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ABSTRACT

In the postprandial state, the liver takes up and stores glucose tominimize the fluctuation of glycemia. Elevated insulin concentrations, an increase in

the load of glucose reaching the liver, and the oral/enteral/portal vein route of glucose delivery (compared with the peripheral intravenous route)

are factors that increase the rate of net hepatic glucose uptake (NHGU). The entry of glucose into the portal vein stimulates a portal glucose signal

that not only enhances NHGU but concomitantly reduces muscle glucose uptake to ensure appropriate partitioning of a glucose load. This

coordinated regulation of glucose uptake is likely neurally mediated, at least in part, because it is not observed after total hepatic denervation.

Moreover, there is evidence that both the sympathetic and the nitrergic innervation of the liver exert a tonic repression of NHGU that is relieved

under feeding conditions. Further, the energy sensor 59AMP-activated protein kinase appears to be involved in regulation of NHGU and glycogen

storage. Consumption of a high-fat and high-fructose diet impairs NHGU and glycogen storage in association with a reduction in glucokinase

protein and activity. An understanding of the impact of nutrients themselves and the route of nutrient delivery on liver carbohydrate metabolism is

fundamental to the development of therapies for impaired postprandial glucoregulation. Adv. Nutr. 3: 286–294, 2012.

Introduction
The liver plays a unique role in postprandial nutrient metab-
olism because it has first access to most ingested nutrients by
virtue of their absorption into the hepatic portal vein. As a
result, the liver is exposed to higher nutrient levels than
are peripheral tissues. Moreover, it is able both to store
and to release glucose to minimize changes in glycemia be-
tween the fed and fasted states. In the normal individual, the
intake of a mixed meal results in modest hyperglycemia, ac-
companied by substantial storage of glycogen in the liver.
The postprandial period is characterized by carefully titrated
changes in hormone secretion and neural signals, as well as
changes in nonglucose substrates, that combine to direct
the partitioning of the glucose load among the various tis-
sues (1–4). In contrast to the individual with normal glucose
tolerance, the person with poorly controlled type 1 or 2

diabetes exhibits marked postprandial hyperglycemia and
impaired hepatic glycogen accumulation (4–6). This review
focuses on the current understanding of the signals involved
in the control of hepatic glucose uptake and glycogen syn-
thesis in vivo.

Current status of knowledge
In response to ingestion of glucose or a mixed meal and the
resulting hyperinsulinemia and hyperglycemia, the fasting
liver shifts from net output to net uptake of glucose. It is
clear, however, based on the measurement of net splanchnic
glucose balance in humans (6–8) and net hepatic glucose
balance in dogs (9,10), that neither hyperinsulinemia nor
hyperglycemia can independently induce much net hepatic
glucose uptake (NHGU6). NHGU remains modest (2.8–
11.1 mmol$kg21$min21) even when hyperinsulinemia and
hyperglycemia (resulting from glucose infusion into a pe-
ripheral vein) are combined (6,7,9,11,12). On the other
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hand, when similar levels of hyperinsulinemia and hypergly-
cemia are brought about by oral or enteral glucose delivery,
the resulting rates of NHGU are as great as 25–27.8
mmol$kg21$min21 (13,14). Thus, it is clear that oral glucose
delivery triggers a unique hepatic response and that the liver
has an important role in disposing of ingested glucose.

Direct measurement of hepatic glucose uptake in humans
is hampered by the technical difficulty and ethical concerns
regarding portal vein blood sampling. Using splanchnic bal-
ance measurements and tracer techniques, however, investi-
gators have estimated that the human liver disposes of w25
to 35% of an oral glucose load (15,16). In the dog, a model
in which it is possible to measure hepatic balance directly,
NHGU accounts for 25–40% of the administered glucose,
with the exact percentage being determined by the load of
glucose and insulin reaching the liver (14,17). Thus, the
data from human and canine experiments are in general
agreement that, when presented with a moderately sized
oral glucose load, the liver extracts approximately one third
of the glucose, together the muscles and fat take up approx-
imately one third, and the noninsulin-sensitive obligate glu-
cose–using tissues dispose of the remaining one third (Fig.
1). In fact, the liver not only takes up glucose but also cur-
tails its release of glucose postprandially. Thus, these propor-
tions underestimate the role of the liver in glycemic control
because the glucose consumed by the obligate glucose-
requiring tissues has to be derived from the absorbed glucose,
as a result of the cessation of hepatic glucose production.
Consequently, the liver is actually responsible for the disposal
of the equivalent of w60–65% of an oral glucose load. Any
impairment in its function, therefore, can lead to excessive
postprandial glycemia. Because elevated postprandial glucose
levels are associated with adverse outcomes including in-
creased risk of death (all cause and cardiovascular), major car-
diovascular events, and progression of diabetic retinopathy
(18), an understanding of the regulation of hepatic glucose
uptake is of great importance.

