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Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used
as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the
environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex
chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances
which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity,
and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic
compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these
compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans
and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health,
and proffers measures for mitigation.

1. Introduction

Chemical substances are essential in many economic activ-
ities and are a significant part of daily life. They provide
society with a wide range of benefits, particularly increased
agricultural and industrial productivity and improvements in
the control of diseases. Nevertheless, chemical compounds
have the potential to cause considerable environmental and

health problems from production through to disposal. Xeno-
biotics are a major cause for concern world over, given their
recalcitrance to degradation by artificial or natural means
and adverse effects on humans and the ecobiota. Global
increase in industrial and agricultural activities has led to
the production of new xenobiotics such as chlorophenolic
compounds. Chlorophenols are environmental pollutants
introduced into the environment as a result of chemical and
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TABLE 1: Priority contaminants set by EU and US-EPA.

EU US-EPA

Phenol

2-Chlorophenol
2,4-Dichlorophenol
4-Chloro-3-methylphenol
2,4,6-Trichlorophenol
Pentachlorophenol

2-Amino-4-chlorophenol
2-Chlorophenol
3-Chlorophenol
4-Chlorophenol
4-Chlorophenol-3-methylphenol
2,3,4-Trichlorophenol
2,4,5-Trichlorophenol
2,4,6-Trichlorophenol
3,4,5-Trichlorophenol
3,5,6-Trichlorophenol
Pentachlorophenol

pharmaceutical industry activities [1-3]. The wide spread
presence of these compounds in the environment is also
related to the production use and degradation of numerous
pesticides, such as chlorobenzenes [4] and chlorinated cyclo-
hexanes [5].

Over the past five decades, chlorophenols have become
quantitatively significant pollutants in the environment and
their treatment, disposal, and general management have
become a serious challenge to stakeholders in the envi-
ronment and health sectors [6]. In an effort to remedy
the effects of xenobiotics like chlorophenols, bioremediation
using microorganisms has been suggested [1, 7, 8]. The
diversity, versatility, adaptability, and metabolic potentials of
a number of microbes have been harnessed and applied in
bioremediation of environmental contaminants [7]. How-
ever, a number of contaminants have been shown to be
unusually refractory to microbial degradation; thus they
are either not metabolizable or are transformed into other
metabolites that accumulate in the environment [9].

The transformation of chlorophenols in particular could
lead to increase in toxicity of intermediate compounds or
end products due to formation of electrophilic metabolites
that may bind and damage DNA or gene products [2]. The
noxious influence of chlorophenols and their derivatives on
the ecobiota may lead to acute toxicity, histopathological
changes, mutagenicity, and cancer. These serious health issues
make it imperative not only to control chlorophenols in the
environment but also to assess and understand their fate
in the environment with a view to protecting the environ-
ment and preserving the public health communities. This
review addresses the incidence and fate of chlorophenolic
compounds in the environment with special emphasis on
their adverse effects on the ecobiota.

2. Policy Regulations of Chlorophenols in
the Environment

The presence of chemicals in the environment due to its use
for various purposes affects the quality of air, water, soil, and
human health. It is important to assess the risks of these
pollutants to the ecosystem in order to create a firm basis
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FIGURE 1: Commercially the most important chlorophenols. 2,4-
dicholorophenol (2,4-DCP) (1); pentachlorophenol (PCP) (2); 2,4,5-
trichlorophenol (2,4,5-TCP) (3); 2-chlorophenol (2-CP) (4) and 4-
chlorophenol (4-CP) (5).
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for environmental policy formulation. To this end, gov-
ernmental agencies across the globe have issued several
policy statements aimed not only at preserving the health
of the teeming world population but also the environment.
In 1976, the European Union (EU) categorized 132 dan-
gerous substances (based on their toxicity, stability, and
bioaccumulation) that should be monitored in waters [10].
Amongst these substances are organochlorinated compounds
(or chlorophenols) and substances that can be converted to
organochlorinated compounds (Table 1). The structures of
some commercially important chlorophenols are shown in
Figure 1.

