one can observe the same bend-

ing motion at the 7th mode, which represents one of

the most significant functional motions of lactofer-

rin, another peak at the 12th mode involves remark-

ably different vibration behaviors, depending on the

types of ENM.

Figure 3 illustrates the 10th and the 12th mode

shapes from traditional ENM and MWCENM,

respectively. For comparison, we illustrate the con-

formational change from the closed form to the open

form that is represented by a combination of two

large collective motions: the bending motion between

the head and the two lobes, and the relative scissor-

ing motion between the two lobes. Figure 3(B) shows

an additional bending motion generated by the 10th

mode of the traditional ENM. If we approximate the

first bending motion, which occurs at the 7th mode,

to a half sine wave with a hinge point in the middle,

this second bending motion approximates a full sine

wave where the upper head and the lower lobes

bend in opposite direction to one another. In particu-

lar, MWCENM captures the scissoring motion

Table I. Overlap Value for Tested Proteins

MWCENM Traditional ENM

Protein name PDB codea CSO Overlap (mode) CSO Overlap (mode)

SARS protease 1UK4 0.666 0.353 (8) 0.537 0.284 (8)
2A5A 0.510 0.306 (9) 0.532 0.310 (8)

Threonyl-tRNAsynthetase 1EVL 0.851 0.555 (16) 0.630 0.293 (18)
1EVK 0.879 0.550 (10) 0.799 0.387 (13)

Lactoferrin 1LFG 0.890 0.636 (7) 0.866 0.543 (7)
1LFH 0.919 0.630 (9) 0.922 0.519 (7)

Guanylate kinase 1EX7 0.970 0.919 (7) 0.917 0.770 (7)
1EX6 0.968 0.882 (7) 0.944 0.864 (7)

Sucrose phosphatase (SPP) 1TJ5 0.864 0.644 (10) 0.881 0.664 (9)
1S2O 0.960 0.903 (7) 0.971 0.937 (7)

LAO binding protein 1LST 0.907 0.446 (15) 0.862 0.576 (9)
2LAO 0.970 0.946 (7) 0.964 0.819 (7)

a-Ketoglutaratedioxygenase 1GY9 0.922 0.798 (7) 0.885 0.756 (8)
1OTJ 0.951 0.884 (7) 0.958 0.826 (7)

Adenylate kinase 1AKY 0.634 0.377 (10) 0.620 0.464 (9)
1DVR 0.949 0.792 (8) 0.948 0.730 (8)

Diphtheria toxin 1MDT 0.642 0.352 (9) 0.588 0.358 (10)
1DDT 0.710 0.409 (8) 0.723 0.562 (8)

CBL 2CBL 0.911 0.744 (7) 0.855 0.653 (9)
1B47 0.921 0.701 (7) 0.901 0.655 (9)

a For each protein, the first and the second PDB codes represent closed and open forms, respectively.
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between the two lobes at the 12th mode [Fig. 3(C),

Supporting Information]. This result not only corre-

lates well with the significant conformational change

in lactoferrin observed in Figure 3(A), but also agrees

with previous studies.17,22,29 From these results, we

are convinced that the proposed MWCENM is able to

better capture the intrinsic dynamics of proteins in

closed form because it contains enough detailed infor-

mation about mass weights and chemical interactions,

and properly modulates the number of spring connec-

tions. An excess of spring connections has often

appeared to be the limitation of traditional ENM.

Additionally, we tested seven other proteins,

which also have both open and closed conformations.

The CSO results from all 10 exampled proteins are

listed in Table I. In the case of closed forms,

MWCENM method clearly shows higher CSO values

than traditional ENM. Moreover, most of closed

form proteins get the higher overlap values at lower

modes when the MWCENM method is applied. In

contrast, the CSO results for the open forms by

MWCENM method are not that much higher but

still similar those of the traditional ENM. This

quantitative study strongly suggests that MWCENM

be one of the best choices for protein modeling,

regardless of the type of protein conformation.

We also measured the torsion angle change for

alpha helix rich proteins to test how well MWCENM

can preserve secondary structures in NMA. The first

five nonrigid-body modes were used to calculate tor-

sion angle changes, and these results are depicted in

Figure 4. Each torsion angle change for each mode

is represented by a different color line, and alpha

helical regions are marked with gold lines in the

middle. Figure 4(A) shows the case of myoglobin.

