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Abstract
Sphingosine 1-phosphate (S1P) is a potent sphingolipid mediator that acts through five cognate G
protein-coupled receptors (S1P1–S1P5) and regulates many critical biological processes. Recent
studies indicated that S1P at nanomolar concentrations significantly reduces cytokine-induced
apoptosis of pancreatic β-cells in which genes for S1P1–S1P4 are co-expressed. However, the S1P
receptor subtype(s) involved in this effect remains to be clarified. In this study, we investigated the
potential role of S1P2 in streptozotocin (STZ)-induced apoptosis of pancreatic β-cells and
progression of diabetes. S1P2-deficient (S1P2

−/−) mice displayed a greater survive ability, lower
blood glucose levels, and smaller numbers of TUNEL-positive apoptotic β-cells to administration
of a high dose of STZ than wild-type (WT) mice. S1P2

−/− mice showed higher insulin/glucose
ratios (an index of relative insulin deficiency) and larger insulin-positive islet areas to
administration of a low dose of STZ than WT mice. Moreover, administration of JTE-013, a S1P2-
specific antagonist, to WT mice ameliorated STZ-induced blood glucose elevation and reduced the
incidence of diabetes. Our findings indicate that blockade of S1P2 signaling attenuates STZ-
induced apoptosis of pancreatic β-cells and decreases the incidence of diabetes.
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Introduction
Type 1 diabetes is an autoimmune disease that results in the destruction of pancreatic β-
cells, whereas type 2 diabetes is a much more common disorder caused by insulin resistance
and relative insulin deficiency. Insulin resistance in type 2 diabetes is initially managed by
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enhanced secretion of insulin from β-cells; however, this may gradually lead to a decrease in
β-cell mass and deterioration of key β-cell functions such as glucose-stimulated insulin
secretion. Therefore, β-cell failure is a key pathogenic process in both type 1 and 2 diabetes
[1,2].

Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator that exhibits diverse biological
functions in most cell types and regulates many pathological processes, acting through five
cognate high-affinity receptors (S1P1–S1P5) [3,4]. S1P was found to ameliorate cytokine-
induced apoptosis of β-cells [5,6] in which genes for S1P1–S1P4 are co-expressed [7].
Previous studies demonstrated that S1P2 signaling induces intracellular calcium
mobilization leading to increased glucose uptake in myoblasts [8], and RNA-based
screening for genes that confer insulin resistance to 3T3-L1 adipocytes identified S1pr2 as a
candidate [9], suggesting that S1P2 plays an important role in the pathogenesis of diabetes.
In the present study, we examined the role of S1P2 in streptozotocin (STZ)-induced
apoptosis of β-cells and progression of diabetes using S1P2-deficient (S1P2

−/−) mice as well
as the S1P2-specific antagonist JTE-013.

Materials and methods
Animals

S1P2
−/− mice were generated and genotyped as described previously [10]. S1P2

−/− mice
were backcrossed with C57BL/6N (Clea Japan, Tokyo, Japan) for seven generations, and
thus, littermate wild-type (WT) mice or age-matched (8-week-old) C57BL/6N were used as
controls. All mice were fed ad libitum with standard chow/water and kept under a 12-hour
light-dark cycle in an air-conditioned room. All animal protocols were approved by the
animal care and use committee of Chiba-East National Hospital.

Induction of diabetes by STZ injection
Streptozotocin (STZ, Sigma) was freshly dissolved in 20 mM citrate buffer (pH4.5) and
intraperitoneally administered under various conditions in each experiment: 50 mg/kg body
weight for 5 consecutive days (50 mg/kg for 5 days), 100 mg/kg for 1 day, or 100 mg/kg for
2 days. Control mice received injections of the citrate buffer. JTE-013 (Calbiochem), a
specific S1P2 antagonist [11], was freshly dissolved in saline and intraperitoneally
administered at 4 mg/kg for 6 days (one shot prior to STZ and five shots with STZ). Control
mice received injections of saline. Blood was collected from the retro-orbital sinus of
anesthetized mice and blood glucose levels were measured using the Accu-Chek Aviva
system (Roche). Mice were diagnosed with diabetes mellitus (DM) when their blood glucose
levels were ≥ 300 mg/dl on two consecutive days [12]. Serum insulin levels were measured
using an insulin RIA kit (Millipore) in accordance with the manufacturer’s instructions.

Immunohistochemistry
Pancreata were quickly removed from anesthetized mice, fixed with 3% formalin in
phosphate-buffered saline, and embedded in paraffin. To count islet cells, deparaffinized
pancreatic sections were immunostained with guinea pig polyclonal anti-insulin antibody
(Cell Marque, Rocklin, CA) using a NexES IHC system (Ventana Medical Systems, Tucson,
AZ). Full area sizes (mm2) of pancreatic sections (single section per mouse) were measured
and the numbers of insulin-positive islets in each section were counted. Apoptotic cells were
detected using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) assay (Apotag Kit; Chemicon) in accordance with the manufacturer’s
recommendations. Apoptotic cells per nm2 of islet area were counted in ≥ 10 islets per
section.
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Statistical analysis
Results are expressed as mean ± SD. All statistical analyses were performed using Dr. SPSS
II for Windows (SPSS Inc., Chicago, IL). The existence of significant differences between
two groups (with an accuracy of at least 95%) was analyzed using a two-tailed unpaired t-
test. Kaplan-Meier analysis was used to examine diabetes-free rates and survival rates, and
the differences were determined by log-rank tests. A value of P < 0.05 was considered
significant.