The European Union made recommendations for estab-
lishments to ensure monitoring programs that controls the
emission of industrial discharges from textile, refineries, pulp,
and paper factories into the air, water, and soil [10-12]. The
general strategy for water protection and the prioritized dan-
gerous substances to be controlled includes hexachloroben-
zene (HCB), hexachlorocyclohexane (HCH, lindane), poly-
cyclic aromatic hydrocarbons (PAHs), pentachlorobenzene,
and pentachlorophenol (PCP) with the aim of protecting the
health of the general population [13, 14]. The European Union
has set target limits of 0.1 #g/L and 0.5 pug/L as maximum con-
centrations for pesticide and its product of degradation and
for total concentration of pesticides, respectively, in the envi-
ronment [15]. The term relevant metabolite with respect to
toxicity was introduced in the EU Directive 91/414/EEC [16],
with subsequent amendments. The legislation concerning
placing product in markets and subsequent guidance on the
use has been provided [17]. In the USA, the Environmental
Protection Agency (EPA) has established the maximum level
for each pesticide or its transformation products according
to their toxicity [18]. For public protection against toxic
effects of pesticides, regulatory agencies in several countries
have established standards specifying the acceptable residual
levels of each pesticide in various foodstufts [19]. Similarly,
the World Health Organization (WHO) has sets of basic



The Scientific World Journal

acceptable minimum standards for these toxicants which are
evaluated and reviewed periodically. The acceptable daily
intakes (ADIs) of pesticides will be seen in the report of
the joint meeting of the Food and Agriculture Organization
(FAO) panel of experts on pesticide residues in food and
the environment and the WHO core assessment group on
pesticide residues [20, 21].

Two fundamental approaches exist for dealing with envi-
ronmental contamination as a result of discharged chemicals;
the first approach is to prove the safety of a xenobiotic
chemical and its potential by-products prior to widespread
use and discharge [22, 23]. The second approach is not to
use the chemical unless the chemical’s toxicity and risk can
be clearly determined [22, 23]. In a bid to deal with these
toxicants, European countries within the European Union
have restricted the use of such chemicals as is found in Table 1,
because of issues surrounding their potential environmental
toxicity [10, 22]. The United States has taken the second
approach and allows the use of xenobiotic compounds like
chlorophenols, even though the toxicity and problems associ-
ated with exposure to low concentrations of these compounds
have not been clearly determined [24]. The problem with
this second approach is that the effects of low concentrations
of contaminants in the environment can be so complex and
difficult to determine that clear scientific proof of toxicity
may never be absolutely determined, even though they cause
environmental or human harm [24].

3. Exposure of the Environment
to Chlorophenols

Environmental and occupational exposures to pesticides as a
risk factor for hematopoietic tumors have been widely studied
mainly among farmers and agricultural workers, in rural
communities and in the pesticide manufacturing industries
[25,26]. Occupational exposure to pesticides includes a broad
range of occupational categories such as end-users (farmers
and applicators) and workers during the manufacturing
process (manufacturing workers) both undergoing diverse
qualitative and quantitative exposures [26, 27].

One of the primary concerns of the environment’s
exposure to chlorophenols is their potential to contaminate
aquatic ecosystems (ground and surface waters) and conse-
quently posing great risk to humans and other organisms
associated with the food chain of the aquatic ecobiota
[28]. The situation could be made worse by the fact that
chlorophenols are so recalcitrant that they may maintain high
toxicity levels (unchanged) within the environment for a very
long time [8]. Exposure to chlorophenols has been associ-
ated with industries that produce textiles, leather products,
domestic preservatives, and petrochemical industries [26-
28]. Occupational exposures have been observed to occur
through inhalation and dermal contact with this compound
at workplaces [28]. Workers’ exposure was reported in plants
producing chlorinated pesticides or fungicides as well as
in industrial incinerator, wastes plants, and electrical utility
line-men in contact with chlorophenol-treated poles used
in electric line construction [28]. Occupational exposure

of workers to phenoxy herbicides has been associated with
increased morbidity and mortality due to cancer of respira-
tory system, lymphoma, and myocardial ischaemia [28]. A
positive correlation was also shown to exist between non-
Hodgkin’s lymphoma appearance among children and fre-
quency of pesticide use [29]. The investigations of 10,000
workers employed in vinyl chloride production factories
showed that they suffered from liver and lung cancer [30].