The fluctuation of torsion angle by MWCENM

clearly distinguished alpha helical regions from

others. Most high peaks are placed out of alpha heli-

cal regions. In contrast, alpha helical regions are not

easily identifiable from traditional ENM, because of

the large and disordered torsion angle variation.

The mode shape comparison between MWCENM

and tradition ENM also supports these results (Sup-

porting Information). At the 7th mode shape from

traditional ENM, each alpha helix comprising

Figure 2. The CSO values of closed-form proteins using

the traditional ENM (red dashed line with open circles) and

MWCENM (blue solid line with closed rectangle). The first

six modes are always zero, representing rigid body

motions. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 3. The comparison of the important normal mode

shapes of the closed-form of lactoferrin. N, S1, and S2

denote, respectively, the three domains of lactoferrin: head

(green), left lobe (yellow), and right lobe (orange). The red

arrows indicate the directional vectors at each residue. (A) The

conformational change vector from the closed form to the

open form. (B) The 10th normal mode vectors from traditional

ENM. An interactive view is available in the electronic version

of the article. (C) The 12th normal mode vectors from

MWCENM. An interactive view is available in the electronic

version of the article. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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myoglobin fails to preserve its original conformation

showing bending or twist motion, whereas all alpha

helices in MWCENM either translate or rotate like

rigid bodies. An interactive view is available in the

electronic version of the article.

Calmodulin provides a more vivid comparison

traditional ENM and the proposed MWCENM [Fig.

4(B)]. Among many alpha helixes within calmodulin,

we focus on the longest one comprising residues 65–

92. Every mode from MWCENM achieves torsion

angle changes close to zero, whereas the correspond-

ing modes in traditional ENM show higher values

by comparison. Similar results are observed for

human UMP/CMP kinase [Fig. 4(C)].

Consequently, we note that NMA based on tradi-

tional ENM fails to capture secondary structures in pro-

teins. In contrast, the proposed MWCENM preserves

the rigidity of proteins and enables us to identify sec-

ondary structural regions by measuring the torsion

angle change. This good performance of MWCENM is

because it replaces many unrealistic distance-based vir-

tual springs in traditional ENM with realistic hydrogen

bonds found in alpha helical regions.

To compare the simulation complexity of tradi-

tional ENM with the proposed MWCENM, we meas-

ured the computation time required for each

method. MWCENM usually requires less computa-

tional time than traditional ENM because it is able

to reduce the number of spring connections based on

chemical information. In Figure 5, the results of a

computational cost analysis of both traditional ENM

and MWCENM are shown. The density of the elastic

network is indicated by the number of connections

in the linking matrix, and the required computation

time to perform NMA on each protein structure is

located on top of the bar graph (unit: second). As

predicted, MWCENM creates a much sparser elastic

network and thus requires less computation time as

Figure 4. Comparison of traditional ENM (left) with MWCENM (right) in terms of torsion angle fluctuation caused by the first

five nonrigid-body modes. The gold lines located in the middle of each plot indicate alpha helical regions. (A) Myoglobin

(PDB: 101M), (B) Calmodulin (PDB: 1CLL), and (C) Human UMP/CMP kinase (PDB: 1TEV). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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compared to the traditional ENM. Additionally, the

sparseness of the network created increases as the

protein size increases. For calculation, we use a PC

with a 2.33 GHz Intel Core2 Quad CPU and 4.00

GB of RAM.

Discussion

In traditional alpha carbon coarse-grained ENM,

various existing chemical interactions including

covalent bonds, hydrogen bonds, ionic bonds, disul-

fide bonds, and van der Waals interactions are over-

simplified by a distance based connection rule with a

uniform spring constant. Therefore, NMA based on

traditional ENM has some limitations in describing

realistic conformational changes of proteins. For

example, NMA of closed-form proteins often fails to

capture their intrinsic functional motions, such as

opening mode, because of unrealistic excessive

spring connections among proximal regions. In addi-

tion, traditional ENM is also inadequate for repre-

senting the rigidity of secondary structural ele-

ments, such as alpha helices, when NMA is

executed. To overcome these problems, MWCENM is

proposed in this article. This method achieves both

simulation accuracy and computational efficiency by

not only optimizing the elastic network with various

stiffness values according to the types of chemical

interactions, but also considering the inertial effect

of each amino acid as a lumped sum mass at the

representative alpha carbon atom.