Portal glucose signal
Originally it was postulated that a gut factor could explain
the ability of combined increases in insulin and glucose to
cause greater splanchnic or hepatic glucose uptake when as-
sociated with oral glucose delivery (7). However, such a gut
factor was subsequently ruled out by studies in dogs in
which hyperglycemia was created via an intraportal glucose
infusion that mimicked the absorption profile of oral glu-
cose. In this manner, several laboratories demonstrated
that NHGU was not different after intraportal and oral glu-
cose entry (17,19,20). Using the hyperglycemic clamp tech-
nique along with the pancreatic clamp (basal glucagon
replacement with either euinsulinemia or hyperinsulinemia)
in dogs, it was possible to ensure that the load of glucose and
the pancreatic hormone concentrations at the liver were
maintained equivalent, whether glucose was given via a leg
vein or the hepatic portal vein. In this way, it was conclu-
sively demonstrated that entry of glucose into the portal
vein stimulated NHGU and hepatic glycogen synthesis to a

significantly greater extent than glucose delivery via a pe-
ripheral vein (12,21). Thus, a portal vein signal, rather
than a gut factor, was demonstrated to be responsible for en-
hancement of NHGU during oral, enteral, or portal venous
glucose delivery. It is this factor, together with the insulin
concentration and the load of glucose reaching the liver,
that determines the rate of NHGU (12,22) (Fig. 2). The por-
tal glucose signal does not, however, enhance whole-body
glucose clearance (11,21). Instead, it is associated with a sup-
pression of nonhepatic (primarily muscle) glucose uptake
concomitant with the increase in liver glucose uptake (23).
Thus, as a result of its reciprocal actions, the portal signal
ensures that a glucose load is appropriately distributed
among the skeletal muscle, the liver, and the other tissues
of the body.

Although the portal glucose signal has been demon-
strated to operate in species other than the dog (24,25), its
importance in the human has been more difficult to evaluate
because of an inability to catheterize the portal vein and the
difficulty in controlling the insulin and glucagon levels
reaching the liver. Two investigations in humans are partic-
ularly relevant. DeFronzo et al. (7) compared splanchnic
glucose uptake in 2 groups of human subjects in whom pe-
ripheral vein glucose infusion was used to create a combina-
tion of hyperglycemia and hyperinsulinemia. One group
then consumed an oral glucose load (1.2 g/kg), with the pe-
ripheral glucose infusion rate subsequently being adjusted so
that glycemic levels were similar in the presence and absence
of the oral glucose load. Glucose ingestion augmented net
splanchnic glucose uptake approximately 5-fold, compared
with peripheral venous glucose infusion alone. The design
of their study was such that the liver in the group receiving
oral glucose was exposed to a somewhat larger hepatic glu-
cose load and somewhat higher insulin levels, however,
complicating data interpretation. In the second study,
Vella et al. (11) used a pancreatic clamp to fix insulin and
glucagon concentrations while infusing glucose into either
the duodenum or a peripheral vein. Intraduodenal glucose

Figure 1 Distribution of a glucose load among the liver,
insulin-sensitive tissues, and noninsulin-sensitive tissues. CNS,
central nervous system; RBC, red blood cell. Reproduced from
Reference 97 with permission.
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delivery was associated with a 40–125% enhancement of he-
patic glucose extraction. It is worth noting that whole-body
glucose kinetics in humans did not differ, whether glucose
was given via the intravenous or intraduodenal route (26),
consistent with findings in the dog and mouse (21,25). In
summary, the available evidence strongly suggests that the
portal signal functions across mammalian species.