The International Agency for Research on Cancers
categorized chlorophenols into five groups as follows:
pentachlorophenol (PCP), 2,3,4,6-tetrachlorophenol (2,3,4,6
-TeCP); 2,4,6-trichlorophenol (2,4,6-TCP), 2,4,5-trichloro-
phenol (2,4,5-TCP) and 2,4-dichlorophenol (2,4-DCP) as
belonging to the 2B group of potential human carcinogens
[31, 32]. This category encompasses chemical agents for
which sufficient evidence of carcinogenicity in animals and
inadequate evidence of carcinogenicity in humans have been
established. The World Health Organization classified some
chlorophenols (2,4,6-trichlorophenol, 2,4,5-trichlorophenol,
and pentachlorophenol) as compounds suspected of having
carcinogenic properties [31, 33].

3.1 Effect of Environmental Exposure to 2,4,5-Trichlorophenol
and Its Derivatives. Although the application of 2,4,5-tri-
chlorophenol (2,4,5-TCP) as biocide has been restricted in
many countries, it is still used as a fungicide in wood and
leather impregnation in many parts of the world [34]. Other
routes by which 2,4,5-TCP could gain entrance into the
environment include article mills where they are used in
wood pulp bleaching, and as components of drinking water
[35]. The formation of chlorocatechols from chlorinated
phenols in mammals has been proven. Dichlorocatechols,
including 4,5-dichlorocatechol (4,5-DCC), may be formed
from both TCP and PCP in rodents [36]. 4,5-DCC and,
similarly, 4,6-dichloroguaiacol (4,6-DCG) are formed in high
amounts during article production; thus, their concentrations
in sewages and polluted surface water may be very high,
>3 mg/L [37]. Chlorinated guaiacols were actively accumu-
lated in aquatic biota, including fish [38], indicating their
potential risk to consumers of such fish products. Further-
more, the presence of 4,6-DCG was reported in drinking
water [35] and in the air of areas exposed to industrial pol-
lution [39]. The 2,4,5-TCP has also been determined in
drinking water [35], as it is formed as a result of water
disinfection (chlorination) [2].

3.2. Incidence and Effect of 2,4,5-Trichlorophenol and Its
Derivatives on Living Organisms. As previously highlighted,
chlorophenols are known to be harmful toxic substance,
because they easily penetrate skin and epithelium, leading
to damage and necrosis [2]. It is also known that workers
employed in the production of phenoxy herbicides and
chlorophenols often suffer from heart disease, asthma, non-
Hodgkin's lymphoma, lung cancer, and sarcoma [28]. The
exposure of people in Jarvela (Finland) to drinking water
contaminated with chlorophenols, including TCP, caused
increased incidence of digestive tract infections, asthma,
depression, and morbidity [40]. Patients who had high



levels of chlorophenols in their blood were reported to
have increased interleukin-8 serum levels and T-lymphocyte
dysfunction [41].

The ubiquity of exposure by the general population to
TCP has been proven in some investigations. In a German
Environmental Survey [42], it was shown that 2,4,5-TCP
and 2,4,6-TCP were present in the urine of adults from
18 to 68 years old in concentrations ranging from 0.1 to
3.8 ug/L and 0.2 to 7.3 ug/L, respectively [42], whereas in
urine of adults living in the United States, 2,4,5-TCP and
2,4,6-TCP were determined at concentrations ranging from
3 to 25ug/L and 3.3 to 65 ug/L, respectively [43]. At the
occupational setting, TCP exposure was reported in sawmill
workers who were likely exposed to chlorophenols used to
prevent fungal growth in lumber after sawing [44]. High
concentrations of TCP were also found in blood serum and
urine at concentrations ranging from 206 to 1186 ug/L and
196 to 2320 ug/L, respectively, in sawmill worker [44]. The
analysis of accumulation of chlorinated phenols in tissues of
58 male and female individuals from Finland who were not
occupationally exposed to these substances revealed that both
TeCP and PCP were present in adipose tissue and liver at
amounts from 2 to 31 ug/kg, whereas TCP was not detected
[45]. The previous finding may be connected to the short
half life of TCP in tissues (between 1.4 and 1.8h), which
causes much faster elimination of this substance compared
with higher chlorinated phenols [46].

3.3. Effects of Environmental Exposure to Pentachlorophe-
nol and Its Derivatives. Sodium salts of pentachlorophenol
(PCP) and tetrachlorophenol (TeCP) have been used exten-
sively as fungicides in the lumber industry since the 1950s.
PCP is an environmental toxin that is included in the priority
pollutants list of the USA Environmental Protection Agency
and the European Union. Although the use of PCP has been
strongly limited in the US and other developed countries, it is
still employed as a pesticide in wood impregnation in China,
and it is commonly exploited in less developed countries [47].