To validate the proposed method, several case

studies were performed. First, the overlap values for

closed-form proteins were investigated. MWCENM

mostly shows higher CSO values than traditional

ENM, and captures functionally important opening

modes that are rarely observed in traditional ENM.

Second, the torsion angle fluctuation, which is

highly correlated with the rigidity of a protein struc-

ture, is observed in alpha helix rich proteins.

MWCENM preserves alpha helical structures better

than traditional ENM. We also compared the compu-

tational complexity in terms of computation time

and elastic network density. The optimal connectiv-

ity in MWCENM dramatically reduces the computa-

tion time as the size of protein increases. Conse-

quently, the proposed MWCENM enables us to

understand protein dynamics more rapidly and more

precisely by adopting more precise spring connection

rules.

Methods

MWENM with NMA

In MWCENM, the elastic network is constructed

using two procedures called backbone modeling and

spatial interaction modeling. In backbone modeling,

four consecutive atoms along the backbone (i.e.,

from the ith to the i þ 3th alpha carbon in proteins)

are connected using virtual springs. Because these

constraints in Cartesian space are equivalent to the

3N-6 internal coordinate representations, including

N-1 bond lengths, N-2 bond angles, and N-3 torsion

angles, they can stabilize the stiffness matrix by

generating only six zero eigenvalues corresponding

to rigid-body motions. Then, other spring connec-

tions that represent the nonsequential but spatially

close interactions, such as disulfide bonds, hydrogen

bonds, salt bridges, and van del Waals interaction,

are added to the network model. Although the back-

bone modeling is required to ensure system stability

in MWCENM, the spatial interaction modeling is

the required to improve the accuracy of the simula-

tion model.

The order of magnitude of the stiffness value is

assigned to each spring on the basis of the order of

averaged bonding energy for the corresponding

chemical interaction.41,42 First, the strongest bonds,

such as backbone covalent bonds, and disulfide

bonds are easily modeled because a PDB file

includes the information for these bonds. Second,

hydrogen bonds are modeled using the HBPLUS

program, which automatically generates hydrogen

bond information from the topology of the given pro-

tein structure.43 Third, salt bridges are created

between every pair of charged amino acids (i.e.,

interaction between cation and anion within 4 Å).44

Finally, van der Walls interactions are added to

MWCENM depending on the distance between all

pair of representative atoms within the 8 Å, because

these nonbonded interactions are relatively weak

and follow a Lennard–Jones potential profile, where

the reliable energy state ranges up to 8 Å.45 Table II

summarizes the various stiffness values applied to

MWCENM.

Regarding NMA, the equation of motion is

derived from the Lagrangian mechanics such that

Figure 5. Elastic network density comparison between

traditional ENM (white bar) and MWCENM (black bar). Each

protein size is represented as the number of residues inside

parentheses. The elapsed time for NMA is also displayed

on the top of each bar graph.
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d

dt

@L

@ _di

� �
� @L

@di
¼ 0; (1)

where L ¼ T – V. T and V mean the kinetic energy

and potential energy of the given MWCENM, respec-

tively. di is the ith component of generalized devia-

tion vector d [ R3N. It is physical meaning is a small

fluctuation from the initial position of the ith atom

xi(0) so that xi(t) ¼ xi (0) þ di (t). The total kinetic

energy in a network of n point masses is obtained by

a summation of the kinetic energy of all constituent

atoms. Thus,

T ¼ 1

2

Xn
i¼1

mijj _xiðtÞjj2 (2)

where mi corresponds to a specific lumped mass

value depending on the amino acid type. In addition,

the total potential energy forms

V ¼ 1

2

Xn�1

i¼1

Xn
j¼iþ1

ki;j jjxi tð Þ � xjðtÞjj � jjxi 0ð Þ � xj 0ð Þjj
� �2

(3)

where ki,j is a spring constant between the ith and

jth atom based on Table II. Substitution of these two

energy terms into Eq. (1) yields the following equa-

tion of motion and its full derivation is available at

Ref. 16.

