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Abstract

Computational predictions have become indispensable for evaluating the disease-related impact of nonsynonymous
single-nucleotide variants discovered in exome sequencing. Many such methods have their roots in molecular evolution,
as they use information derived from multiple sequence alignments. We show that the performance of current methods
(e.g., PolyPhen-2 and SIFT) is improved significantly by optimizing their statistical models on evolutionarily balanced
training data, where equal numbers of positive and negative controls within each evolutionary conservation class are
used. Evolutionary balancing significantly reduces the false-positive rates for variants observed at highly conserved sites
and false-negative rates for variants observed at fast evolving sites. Use of these improved methods enables more accurate
forecasting when concordant diagnosis from multiple methods is regarded as a more reliable indicator of the prediction.
Applied to a large exome variation data set, we find that the current methods produce concordant predictions for less
than half of the population variants. These advances are implemented in a web resource for use in practical applications
(www.mypeg.info, last accessed March 13, 2013).
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Powered by revolutionary sequencing technologies, an over-
whelmingly large number of nonsynonymous single-nucleo-
tide variants (nsSNVs) are being discovered in personal
exomes and in the human population surveys. An assessment
of the impact of these variants on human health and disease
has now become a high priority. However, the lack of
high-throughput assays to interrogate these nsSNVs in the
laboratory has pushed computational predictions to the prac-
tical frontiers. A large number of methods have been devel-
oped in the past decade for predicting function-impacting
nsSNVs, which are now routinely used by personal and pop-
ulation genomics researchers to help prioritize variants for
further investigation (Zhu et al. 2008; Kumar et al. 2009;
International HapMap Consortium 2010; Ng et al. 2010;
Tennessen et al. 2012).

The most widely applied methods for computational
diagnosis of nsSNVs of unknown health significance have
based their predictions explicitly or implicitly on molecular
evolutionary patterns, reviewed in Karchin (2009), Kumar
et al. (2011), and Sunyaev (2012). They primarily use infor-
mation derived from multiple sequence alignments to iden-
tify disease-related (non-neutral) variants. In many cases, a
benchmark data set that includes positive controls (known
disease-associated nsSNVs) and negative controls (neutral
population nsSNVs) is used to build (train) a statistical
model that produces an impact score for each variant.
Then, a threshold impact score that provides optimal speci-
ficity and sensitivity of diagnosis is determined (e.g., Ng and
Henikoff 2001; Adzhubei 2010; Kumar et al. 2012).

Despite many similarities and the use of the same training
data set, different methods frequently produce contrasting
diagnoses (e.g., Chun and Fay 2009; Karchin 2009). Therefore,
many researchers now take a consensus approach, such that
the concordance of diagnosis from multiple methods is con-
sidered more reliable (Zhu et al. 2008; International HapMap
Consortium 2010; Tennessen et al. 2012). In addition, new
hybrid approaches have been proposed that combine results
from multiple methods statistically and produce a final diag-
nosis (Gonzalez-Perez and Lopez-Bigas 2011; Lopes et al. 2012;
Olatubosun et al. 2012). An implicit requirement for the suc-
cess of consensus and hybrid approaches is that individual
methods are not biased in the same way, which would
strengthen statistical signals and produce more reliable re-
sults. It has become clear that this implicit requirement is
not fulfilled by some of the most widely used methods
(Kumar et al. 2012). For example, PolyPhen-2 and SIFT indi-
vidually, their consensus, and a hybrid approach (Condel)
using results from these two methods show high false-positive
rates (FPR; up to 89%) for nsSNVs at ultraconserved sites,
which are positions that have not permitted amino acid
change among vertebrates, that is, amino acid substitution
rate per billion years, r, is close to 0 (Kumar et al. 2012). In
addition, the false-negative rates (FNR) of these methods are
high (up to 65%) for nsSNVs at less-conserved sites, where
r> 1 amino acid substitutions per site per billion years
(Kumar et al. 2012). We hypothesized that these problems
result from evolutionary imbalance of the training and testing
data used in PolyPhen-2, SIFT, and derived methods. If true,
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this would provide a solution to advance these two widely
used methods, which is also necessary for using multimethod
concordance approaches that are often used to produce
more reliable inferences.

Distributions of Impact Scores

To test the above hypothesis, we first examined the distribu-
tions of PolyPhen-2 scores using the HumVar (Adzhubei
2010) benchmark training and testing nsSNVs. Cumulative
distributions of PolyPhen-2 impact scores of negative controls
(neutral nsSNVs) at ultraconserved sites revealed clear biases,
as they were concentrated at the high end (non-neutral) of
the distribution (fig. 1a). Consequently, the use of the same
default threshold (0.49) for all variants (shown by a vertical
line), irrespective of the evolutionary conservation of their
positions, produced high FPR at ultraconserved sites (89%,
shaded area in fig. 1a). In contrast, FPRs were much lower
for nsSNVs at well- and less-conserved sites, because the score
distributions of neutral nsSNVs were concentrated toward
the low end (neutral) of the distribution. Non-neutral variants
also showed large differences across evolutionary classes
(fig. 1b), which resulted in high FNR at fast evolving sites
when the default threshold is used. Distributions of SIFT
scores for neutral and non-neutral nsSNVs also showed
similar trends comparable to PolyPhen-2 scores (fig. 1c and
d), resulting in high FPRs at ultraconserved sites and FNRs
at less-conserved sites.