Tetrachlorocatechol (TeCC) is one of the main metabo-
lites of PCP. It was observed that TeCC may be formed from
PCP in rodents [48]. Moreover, TeCC is one of the main
by-products formed during paper production [49]. Tetra-
chloroguaiacol (TeCG), due to its high potential of accumula-
tion (by 1000-fold) in aquatic biota, may reach concentrations
of up to 111 ug/kg of fish [50] and therefore poses serious
health risk to consumers of such fish products. The exposure
of the population to TeCG may also be related to its presence
in drinking water [35] and in the air of areas exposed to
industrial pollution [51].

3.4. Incidence and Effects of Environmental Exposure to
Pentachlorophenol and Its Derivatives on Living Organism.
Human populations could be exposed to PCP through the
migration of this compound from packaging materials (e.g.,
paper bags) to consumer products with concentration reach-
ing up to 78 ug/kg [52]. PCP concentrations in home dust
were observed to be as high as 32 mg of PCP/kg [42], while
reports elsewhere [2, 35] documented the presence of PCP
in drinking water as a by-product of water disinfection with
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chlorinated oxidants. Moreover, it was observed that PCP is
formed in mammals from pentachlorobenzene (PeCB) [53]
and hexachlorobenzene (HCB) [54], chemicals which are
commonly used as pesticides and solvents [55]. According
to Carrizo et al. [56] children living in the areas of PeCB
and HCB emissions were observed to have elevated PCP
concentrations in blood serum.

Wagner and colleagues [57] reported residues of PCP
found in human testes, kidney, prostate gland, liver, and
adipose tissue. PCP is usually found in blood and urine at
concentrations ranging from a few to several micrograms
[56, 58], PCP concentrations in blood of persons who live
in PCP-treated log homes were reported to vary between
69 to 1340 ug/L, while workers permanently exposed to this
substance may have PCP amounts of up to 84.9 ppm/L of
blood serum [59].

Numerous reports have revealed the toxic influence of
chlorophenols. It was observed that both PCP and TeCG
were powerful uncouplers of oxidative phosphorylation in
mitochondria. Moreover, PCP was reported to be promoters
of carcinogenesis in rodents [60-62], endocrine disruptors
[63], and probable carcinogens in humans [64]. It was also
revealed that increased levels of PCP in the blood could lead
to severe T-lymphocyte dysfunction [41]. In another study,
increased lymphocyte responses were observed in patients
with high PCP levels in their blood [65]. According to
Brodeur et al. [66], TeCG showed strong toxicity, comparable
to that exerted by PCP, whereas Oikari et al. [61] reported that
TeCG toxicity was partly related to the inhibition of organic
anion transport affecting on the increase of accumulation of
other xenobiotics in blood and organs.

4. Ecotoxicity and Health Effects
of Chlorophenols

The widespread utilization of chlorophenols for domestic,
industrial, forestry, and agriculture purposes has led to their
increased burden on the environment [67]. Assessing the
environmental risk of chlorophenols in contaminated ecosys-
tems has been an issue of considerable focus, resulting in
numerous toxicity tests that utilizes species at variety of
organizational levels [67]. Chlorophenol derivatives cate-
chol, chlorocatechols, guaiacol, chloroguaiacols, and syringol
exhibit toxic properties including cytotoxic, mutagenic, and
cancerogenic activity [68]. Moreover, substitution of these
compounds with chlorine atoms may increase their toxicity
and prolong the period of bioaccumulation in living organ-
isms [35].