M~d
::

þK~d ¼ 0; (4)

where M is a global inertia matrix consisting of sub-

diagonal matrices Mi,i each of which has a specific

lumped mass value mi. Likewise, K is a global stiff-

ness matrix that includes various sub-stiffness mat-

rices Ki,j, which are derived from the potential

energy and defined by the following equations.

Ki;j ¼ �Gi;j; if i 6¼ j

Ki;j ¼
Pi�1

k¼1 Gk;j þ
Pn

k¼1þ1 Gi;k; if i ¼ j

(
;

Gi;j ¼ ci;j
ðxi 0ð Þ � xj 0ð ÞÞðxi 0ð Þ � xj 0ð ÞTÞ

xi 0ð Þ � xjð0Þ2
ð5Þ

Substitution of ~d by M�1=2~v in Eq. (4) yields the

mass-weighted stiffness matrix

~v
::

þM�1=2KM1=2~v ¼ 0: (6)

Once NMA is performed with respect to the

transformed vector M�1=2~v in Eq. (6), the obtained

eigenvector set should be inversely transformed by

the multiplication of M�1/2. From this process, one

can obtain both eigenvalues and eigenvectors of the

given MWCENM, which can be interpreted as vibra-

tion frequencies and corresponding vibration modes,

respectively.46

Overlap of normal modes
The overlap value is widely used to compare the

similarity between the direction of conformational

changes and the calculated normal mode of given

protein. It is defined by Marques and Sanejouand,47

such that

Oj ¼
P3N

i¼1 aijDri
��� ���

½
P3N

i¼1 a
2
ij

P3N
i¼1 Dr

2
i �

1=2
; (7)

where Oj is the overlap value between the jth nor-

mal mode vector and the conformational change vec-

tor. aij is the eigenvector of the ith alpha carbon at

the jth normal mode, and ri is the displacement vec-

tor of the ith alpha carbon between the two given

superimposed structures. A higher overlap value cor-

related with, higher modeling accuracy. An overlap

value of 1 implies that the computed normal mode

vector exactly captures the direction of conforma-

tional change. To validate the proposed MWCENM,

we also used the cumulative square overlap (CSO) of

the first k modes, defined as

CSO kð Þ ¼
Xk
j¼1

O2
j (8)

which quantitatively measures how well the first k

modes represent the conformational change of the

given protein cooperatively.10

Torsion angle

Torsion angle variation along the backbone numeri-

cally represents the 3D topology of a given protein.

Table II. Various Stiffness Values in MWCENM

Connection
type

Stiffness
ratio Cutoff condition

Backbone
(covalent)

100 Residue number
(between ith and
I þ 1th)

Backbone
(nonbonded)

1 Residue number
(between ith and
iþ2/Iþ3th)

Disulfide bond 100 PDB information
Hydrogen bonda 10 HBPLUS
Salt-bridge 10 Distance between

charged residues <4 Å
Van der

Waals forceb
1 Nonbonded distance <4 Å

4
dij

� �8
4 Å � Nonbonded

distance, dij < 8 Å

a HBPLUS is a program used to calculate all the possible
hydrogen bonds within a protein.
b The stiffness ratio for the second range of Van der Waals
force interaction is only fitted by the attractive term of
Lennard–Jones potential.
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Protein rigidity, (or flexibility), can easily be meas-

ured by the torsion angle change during local vibra-

tion or a large conformational transition. Figure 6

illustrates the torsion angle defined by the angle

between two plains p1 and p2, each of which is

sequentially formed by three consecutive atoms

among the four given atoms Ci�2, Ciþ1, Ci, and Ciþ1.

References

1. Bahar I, Atilgan A, Demirel M, Erman B (1998) Vibra-
tional dynamics of folded proteins: significance of slow
and fast motions in relation to function and stability.
Phys Rev Lett 80:2733–2736.

2. Keskin O, Durell SR, Bahar I, Jernigan RL, Covell DG
(2002) Relating molecular flexibility to function: a case
study of tubulin. Biophys J 83:663–680.