We then examined the composition of the HumVar
benchmark nsSNVs. The positive controls outnumbered

negative controls by 10 to 1 at ultraconserved sites and
negative controls outnumbered positive controls by 6 to
1 at less-conserved sites. Therefore, there exists an imbalance
in the training data sets at ultraconserved and at less-
conserved sites, even though the full HumVar data set has
similar numbers of positive and negative controls over all sites
when one disregards evolutionary conservation. This disparity
leads to significant bias in the obtained models, which
mirrored the high FPR at ultraconserved sites and high FNR
at less-conserved sites. Overall, these patterns explain why
PolyPhen-2 and SIFT, as well as a hybrid tool (Gonzalez-
Perez and Lopez-Bigas 2011) that employs their impact
scores, showed inconsistent performance for nsSNVs in
different evolutionary categories (fig. 1e and f). Our finding
is consistent with the expectation that the use of unequal
numbers of positive and negative controls in the training
data set (i.e., imbalanced training) may significantly bias the
performance of statistical prediction methods in general
(Valliant et al. 2000).

At the same time, we found that the impact scores for
negative and positive controls produced by the statistical
model trained using the whole data set show good differen-
tiation within each evolutionary class (compare fig. 1a
with fig. 1b for PolyPhen-2, and fig.1c with fig. 1d for SIFT).
These patterns suggested that impact scores from PolyPhen-2
and SIFT have the power to diagnose function-impacting
nsSNVs, as long as the thresholds are determined separately
for each class by using balanced sampling. Therefore, we gen-
erated separate thresholds for ultra-, well-, and less- conserved

FIG. 1. Cumulative distributions of impact scores (S) for population polymorphisms (neutral nsSNVs) and disease-associated (non-neutral) nsSNVs.
Distributions are shown for PolyPhen-2 (a and b), SIFT (c and d), and Condel (e and f) for nsSNVs found at ultraconserved sites (top line), well-
conserved sites (middle line), and less-conserved sites (bottom line). Neutral nsSNVs are plotted in panels a, c, and e. Non-neutral nsSNVs are plotted in
panels b, d, and f. Vertical lines mark the original threshold scores to designate non-neutral alleles: 0.49 for PolyPhen-2, 0.05 for SIFT, and 0.47 for Condel.
A solid line marks neutral diagnosis and a broken line marks non-neutral diagnosis (left and right of the threshold scores, respectively). Shaded areas
show incorrect predictions (false positives in panels a, c, and e and false negatives in panels b, d, and f).
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site classes, such that the diagnosis accuracy was improved in
a 10-fold cross-validation, as explained below.

New Balanced Approaches

We took 21,119 neutral nsSNVs and 22,196 non-neutral
nsSNVs in the HumVar collection as the benchmark for train-
ing and testing, as it has been used by authors of PolyPhen-2
and SIFT previously. Precomputed impact scores by
PolyPhen-2 and SIFT were retrieved from dbNSFP (Liu et al.
2011). We generated balanced training and testing data to
select threshold impact score for PolyPhen-2 and SIFT (called
balanced PolyPhen-2 and balanced SIFT) and then estimated
the performance of the new approaches via 10-fold cross-
validation. In this procedure, equal numbers of neutral and
non-neutral nsSNVs were randomly sampled from within
each evolutionary class that was then partitioned into two
disjoint data sets for training and testing purposes. The
sample size of training data and testing data was determined
as 90% and 10% of the number of nsSNVs in the underrepre-
sented class, respectively. For example, the ultraconserved
class contained 1,101 negative controls and 10,559 positive
controls, from which 991 randomly selected nsSNVs from
each control group were included in the training data and
110 samples from each control group in the testing data.
With an interval of 0.01, we generated a series of threshold
values and measured the corresponding performances of the
PolyPhen-2 and SIFT in the training data (see Materials and
Methods). The optimal value was selected as the score that

maximizes the accuracy of diagnosis. This process was
repeated 1,000 times, and the average value of the
threshold scores was used as the final value of threshold
impact score.