4.1. DNA Damage in Living Organisms by Chlorophenols. The
United States National Report on Human Exposure to Envi-
ronmental Chemicals in a survey performed between 2002
and 2005 showed the presence of 2,4,5-TCP and PCP in
blood serum of individuals [69]. The exposure of a cell to
chlorinated compounds usually results in enhanced DNA
damage such as double or/and single strand breaks or DNA
base oxidation [70]. The teratogenic, neurotoxic, immuno-
suppressive, cytotoxic, and hepatotoxic effects of 2,4-D have
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been well documented [71-74]. Other researchers publish-
ing in the open scientific literature have reported oxidant
effects of 2,4-D, indicating the potential for cytotoxicity
or genotoxicity. For example, Bukowska [75] reported that
treatment of human erythrocytes in vitro with 2,4-D at
250 and 500 ppm resulted in decreased levels of reduced
glutathione, decreased activity of superoxide dismutase, and
increased levels of glutathione peroxidase. These significant
changes in antioxidant enzyme activities and evidence of
oxidative stress indicate that 2,4-D should be taken seriously
as a cytotoxic and potentially genotoxic agent. In another
study, they noticed that 2,4-DCP and catechol increased the
carbonyl group content in human erythrocytes, which was
correlated with formation of ROS in these cells [76].

Oxidative DNA base damage is mainly related to the
formation of highly reactive hydroxyl radical that is pro-
duced in the Fenton reaction, in which hydrogen peroxide
is converted to hydroxyl radical by transition metal ions
such as Fe** or Cu®** [77]. Bases modifications are repaired
primarily by base excision repair [78]. Endonuclease III
(Endo III) cut DNA at sites of oxidized pyrimidines provides
breaks that can be detected by the alkaline comet assay [79].
Formamidopyrimidine-DNA glycosylase (Fpg) is involved
in the first step of the base excision repair to remove
specific modified bases from DNA to form an apurinic or
apyrimidinic site (AP-site), which is subsequently cleaved by
its AP lyase activity giving a gap in the DNA strand [80].

Michalowicz and Majsterek [68] analyzed oxidative DNA
damage induced by chlorophenols and their derivatives using
lesion specific enzymes such as Endo IIT and Fpg. The use
of these enzymes allowed monitoring oxidized pyrimidines
and purines by creation of DNA strand breaks at damage
sites [81]. The authors also observed DNA damaging effect in
samples that were treated with both Endo III and Fpg, which
proved that both pyrimidines and purines were oxidized by
these xenobiotics. Their findings revealed that the use of
Endo III has unveiled more severe DNA damage. Similar
results were shown by Andersson and Hellman [82] who
observed catechol, induced oxidative DNA damage in human
lymphocytes especially in samples treated with this enzyme
(Endo III and Fpg). According to the authors, a stronger
oxidation of pyrimidines by catechol and/or more efficient
repair of catechol-oxidized purines may be responsible for the
observation.

In the study carried out by Michalowicz and Majsterek
[68], they observed in their study that chlorocatechols, par-
ticularly TeCC, induced more severe damage to DNA bases
in comparison to chlorophenols and chloroguaiacols. The
authors observed that 2,4,5-TCP and PCP induced oxidation
DNA damage. It was also shown that catechols may be
oxidized in cells to highly reactive semiquinone radicals [83].
Vatsis and Coon [84] observed that parasubstituted phenols
such as 4-chlorophenol were converted to hydroquinone
by cytochrome P450 2E1 (CYP2E1), whereas chromosome
aberrations and other structural changes within chromo-
somes were reportedly induced by pentachlorophenol at low
concentrations [85]. Damage of DNA was aggravated by
the formation of the PCP product, tetrachlorohydroquinone,

and harmful intermediate form tetrachlorosemiquinone rad-
ical that degraded DNA and handicapped the mechanisms
responsible for its repair [86]. Single-cell gel electrophoresis
(the comet assay) is a sensitive method for the detection of
DNA damage at individual cell levels [68]. It is considered an
indicator of genotoxic activity of chemicals in living cells. To
date, several authors have used the comet assay to measure
xenobiotic-induced DNA damages in vitro in human cells
(68, 87, 88].

4.2. Oxidative Stress and Toxicity in Living Organisms. The
persistence of chlorophenolic compounds in the environ-
ment has resulted in their widespread existence throughout
the food chain. Metabolic studies carried out in rodents and
human liver homogenates have indicated that PCP undergoes
oxidative dechlorination to form tetrachlorohydroquinone
(TCHQ) [48]. In the presence of oxygen, superoxide radicals
can be produced by the cycle of autoxidation and reduction
between TCHQ and its corresponding semiquinone radical
under certain physiological conditions [89]. Thus, PCP could
present a potent source of reactive oxygen species (ROS)
during metabolization.