A meal contains not only carbohydrate but also fat and
protein, and thus it is of interest to know what effect these
substrates have on hepatic glucose disposal. The impact of
lipids on NHGU has been examined with pancreatic hor-
mones clamped and the portal signal present, as well as in-
fusion of nicotinic acid to suppress endogenous lipolysis.
Under these conditions, peripheral infusion of a lipid emul-
sion to maintain nonesterified fatty acid concentrations at
their basal levels was associated with a significant (w50%)
reduction in NHGU compared with a control group that re-
ceived no lipid infusion. The suppression of NHGU in the
lipid-infused group was attributable to a combination of
stimulation of hepatic glucose production and blunting of
hepatic glucose uptake (27). The number and diversity of
amino acids have made the examination of interactions be-
tween carbohydrate and protein more complex. Under hy-
perinsulinemic hyperglycemic clamp conditions, portal but
not peripheral infusion of a gluconeogenic amino acid mix-
ture (serine, threonine, glutamine, glutamate, glycine, and
alanine) significantly blunted NHGU (w50%) in the pres-
ence of the portal glucose signal but not in its absence
(28,29). On the other hand, when a mixture containing
the 20 common dietary amino acids was delivered under hy-
perinsulinemic hyperglycemic clamp conditions in the ab-
sence of the portal signal, it brought about a blunting of
NHGU (30); interaction between the 20 amino acid mixture
and portal glucose delivery has not been examined. Both
glucose and amino acids in the hepatoportal region are
known to initiate neural signals that are transmitted to the
brain, with some of the amino acids having stimulatory

effects and others having suppressive effects on afferent fir-
ing rates (31–33). It is thus likely that competition or inter-
action among the various amino acids and glucose alter the
transmission of a neural signal responsible for modulating
hepatic substrate extraction. In summary, both fat and
amino acids affect the liver’s response to glucose delivery,
but much work remains to be done to understand the rela-
tionships among the macronutrients and their components
in the regulation of NHGU.

Mediators of the portal glucose signal. The liver is inner-
vated by parasympathetic, sympathetic and nonadrenergic,
noncholinergic (including nitrergic) nerves (34–37). A
role for the central nervous system in the control of liver glu-
cose metabolism is generally supported by the literature
(38–40). Electrophysiologic data confirm that glucosensors
in the hepatoportal region transmit signals to the hypothal-
amus (41), and total hepatic denervation ablates both the
hepatic and muscle responses to portal glucose delivery
(42). The manner in which the portal glucose signal is
sensed and signals to muscle and liver remains unclear, how-
ever. One possibility is that afferent nerves carry informa-
tion from the hepatoportal region to the brain, which then
signals muscle and liver through efferent nerves. Alterna-
tively, the information sent to the brain could bring about
a neural signal to one organ or the other, with the subse-
quent release of a hepatokine or myokine to coordinate
the response between tissues.

In regard to afferent signaling, it has been established that
a negative arterial-portal vein glucose gradient (i.e., portal
vein glucose concentration higher than that in the artery)
triggers the response to portal vein glucose delivery (43).
Further, it is clear that the arterial and portal vein glucose
levels are compared within the liver and not within the cen-
tral nervous system (44,45). Afferent fibers from the hepato-
portal region travel with both the spinal and vagus nerves
(35). Data from vagal nerve cooling experiments do not sup-
port involvement of vagal afferents in the portal glucose sig-
nal because inhibition of vagal firing brought about by
cooling the vagus nerves in the conscious dog under hyper-
glycemic, hyperinsulinemic conditions did not lead to a de-
crease in NHGU, whether portal glucose delivery was
present or not (46,47). The spinal afferent nerves have
been shown to function in the detection of hypoglycemia
in the portal vein (48), and thus their involvement in the re-
sponse to a glucose load appears likely, although it has not
been examined.

With regard to the efferent limb of the response, again
there is little support for a key role for the parasympathetic
system. In addition to the evidence from the vagal cooling ex-
periments described earlier, it has been observed that, under
hyperinsulinemic euglycemic conditions, hepatic parasympa-
thetic denervation in the rat brings about a reduction in glu-
cose clearance in the skeletal muscle, heart, and kidney but
does not affect glucose clearance by the liver (49,50). On
the other hand, data do support a role for sympathetic and
nitrergic neural input in regulating NHGU. Surgical ablation