3. Levitt M, Warshel A (1975) Computer simulation of
protein folding. Nature 253:694–698.

4. McCammon JA, Gelin BR, Karplus MK (1977) Dynam-
ics of folded proteins. Nature 267:585–590.

5. Matsushita S, Adachi T, Inoue Y, Hojo M, Sokabe M
(2010) Evaluation of extensional and torsional stiffness
of single actin filaments by molecular dynamics analy-
sis. J Biomech 43:3162–3167.

6. Cheon M, Chang I, Hall CK (2011) Spontaneous forma-
tion of twisted Ab(16-22) fibrils in large-scale molecu-
lar-dynamics simulations. Biophys J 101:2493–2501.

7. McCammon JA, Harvey SC (1987) Dynamics of pro-
teins and nucleic acids. Cambridge, UK: Cambridge
University Press.

8. Frenkel D, Smit B (2002) Understanding molecular
simulation. Orlando, USA: Academic Press.

9. Qian P, Seo S, Kim J, Kim S, Lim BS, Liu WK, Kim
BJ, LaBean TH, Park SH, Kim MK (2012) DNA nano-
tube formation based on normal mode analysis. Nano-
technology 23:105704.

10. Kim S, Kim J, Qian P, Shin J, Amin R, Ahn SJ,
LaBean TH, Kim MK, Park SH (2011) Intrinsic DNA
curvature of double-crossover tiles. Nanotechnology 22:
245706.

11. Yang L, Song G, Jernigan RL (2009) Protein elastic
network models and the ranges of cooperativity. Proc
Nat Acad Sci U S A 106:12347–12352.

12. Yang L, Song G, Jernigan RL (2007) How well can we
understand large-scale protein motions using normal
modes of elastic network models? Biophys J 93:
920–909.

13. Jang Y, Jeong JI, Kim MK (2006) UMMS: constrained
harmonic and anharmonic analyses of macromolecules
based on elastic network models. Nucleic Acids Res 34:
W57–W62.

14. Kim MK, Jang Y, Jeong JI (2006) Using harmonic anal-
ysis and optimization to study macromolecular dynam-
ics. Int J Control Autom 4:382–393.

15. Kim MK, Jernigan RL, Chirikjian GS (2003) An elastic
network model of HK97 capsid maturation. J Struct
Biol 143:107–117.

16. Kim MK, Chirikjian GS, Jernigan RL (2002) Elastic
models of conformational transitions in macromole-
cules. J Mol Graph Model 21:151–160.

17. Kim MK, Jernigan RL, Chirikjian GS (2002) Efficient
generation of feasible pathways for protein conforma-
tional transitions. Biophys J 83:1620–1630.

18. Tirion M (1996) Large amplitude elastic motions in pro-
teins from a single-parameter, atomic analysis. Phys
Rev Lett 77:1905–1908.

19. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation
of thermal fluctuations in proteins using a single-pa-
rameter harmonic potential. Fold Des 2:173–181.

20. Jeong JI, Jang Y, Kim MK (2006) A connection rule for
alpha-carbon coarse-grained elastic network models
using chemical bond information. J Mol Graph Model
24:296–306.

21. Atilgan a R, Durell SR, Jernigan RL, Demirel MC,
Keskin O, Bahar I (2001) Anisotropy of fluctuation dy-
namics of proteins with an elastic network model. Bio-
phys J 80:505–515.

22. Gerstein M, Anderson BF, Norris GE, Baker EN, Lesk
AM, Chothia C (1993) Domain closure in lactoferrin.
Two hinges produce a see-saw motion between alterna-
tive close- packed interfaces. J Mol Biol 234:357–372.

23. Gerstein M, Lesk a M, Chothia C (1994) Structural
mechanisms for domain movements in proteins. Bio-
chemistry 33:6739–6749.

24. Jacobs DJ, Rader a J, Kuhn LA, Thorpe MF (2001)
Protein flexibility predictions using graph theory. Pro-
teins 44:150–165.

25. Delarue M, Dumas P (2004) On the use of low-fre-
quency normal modes to enforce collective movements
in refining macromolecular structural models. Proc
Natl Acad Sci U S A 101:6957–6962.

26. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L,
Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M,
Hilgenteld R, Rao Z (2003) The crystal structures of
severe acute respiratory syndrome virus main protease
and its complex with an inhibitor. Proc Natl Acad Sci
U S A 100:13190–13195.