Free radical catalyzed tissue injury is thought to play
a fundamental role in human disease [90]. Particular con-
straints in addressing this hypothesis have been the inability
to assess free radical generation in vivo and the lack of
information on drugs or vitamins that act as effective antiox-
idants in vivo [91]. Isoprostanes are a family of prostaglandin
isomers that are produced from oxidative modification of
polyunsaturated fatty acids through a free radical catalyzed
mechanism [92]. One of the compounds that can be produced
in abundance by such a mechanism is 8-epi-PGF2«, a
potent vasoconstrictor and a chemically stable end product
of lipid peroxidation [93]. Monitoring this compound has
been shown to be a useful index of in vivo lipid peroxidation
[92, 94].

Wang and Lin [95] and Wang et al. [96] observed
that DNA strand breakage in mammalian cells, glutathione
conjugate formation, and the depletion of glutathione content
in liver tissue can be induced by TCHQ. In addition, protein
adducts and oxidative DNA lesions have also been reported
by other investigators [97, 98]. Studies have shown that
PCP promotes and initiates liver carcinogenesis, and the
promoting effect is related to oxidative stress and compen-
satory hepatocellular proliferation [98]. Thus, hepatotoxicity
generated through oxidative damage is believed to play an
important role during the pathophysiological process of
liver disease induced by PCP [91]. The investigation led by
Bukowska, Duchnowicz, and coworkers revealed numerous
toxic effects caused by chlorophenols in human erythrocytes
[99-102]. The authors observed that chlorophenols oxidize
lipids [100], and proteins [76] and cause reactive oxygen
species (ROS) formation [103] and change in antioxidative
system (decrease the level of GSH and decreased activity
of catalase and superoxidative dismutase [101, 102]). Finally
chlorophenols induced changes in erythrocytes morphology
(echinocytes formation) and hemolysis of these cells [100-
102]. Bukowska et al. suggested that the additional chlo-
rine atom in 2,4,5-TCP is the most probably responsible



for high changes in erythrocyte morphology, which may
lead to drastic shape changes, that is, to cell shrinkage,
hemoglobin leakage, and hemolysis [102]. Additionally, 3-
(dimethylamino-)phenol was studied in an other work by
Bukowska et al. [76]. It is essential to take into account that
prooxidative capability of 2,4-dichlorophenoxyacetic acid is
related to 2,4-D hydrolysis to 2,4-DCP that may generate
radicals oxidizing [103].

4.3. Carcinogenicity of Chlorophenols. The potential carcino-
genic effects of chlorophenols were first raised in the 1970s
when it was discovered that aquatic and terrestrial milieus
might be contaminated with polychlorinated dibenzo diox-
ins. By the early 1990s, their widespread use as treatment to
prevent growth of sapstain fungi on the surface of lumber
was discontinued in most countries [104]. The relationship
between cancer and exposure to chlorophenols and related
chlorophenoxy acid herbicides has been examined in a num-
ber of epidemiologic studies. The most consistently observed
findings have been excesses of non-Hodgkin’s lymphoma
[105] and soft tissue sarcoma [106], although excesses of
multiple myeloma [107], lung, kidney [28], nasopharyngeal
and sinonasal cancers [108] have also been observed. In
addition, few studies have provided results specifically for
pentachlorophenol or tetrachlorophenol, all with relatively
small numbers of exposed people [104]. The evidence regard-
ing the human carcinogenicity of polychlorophenols and
their salts was classified by the International Agency for
Research on Cancer [109]. Clinical findings have shown that
people exposed to chlorophenols fall ill with of tumours,
sarcoma, and lung cancer [104]. According to literature
findings, the mixture of chlorophenols or sodium salts of
these compounds is probably carcinogenic for animals [110].
The U.S. Environmental Protection Agency classified this
compound as a carcinogen and the World Health Organiza-
tion classified catechol in 2B group as a compound of possible
carcinogenicity [110].