Figure 2 Factors affecting the magnitude of net hepatic
glucose uptake (NHGU). In the physiologic range, increases in
the amount of insulin reaching the liver and the hepatic glucose
load stimulate NHGU. When the insulin concentrations and
hepatic glucose loads are equivalent with the 2 routes of
delivery, NHGU is approximately 2-fold greater when glucose is
delivered via the portal versus a peripheral vein.
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of the hepatic sympathetic nerves resulted in an increase in
NHGU during glucose infusion into a peripheral vein (51).
Likewise, increasing hepatic nitric oxide (NO) using the
NO donor 3-morpholinosydnominine HCl (SIN-1) or lower-
ing it using the NO synthase (NOS) inhibitor Nv-nitro-L-ar-
ginine methyl ester (L-NAME) brought about reduced and
enhanced NHGU, respectively (52,53). Taken together, these
data suggest that both adrenergic and nitrergic input to the
liver exerts a basal restraining effect on NHGU that is re-
moved in response to feeding or portal glucose delivery.

The pathway or pathways bringing about the nonhepatic
response to the portal signal remain undefined. Neural sig-
nals represent 1 possibility because electrical stimulation of
the ventromedial hypothalamus enhances muscle glucose
uptake, an effect that can be prevented with sympathetic
blockade (54). In addition to receiving neural signals from
the periphery, the hypothalamus is sensitive to circulating
hormones and substrates, including insulin and glucose
(39,55). Both insulin and glucose modulate the phosphoryl-
ation of cerebral 59AMP-activated protein kinase (AMPK),
which can play a role in the regulation of muscle glucose dis-
posal (55).

Glucagon-like peptide 1 (GLP-1) has been suggested as a
mediator of the enhancement of NHGU by oral glucose de-
livery (56). However, physiologic concentrations of GLP-
1 have no impact on NHGU when studies are conducted
during the infusion of somatostatin (57,58). Somatostatin
prevents endogenous release of GLP-1 as well as glucagon
and insulin, eliminating the possibility that differences in
concentrations of key glucoregulatory hormones account
for the findings. Thus, although numerous possibilities exist
with regard to the identities of the afferent and efferent
limbs associated with the portal glucose signal, it is unclear
at present which are crucial for the response. Nevertheless,
the available data point toward the involvement of the ner-
vous system.

NO and hepatic fuel sensing. AMPK, a metabolic fuel sen-
sor with numerous targets, is activated by an increase in the
AMP:ATP ratio, an indicator that tissue energy reserves are
low. Activation of AMPK stimulates energy-producing path-
ways, i.e., glucose utilization and lipid oxidation, while reduc-
ing the activity of fuel storage pathways such as glycogenesis
and lipogenesis in muscle and other tissues (59). These roles
of AMPK suggest that an increase in hepatic glycogen concen-
trations might be expected to reduce AMPK activity and con-
sequently blunt NHGU and hepatic glycogen storage. Under
steady-state conditions and in the presence of physiologic
levels of hepatic glycogen (55–72 mg/g tissue), the rate of he-
patic glycogen synthesis is directly related to the rate of
NHGU (60). However, proposed newer pharmacologic ap-
proaches to the management of postprandial hyperglycemia
in type 2 diabetes, such as glucokinase (GK) activators, gluca-
gon receptor antagonists, and glycogen phosphorylase inhib-
itors, might be anticipated to increase hepatic glycogen
content. For this reason, studies were carried out on dogs
whose livers had been “supercompensated” with glycogen

(100 mg/g liver) (61). These high glycogen concentrations
were achieved by infusing a small amount of fructose intra-
portally under hyperglycemic conditions to stimulate hepatic
GK. GK is regulated by both long-term and acute mecha-
nisms (reviewed in reference 62). Long-term mechanisms
are largely mediated by insulin, which stimulates GK tran-
scription and translation. Acute regulation (inactivation) oc-
curs via binding of GK to its nuclear regulatory protein, GK
regulatory protein (GKRP); this binding normally occurs in
the presence of low glucose. Under postprandial conditions,
elevated glucose levels stimulate dissociation of GK from
GKRP, resulting in the translocation of GK in its active
form to the cytosol. Enterally or portally delivered fructose
is rapidly taken up by the liver and phosphorylated to form
fructose-1-P, an extremely potent stimulator of GK/GKRP
dissociation and GK translocation. This, in turn, induces su-
praphysiologic rates of NHGU and glycogen deposition (63).
In contrast to a modest increase in the hepatic glycogen con-
tent, which had little apparent effect on liver glucose metab-
olism, the animals with supercompensated hepatic glycogen
exhibited reduced glycogen synthesis in response to hypergly-
cemia, hyperinsulinemia, and the portal glucose signal
(60,61). This was associated with impaired hepatic insulin sig-
naling, increased AMPK phosphorylation, and marked re-
duction in glycogen synthase (GS) activity coupled with
enhanced glycogen phosphorylase activity. McBride and Har-
die (64) proposed that glycogen loading increases the binding
of AMPK to the nonreducing ends of the glycogen molecule’s
outer chains, and this close proximity to GS, which is also gly-
cogen bound, increases the likelihood of GS phosphorylation
by AMPK. Thus, although our data do not allow us to draw
conclusions about cause-and-effect relationships, they are
consistent with a role for AMPK in the regulation of hepatic
glucose disposal.