27. Lee TW, Cherney MM, Huitema C, Liu J, James KE,
Powers JC, Eltis LD, James MN (2005) Crystal struc-
tures of the main peptidase from the SARS coronavirus
inhibited by a substrate-like aza-peptide epoxide. J Mol
Biol 353:1137–1151.

28. Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee
M, Caillet J, Romby P, Francklyn CS, Moras D. (2000)
Zinc ion mediated amino acid discrimination by
threonyl-tRNA synthetase. Nat Struct Biol 7:461–465.

29. Kim MK, Jernigan RL, Chirikjian GS (2005) Rigid-clus-
ter models of conformational transitions in macromo-
lecular machines and assemblies. Biophys J 89:43–55.

Figure 6. Schematic of torsion angle definition. p1 is the

plane defined by the first three atoms Ci�2, Ci�1, and Ci.

Similarly, p2 is defined by the next three atoms Ci�1, Ci,

and Ciþ1. The torsion angle, y, is determined by the angle

between these two planes. [Color figure can be viewed in

the online issue, which is available at

wileyonlinelibrary.com.]

612 PROTEINSCIENCE.ORG MWCENM for Closed form Proteins

wileyonlinelibrary.com


30. Li T, Quillin ML, Phillips GN, Olson JS (1994) Struc-
tural determinants of the stretching frequency of CO
bound to myoglobin. Biochemistry 33:1433–1446.

31. Chattopadhyaya R, Meador WE, Means AR, Quiocho
FA (1992) Calmodulin structure refined at 1.7 A resolu-
tion. J Mol Biol 228:1177–1192.

32. Segura-Pe~na D, Sekulic N, Ort S, Konrad M, Lavie A
(2004) Substrate-induced conformational changes in
human UMP/CMP kinase. J Biol Chem 279:
33882–33889.

33. Flores S, Echols N, Milburn D, Hespenheide B, Keating
K, Lu J, Wells S, Yu EZ, Thorpe M, Gerstein M (2006)
The database of macromolecular motions: new features
added at the decade mark. Nucleic Acids Res 34:
D296–D301.

34. Gerstein M, Krebs W (1998) A database of macromolec-
ular motions. Nucleic Acids Res 26:4280–4290.

35. Delarue M (2002) Simplified normal mode analysis of
conformational transitions in DNA-dependent polymer-
ases: the elastic network model. J Mol Biol 320:
1011–1024.

36. Tama F, Sanejouand YH (2001) Conformational change
of proteins arising from normal mode calculations. Prot
Eng 14:1–6.

37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat
TN, Weissig H, Shindyalov IN, Bourne PE (2000) The

protein data bank. Allen FH, Bergerhoff G, Sievers R,
editors. Nucleic Acids Res 28:235–242.

38. Humphrey W, Dalke A, Schulten K (1996) VMD: visual
molecular dynamics. J Mol Graph 14:33–38, 27–28.

39. Seo S, Kim MK (2012) KOSMOS: a universal morph
server for nucleic acids, proteins and their complexes.
Nucleic Acids Res 40:W531–W536.

40. Dynamics M (1999) Low frequency motion in proteins.
J Comput Phys 189:169–189.

41. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry.
New York: WH Freedman.

42. Martin DR, Ozkan SB, Matyushov DV (2012) Dissipa-
tive electro-elastic network model of protein electro-
statics. Phys Biol 9:036004.

43. McDonald IK, Thornton JM (1994) Satisfying hydrogen
bonding potential in proteins. J Mol Biol 238:777–793.

44. Martz E (2002) Protein explorer: easy yet powerful
macromolecular visualization. Trends Biochem Sci 27:
107–109.

45. Levitt M (1974) Energy refinement of hen egg-white ly-
sozyme. J Mol Biol 82:393–420.

46. Hinsen K (1998) Analysis of domain motions by ap-
proximate normal mode calculations. Proteins 33:
417–429.

47. Marques O, Sanejouand YH (1995) Hinge-bending
motion in citrate synthase arising from normal mode
calculations. Proteins 23:557–560.

Kim et al. PROTEIN SCIENCE VOL 22:605—613 613