The mechanism of toxicity induced by PCP on mam-
mals and humans has been studied in vivo as well as in
vitro. Tetrachlorohydroquinone (TCHQ), a metabolite of
PCP in liver [36], may enhance toxicity and carcinogenicity
of PCP, since it is capable of inducing oxidative damage
to cellular DNA [98]. In vitro studies demonstrated that
inhibition of apoptosis induced by PCP in liver and bladder
cells contributes to tumor promotion [91, 111, 112]. PCP
can induce direct necrosis and its metabolic product 4-
chlorohydrocarbohydrate can break DNA chains, producing
more severe toxicity than PCP itself [91]. PCP has been pro-
posed to be a promoting agent; Umemura et al. [98] reported
the ability of PCP to promote carcinogenesis in mouse livers.
During the multistage carcinogenesis, the promotion stage
may occur either by growth stimulation of the initiated cell
or by prevention of the death of these cells by apoptosis [112,
113]. Gap junctional intercellular communication (GJIC) was
thought to be necessary in both processes; both inhibition
of GJIC and apoptosis may play a role in tumor promotion
[112, 113]. Inhibition of apoptosis was also observed in human
bladder cells T-24 and hepatoma cells HepG2 after treatment
with PCP [91, 111].
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The cancer development in people exposed to chlorophe-
nols is related to microsomal activation of cytochrome
P450. The oxidation reactions lead to conversion of some
xenobiotics to electrophilic forms that actively interacted
with cell structures [36]. For instance, pentachlorophe-
nol activation leads to the formation of tetrachloro-1,4-
benzoquinone and tetrachloro-1,2-benzoquinone by inter-
mediate steps with formation of respective semiquinone
radicals. Formation of tetrachloro-1,4-benzoquinone and
tetrachloro-1,2-benzoquinone compounds is also related to
liver cancer development in mice. The fundamental is that
cancer development is also correlated with the level of
microsomal activation of cytochrome P450 of hepatocytes
[36].

5. Biological Monitoring of Chlorophenols
in the Environment

The classical procedure used to identify and quantify the
chlorophenols includes its extraction and separation from
other potentially interfering substances in biological samples;
and further quantification by instrumental analysis (GC, LC,
MS), genetic toxic assays, enzymatic and bacterial assays,
and immunoassays. Although conventional analytical meth-
ods offer detection limits in the sub-ppb level, they are
labour intensive, require specialized expensive equipment
and sometimes suffer recovery losses [114, 115]. Techniques
that are not laboratory based (test kits, dipsticks, indicators,
portable devices, and real-time monitors) are needed to
reduce cost and provide information in time to avoid haz-
ardous chemical exposures. Immunochemical techniques are
gaining relevance in the area of human exposure assessment
[116]. Immunoassays have been developed for the detection
of urinary biomarkers of exposure to pesticides, chlorophe-
nols, and other environmental pollutants, such as triazines,
organophosphorus insecticides, carbaryl, naphthalene, and
PAHs [117].

6. Analytical Methods for Detecting
Chlorophenols in Environmental and
Biological Medium

The techniques used for chlorophenol analysis are quite
diverse and depend on the type of matrix sample used.
Analytical techniques mainly used in the determination
of chlorophenols in environmental and biological samples
are gas chromatography with electron-capture (GC-ECD)
[118], flame ionization (GC FID), and mass spectrometer
(GC-MS) detectors [119]. Liquid chromatography (LC or
HPLC) in combination with ultraviolet (UV) radiation [120],
electrochemical detection [121], or capillary electrophore-
sis [122], has also been used. The standard technique for
determination of TCPs in water has been reported in the
EPA methods 604, 625, and 8041 [123]. They are based on
chlorophenol liquid-liquid or solid phase extraction followed
by derivatization with diazomethane, methylene chloride
or pentafluorobenzyl bromide and GC-FID, GC-ECD, or
GC-MS detection. The most frequently employed analytical
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procedures for chlorophenols involve the use of solvent
extraction [124], solid-phase extraction [119], solid-phase
microextraction [125], or supercritical fluid extraction [126].

7. Conclusions and Future Research

Chlorophenols are persistent and recalcitrant toxicants that
are widely spread in the environment. The compounds are
toxic to aquatic life and have potential to cause histopatho-
logical changes, mutagenic, and carcinogenic effects. As ana-
Iytical methods improve, the detection and quantification of
more organic contaminants in the environment become pos-
sible. Moving toward a more thorough cataloging of the pol-
lutants present in our ecosystems elucidates the true lifecycle
of the synthetic chemicals introduced to the environment.
Understanding the crucial outcome of the manufactured
chemicals is essential in order to avoid situations analogous
to DDT or PCB contamination. Further research needs to be
done to determine the potential human and environmental
health risks posed by short and long time exposures to
mixture of man-made organics in the environment.
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