A role for AMPK in the regulation of hepatic energy me-
tabolism has been suggested by a number of different labo-
ratories. In the presence of basal glucagon and high
physiologic levels of insulin, whether or not hyperglycemia,
euglycemia, or hypoglycemia existed, intraportal infusion of
the AMPK activator 59-aminoimidazole-4-carboxamide-1-
b-D-ribofuranoside in dogs led to an increase in hepatic
glucose output attributable to an increase in glycogenolysis
(65–67). This is in agreement with data indicating that
AMPK can activate glycogen phosphorylase and inactivate
GS (68), as well as inhibit GK translocation and glucose
phosphorylation in hepatocytes (69).

Interaction between AMPK and NOS in the regulation of
glucose metabolism has been observed in numerous tissues
(70–72). Nevertheless, the nature of this interaction remains
unclear. Treatment of isolated mouse or human skeletal
muscle with NO donors (sodium nitroprusside or spermine
NONOate, respectively) increased glucose transport, con-
comitant with an increase in activation of the AMPK a-1
subunit (73,74). Moreover, spermine NONOate increased
glycogen synthesis and AMPK Thr172 phosphorylation in
L6 myotubes, and the effects were not observed in the pres-
ence of a guanylate cyclase inhibitor (73). On the other
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hand, there is also evidence suggesting that AMPK is an up-
stream activator of NOS (75,76). Regardless of the exact re-
lationship between AMPK and NOS, the role of both
molecules in the regulation of hepatic glucose metabolism
is intriguing and deserves further investigation.

Whole-body insulin sensitivity is decreased by intraportal
but not peripheral venous administration of L-NAME, and
this effect can be reversed by intraportal but not peripheral
delivery of SIN-1 (77–79). As mentioned previously, intra-
portal infusion of SIN-1 and L-NAME had suppressive and
stimulatory effects, respectively, on NHGU (52,53). Thus,
we were interested in determining the mechanisms(s) by
which changes in NO levels affected liver glucose uptake.

Many of the metabolic actions of NO are mediated via its
activation of soluble guanylate cyclase (sGC) and subsequent
stimulation of cyclic guanosine monophosphate (cGMP),
which modulates the activity of protein kinase G, cGMP-de-
pendent phosphodiesterases, and cyclic nucleotide–gated
ion channels (73). Therefore, we infused the sGC inhibitor
1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) in-
traportally during a hyperinsulinemic, hyperglycemic clamp
in the absence of the portal glucose signal in 1 group of dogs,
whereas control dogs received the vehicle via intraportal in-
fusion. Two additional groups were examined, 1 receiving
vehicle plus intraportal SIN-1 and 1 receiving both ODQ
and SIN-1 intraportally. Infusion of the sGC inhibitor re-
sulted in a 55% enhancement of NHGU compared with
control, along with a 48% increase in the liver glycogen con-
tent at the end of study (Fig. 3). Concomitant infusion of
SIN-1 and ODQ did not alter the ODQ-stimulated rate of
NHGU. Moreover, intraportal SIN-1 and vehicle adminis-
tration resulted in NHGU at a rate no different from that