Results
S1P2−/− mice were more resistant to administration of a high dose of STZ

WT and S1P2
−/− males were intraperitoneally injected with a high dose of STZ (100 mg/kg

for 2 days), and their health status was monitored every week until the 15th week after the
final injection. Forty percent (10/25) of WT mice died at the 2nd week, increasing to 64.0%
(16/25) by the 11th week. In contrast, S1P2

−/− mice show lower death rates of 11.1% (2/18)
and 27.7% (5/18), respectively. Kaplan–Meier analysis indicates that S1P2

−/− mice were
significantly (P = 0.0334) more resistant to STZ toxicity than WT mice (Fig. 1A). At the
15th week after the final injection, serum glucose levels in surviving S1P2

−/− mice were
significantly lower than those in surviving WT mice (Fig. 1B).

More β-cells were preserved after STZ injection in S1P2−/− mice
WT and S1P2

−/− males were injected with a low dose of STZ (50 mg/kg for 5 days) so that
all mice survived until at least the 30th day after the final injection, and blood glucose levels
were measured twice a week. There was no significant difference in glucose levels between
WT and S1P2

−/− mice (Fig. 2A). Eight of eleven (72.7%) WT mice were diagnosed with
diabetes compared with only three of eight (37.5%) S1P2

−/− mice; however, Kaplan-Meier
analysis revealed no significant difference in diabetes-free rates between the two groups
(Fig. 2B). Although blood insulin levels in S1P2

−/− mice were comparable to those in WT
mice at the 30th day after the final STZ injection (Fig. 2C), the insulin/glucose ratios (an
index of relative insulin deficiency [13]) were significantly higher in S1P2

−/− mice than in
WT mice (Fig. 2D). This indicates that insulin was more efficiently secreted in response to
blood glucose elevation in S1P2

−/− mice than in WT mice. We counted the numbers of
insulin-positive islets per pancreatic area at the 30th day after STZ injection. Insulin-positive
islets were much more abundant in pancreatic sections from S1P2

−/− mice (Fig. 2E). The
numbers of insulin-positive islets per pancreatic area in S1P2

−/− mice were comparable to
those in WT mice without STZ, because more islet cells (per pancreatic area) withstood
STZ-induced cytotoxicity in S1P2

−/− mice (Fig. 2F). Taken together, these findings indicate
that more islet β-cells were preserved after STZ injection in S1P2

−/− mice than in WT mice.

More islet cells were protected against STZ-induced apoptosis in S1P2−/− mice
The administration of STZ is known to induce apoptosis of islet β-cells [13,14]. WT and
S1P2

−/− males were intraperitoneally injected with a high dose of STZ (100 mg/kg for 1
day), and apoptosis of islet cells was evaluated the following day. Histological analysis
revealed that TUNEL-positive apoptotic islet cells were less abundant in S1P2

−/− mice than
in WT mice (Fig. 3A). The number of apoptotic cells per nm2 of islet area in S1P2

−/− mice
was 27% of that in WT mice (Fig. 3B), indicating that the lack of S1P2 protects islet cells
from STZ-induced apoptosis.

JTE-013 decreased the incidence of diabetes
We examined the effect of JTE-013, a specific S1P2 antagonist, on the incidence of STZ-
induced diabetes. JTE-013 (4 mg/kg) was intraperitoneally injected for 6 days (one shot
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prior to STZ and five shots with STZ (50 mg/kg)), and blood glucose elevation after the
final STZ injection was examined every week. Glucose levels at the 4th week after the final
STZ injection were significantly lower in JTE-013-treated mice than JTE-013-untreated
mice (Fig. 4A). Glucose levels were not indistinguishable between JTE-013-treated and
JTE-013-untreated mice in the absence of STZ. Among STZ-injected mice, 71.4% (10/14)
of JTE-013-untreated mice were found to be diabetic compared with only 14.3% (2/14) of
JTE-013-treated mice by the 6th week after the final STZ injection. Kaplan-Meier analysis
indicates that JTE-013 treatment significantly (P = 0.0024) decreased the incidence of
diabetes (Fig. 4B).