in the control dogs. Intraportal ODQ infusion was associ-
ated with a 30% decrease in phosphorylation of hepatic
AMPK and its downstream target acetyl-CoA carboxylase
(ACC), compared with controls, and this was not altered
by co-infusion of SIN-1 and ODQ. On the other hand, infu-
sion of SIN-1 plus vehicle resulted in a 25% increase in
phosphorylated AMPK/total AMPK and a 30% increase in
phosphorylated ACC/total ACC compared with the control
group (80). In a follow-up study, the cGMP analogue 8-
bromo-cGMP was administered intraportally in the pres-
ence of the portal glucose signal, and NHGU was deter-
mined to be significantly blunted (81), providing further
support for a role of the NO/sGC/cGMP pathway in
the regulation of NHGU and glycogen storage (Fig. 3).
The data suggest that this pathway could impose an inhibi-
tory signal during fasting that would reduce glucose uptake
by the liver. Conversely, a feeding signal that reduced signal-
ing through the pathway might result in enhancement of
NHGU and glycogen storage (Fig. 4).

Impact of long-term consumption of a high-fat and
high-fructose diet on NHGU
The U.S. diet is high in fat, particularly saturated fat, and in
simple carbohydrates (82,83). In part because of the in-
creased use of high-fructose corn syrup in beverages and
foods, fructose accounts for >10% of energy consumed by
the average U.S. child or adult, with the 95th percentile of
U.S. fructose intakes totaling w20% of total energy (84).
Fructose intakes have increased along with increases in the
prevalence of obesity, metabolic syndrome, and type 2 dia-
betes. Epidemiologic and cross-sectional data link high-
fat and high-fructose diets (HFFD) with these metabolic

Figure 3 The relationship of nitric oxide (NO)
and net hepatic glucose uptake (NHGU). In the
presence of the portal glucose signal,
increasing hepatic NO by intraportal infusion of
3-morpholinosydnominine HCl (A) or
mimicking NO activation of the soluble
guanylate cyclase (sGC)/cyclic guanosine
monophosphate (cGMP) pathway by infusing
the cGMP analogue 8-Br-cGMP intraportally (B)
blunted NHGU. On the other hand, in the
absence of the portal glucose signal, reducing
hepatic NO by intraportal infusion of the NO
synthase inhibitor Nv-nitro-L-arginine methyl
ester (C) or blocking the activation of the sGC/
cGMP pathway with the sGC inhibitor 1H-[1,2,4]
oxadiazolo[4,3-a]quinoxalin-1-one (D)
enhanced NHGU. *P , 0.05 vs. vehicle. Data
from References (52,53,80,81).
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derangements (85–87). Although it is not clear that there is a
causal relationship between fructose intake and these disor-
ders, there is strong evidence of stimulation of de novo lipo-
genesis, visceral adipose tissue deposition, and dyslipidemia
by high-fructose diets (88,89). Moreover, women consuming
a diet high in fructose versus glucose (25% of total energy in-
take) for 10 wk exhibited increases in de novo lipogenesis and
in fasting plasma glucose and insulin concentrations, along
with impairment of glucose tolerance (90).

Animal models exposed to HFFD quickly develop evi-
dence of the metabolic syndrome, including weight gain/
overweight, hypertriglyceridemia, and insulin resistance
(91–93). The effect of such diets on postprandial hepatic
glucose metabolism is incompletely understood, and there-
fore we examined NHGU and hepatic glycogen deposition
in the dog model (94). Adult male dogs were initially fed a
balanced meat and chow diet (31% protein, 26% fat, and
43% carbohydrate, virtually all in the form of starch). After
baseline assessment, they were either maintained on the
meat and chow diet (control group) or switched to an

HFFD (HFFD group; energy composition: 22% protein,
52% fat, and 26% carbohydrate, with fructose contributing
17% of the total dietary energy). The insulin and glucose re-
sponses to an oral glucose tolerance test conducted at base-
line and at 4 and 8 wk of follow-up were stable over time in
the control group. Glucose tolerance deteriorated during
consumption of the HFFD diet, however, with the area un-
der the curve of the glucose response at both 4 and 8 wk be-
ing more than 2-fold that at baseline. Despite the increase in
glycemia during oral glucose tolerance testing, there was no
compensatory increase in the areas under the curve of the
insulin concentrations in the HFFD group. Insulin sensitiv-
ity, assessed with a hyperinsulinemic euglycemic clamp at
baseline and at 10 wk, also decreased significantly (approx-
imately one third) in the HFFD but not the control dogs.
During week 13, a hyperinsulinemic (4 times basal) hyper-
glycemic (hepatic glucose load 2 times basal) clamp was per-
formed after an overnight fast. For the first 90 min of the
clamp, glucose was infused only via a peripheral vein. For
the subsequent 90 min, glucose was also infused via the por-
tal vein with the peripheral infusion adjusted as necessary to
maintain the hepatic glucose load equivalent in both pe-
riods. In response to hyperglycemia of peripheral origin,
the control dogs shifted from net hepatic glucose output
in the basal state to NHGUat a rate of 10.5mmol$kg21$min21,
and during portal glucose infusion, their NHGUnearly doubled
(19.4 mmol$kg21$min21). In the HFFD group, NHGU did
not occur with either route of glucose infusion. Concomitant
tracer measurements indicated that this was due to defects in
both suppression of hepatic glucose output and stimulation
of hepatic glucose uptake. Net hepatic glycogen synthesis was
suppressed w80% in the HFFD group.

Subsequently, separate groups of control and HFFD (8
wk of HFFD) dogs were studied after ingestion of a liquid
mixed meal. Despite the presence of greater hyperinsuline-
mia and hyperglycemia after the meal in the HFFD versus
control dogs, the HFFD group again failed to exhibit
any significant NHGU, and glycogen storage was reduced
w75% in that group (95). Thus, diets rich in fat and fruc-
tose impair NHGU and thereby contribute to postprandial
hyperglycemia.

Further work has shown that HFFD dogs exhibit sub-
stantial decreases in both GK protein and activity in the liver
(D58% and 71%, respectively) with no decrease in GK
mRNA (96), suggesting that the defect in NHGU in the
HFFD dogs is likely related to a deficit in GK. This is consis-
tent with an important role for hepatic GK in the regulation
of hepatic glucose uptake and glycogen storage (62).

Conclusions
Under normal conditions, the liver plays a critical role in dis-
posing of orally or enterally delivered carbohydrate and there-
fore in limiting postprandial hyperglycemia. This response
involves both a decrease in hepatic glucose production and
a stimulation of hepatic glucose uptake. The latter is depen-
dent on a number of inputs: circulating concentrations of glu-
cose, nonesterified fatty acids, and amino acids; hormones

Figure 4 The distribution of a glucose load between the liver
and insulin-sensitive tissues (primarily skeletal muscle) is finely
controlled. Ingestion of glucose or infusion of glucose into the
portal vein creates a negative arterial-portal glucose gradient
(portal vein concentration higher than that in the artery) that is
sensed within the liver, giving rise to the portal glucose signal,
which is associated with an increase in net hepatic glucose
uptake (NHGU) coupled with a decrease in muscle glucose
uptake. Afferent signals regarding hepatoportal glucose levels
can be transmitted from the liver to the brain, particularly the
hypothalamus. The efferent limbs of the response apparently
rely on neural and/or humoral signals. Both selective
sympathetic denervation of the liver and reduction in hepatic
nitric oxide (NO) by inhibition of NO synthase (NOS) activity
(mimicking a reduction in nitrergic neural signals) stimulate
NHGU in the presence of hyperinsulinemia and hyperglycemia
brought about by peripheral glucose infusion. In addition,
electrical stimulation of the hypothalamus stimulates muscle
glucose uptake, and sympathetic blockade prevents the increase
in uptake. It is also possible that a humoral factor released either
by the liver or muscle (a hepatokine or myokine) regulates
glucose uptake by the opposing tissue. MGU, muscle glucose
uptake; NE, norepinephrine.
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(insulin); and neural mediators (NO and norepinephrine).
The route of glucose delivery is responsible for determining
as much as 50% of NHGU. The oral, enteral, or portal vein
route of delivery brings about a negative arterial-portal vein
glucose gradient that elicits a coordinated response of liver
and muscle in glucose disposal such that NHGU is enhanced
and muscle glucose uptake is suppressed. The portal glucose
signal appears to be associated with a change in afferent sig-
naling from the liver to the brain, resulting in a modification
of efferent signaling to the liver, likely via sympathetic and/or
nitrergic innervation. These signals apparently alleviate a tonic
inhibition of NHGU. In response to a HFFD, both hepatic
glucose production and glucose uptake in the postprandial pe-
riod are abnormal, in association with a defect in hepatic GK.
An improved understanding of the physiologic and patho-
physiologic responses in the postprandial period will improve
our ability to design appropriate treatments for individuals
with impaired glucose tolerance and type 2 diabetes.
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