Discussion
We found that the blockade of S1P2 signaling prevents the onset of diabetes by protecting
islet β-cells from STZ-induced injury (Fig. 2 and 3). S1P2 is known to couple with Gq,
activate phospholipase C that leads to Ca2+ mobilization, and induce the activation of
extracellular-regulated kinase, stress-activated protein kinase/c-jun N-terminal kinase, and
mitogen-activated protein kinase (MAPK) p38 [15,16]. The activation of MAPK p38 is a
critical event leading to β-cell apoptosis and promoting peripheral insulin resistance
[17,18,19], and thus mice lacking MAPK p38 were found to be protected against pancreatic
β-cell failure and insulin resistance [14]. Therefore, blockade of S1P2 signaling may lead to
deactivation of MAPK p38 and attenuation of STZ-induced β-cell failure/progression of
diabetes. The present study bears analogy to our previous one, in which accelerated
regeneration of hepatocytes was observed after liver injury in S1P2

−/− mice [20], and may
suggest generalization of cell protective effect by S1P2 inactivation. Recently, it has been
suggested that S1P2 may protect against diabetes by preventing insulin resistance; S1P2

−/−

mice showed insulin resistance [9] and S1P2 signaling increased glucose uptake in
myoblasts [8]. Although further studies are necessary to solve this inconsistency with our
findings, the protective effect on pancreatic β-cells resulting from S1P2 inactivation may
have surpassed the undesired insulin resistance in our system.

We further explored the possibility that the S1P2-specific antagonists have potential for use
in the treatment of diabetes. JTE-013 decreased blood glucose levels (Fig. 4A) and reduced
the incidence of diabetes in STZ-injected mice (Fig. 4B). It has been shown that FTY720, a
pro-drug against all the S1P receptors except S1P2 (i.e., S1P1 and S1P3–5), reduces the
incidence of diabetes in mice [21]. These results suggest that the protective effects of S1P
against diabetes (including blockade of immune cell migration) may be mediated by non-
S1P2-type S1P receptors. In this context, selective inactivation of pro-diabetic S1P2 and
preservation of anti-diabetic non-S1P2-type S1P receptors by S1P2-specific antagonists may
have strong potential as a future anti-diabetic strategy; the ligand S1P is abundant in the
blood stream [22].

Conclusion
We report here that selective blockade of S1P2 signaling attenuates STZ-induced apoptosis
of pancreatic β-cells and decreases the incidence of diabetes in mice. Modulation of S1P
signaling may provide a new avenue for the treatment of diabetes.
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Abbreviations

MAPK mitogen-activated protein kinase

S1P sphingosine 1-phosphate

S1P2 sphingosine 1-phosphate receptor 2

STZ Streptozotocin

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

WT wild-type
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Fig. 1.
S1P2

−/− mice were more resistant to administration of a high dose of STZ. (A) Kaplan-
Meier survival analysis of WT and S1P2

−/− mice (n = 25 and 18, respectively) after the final
injection of a high dose of STZ (100 mg/kg for 2 days). (B) Blood glucose levels of
randomly fed, surviving WT and S1P2

−/− mice at the 15th week after the final STZ injection
(n = 9 and 13, respectively). The differences were significant (*P < 0.05).

Imasawa et al. Page 7

Biochem Biophys Res Commun. Author manuscript; available in PMC 2013 May 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
More β-cells were preserved after STZ injection in S1P2

−/− mice. WT and S1P2
−/− mice (n =

11 and 8, respectively) were administered a low dose of STZ (50 mg/kg for 5 consecutive
days intraperitoneally). (A) Blood glucose levels in randomly fed WT and S1P2

−/− mice
after STZ injection. (B) Kaplan-Meier analysis of diabetes-free rates after STZ injection. (C)
Serum insulin levels (ng/ml) at the 30th day after the final STZ injection. (D) Blood insulin/
glucose ratios (× 10−3) as an index of relative insulin deficiency at the 30th day after the last
STZ injection. (E) Representative images of insulin-positive islets in pancreas at the 30th

day after the final STZ injection. Bars: 200 μm. (F) Numbers of insulin-positive islets per
pancreatic area (mm2) without (n = 5 each for WT and S1P2

−/− mice) or with STZ injection
(at the 30th day after the final STZ injection). *P < 0.05 and **P < 0.01.
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Fig. 3.
More islet cells were protected against STZ-induced apoptosis in S1P2

−/− mice. Mice were
injected with a high dose of STZ (100 mg/kg for 1 day) and apoptotic β-cells were identified
by immunostaining (A) TUNEL-positive apoptotic β-cells in pancreatic sections obtained
from WT and S1P2

−/− mice. Bars: 50 μm. (B) Numbers of apoptotic cells per islet area
(nm2) of WT and S1P2

−/− mice (n = 10 each). The difference is significant (*P < 0.0001).
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Fig. 4.
JTE-013 decreased the incidence of diabetes. JTE-013 (4 mg/kg) or saline was
intraperitoneally injected for 6 days (one shot prior to STZ and five shots with a high dose of
STZ (50 mg/kg)). (A) Changes in blood glucose levels of randomly fed mice with/without
STZ or JTE-013 injection. Sample numbers are 14 for +STZ/−JTE-013 (closed circles),
+STZ/+JTE-013 (closed squares), −STZ/−JTE-013 (open circles), and −STZ/+JTE-013
(open squares). The effects of JTE-013 were significant at the 4th weeks after the final STZ
injection (*P < 0.01). (B) Kaplan-Meier analysis of diabetes-free rates after STZ injection.
Co-injection with JTE-013 significantly reduced the diabetes-free rates (*P < 0.01).
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