After evolutionarily balanced training, the threshold
impact scores for PolyPhen-2 were quite different from
each other for diagnosing nsSNVs at ultra-, well-, and less-
conserved sites (0.98, 0.61, and 0.03, respectively) when com-
pared with the score of 0.49 used by original PolyPhen-2. For
SIFT, the newly determined thresholds were 0.01, 0.05, and
0.19 for ultra, well, and less-conserved sites, respectively, when
compared with the default score of 0.05. Projected onto the
receiver operating characteristic curves (ROC), the new
thresholds lead to better performance, as the original thresh-
olds would clearly lead to higher FPRs at ultraconserved and
lower true-positive rates (TPRs) at less-conserved sites (fig. 2a
and b). By applying these new thresholds, the FPR at ultra-
conserved sites and FNR at less-conserved sites were reduced
by as much as 30% (table 1). We retrieved the population
allele frequency of HumVar nsSNVs from a 5,400-exome data
set (Tennessen et al. 2012) and found consistent improve-
ments across the spectrum of rare (<0.1%) to common
(>5%) alleles (fig. 2c and d). Also, the performance of bal-
anced PolyPhen-2 and balanced SIFT became more consistent
across conservation classes and similar to another method
(EvoD [Kumar et al. 2012]) that already uses balanced training
and testing (fig. 3). We also examined the performance of
balanced PolyPhen-2 and balanced SIFT on another data set

FIG. 2. Performance improvement. Receiver operating characteristic (ROC) curves for PolyPhen-2 (a) and SIFT (b) in ultraconserved class (solid lines)
and in less-conserved classes (broken lines). Arrows represent the direction of improvement by using the new thresholds (close circles) instead of the
original thresholds (open circles). Area under curve (AUC) is shown for each curve. The diagonal lines represent random predictions. Reductions on FPR
in ultraconserved class (c) and reductions on FNR in less-conserved class (d) achieved by balanced versions of PolyPhen-2 (solid bars) and SIFT (open
bars) are depicted as percent improvement over the corresponding original versions for ncSNVs occurring with different population frequencies. Allele
frequency data for HumVar variants were retrieved from the ESP5400 data set.
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(HumDiv [Adzhubei 2010]), which consists of 4,698
non-neutral variants associated with Mendelian diseases
and 5,786 differences between human proteins and their
closely related mammalian homologs, assumed to be neutral.
The FPR at ultraconserved sites was reduced by 27% for
PolyPhen-2 and 24% for SIFT, and the FNR at less-conserved
sites was reduced by 31% for PolyPhen-2 and 22% for SIFT.

The observed differences between the original and
balanced versions of PolyPhen-2 and SIFT suggested that
the statistical P values reported by PolyPhen-2 and SIFT for
hypothesis testing are unlikely to be appropriate. For example,
the FPR is 43% for PolyPhen-2 at ultraconserved sites at a
5% overall error rate (P< 0.05). Therefore, to generate the
statistical significance of a diagnosis made by balanced
PolyPhen-2 or balanced SIFT, we calculated empirical P values
based on the cumulative distributions of impact scores for
neutral and non-neutral nsSNVs separately within each con-
servation class following Kumar et al. (2012). For a predicted
neutral nsSNV with a score (S), the P value is the probability
that this is a false-negative diagnosis, that is, observing a non-
neutral variant in the training data set with a score lower than
S. And for a non-neutral designations, it is the probability
that this is a false-positive diagnosis, that is, observing a neu-
tral variant with a score higher than S. The set of S scores
that corresponded to various P values were provided as
alternative cutoffs. One may consider diagnoses made with
P< 0.05 to be significant and those with P< 0.01 to be highly
significant.

Concordant Diagnosis

As mentioned earlier, balanced PolyPhen-2, balanced SIFT,
and EvoD show similar overall performance in each evolu-
tionary class. So, we examined the concordance of their diag-
nosis for the HumVar data set. All three produced the same
diagnosis for only 57% of the nsSNVs, with 26% were

designated neutral and 30% non-neutral. We found that
the accuracy of diagnosis was much higher for these
nsSNVs, as the neutral diagnoses were correct 88% of the
times, whereas the non-neutral diagnoses were correct 84%
of the time, which are significantly higher than the use of any
one method alone (fig. 3, all comparisons have P
value< 10�12). We also assessed the accuracy of predictions
from the use of majority rule consensus, where two out of
three methods produced the same diagnosis. The accuracy of
diagnosis was only slightly better than that obtained by using
each method separately (fig. 3). Therefore, complete concor-
dance from three methods leads to more reliable inferences.

Analysis of Population Variation

We analyzed 240,625 nsSNVs from the ESP5400 Project, a
large-scale population survey (Tennessen et al. 2012). Of
these, 51,792 (22%) nsSNVs were predicted to be neutral
and 52,802 (22%) nsSNVs were predicted to be non-neutral
by all three methods. Rare nsSNVs (minor allele frequency
[maf]< 0.5%) were twice as likely to be non-neutral as were
the common nsSNVs (maf> 5%) (fig. 4); see also figure 3b of
Tennessen et al. (2012). This trend is reasonable because the
purifying selection acts against harmful variants, which also
predicts that many more harmful rare variants will exist in
heterozygous states where their negative effects are masked
by wild-type alleles. Indeed, a higher proportion of heterozy-
gous alleles was diagnosed to be non-neutral when compared
with homozygous alleles for low frequency alleles (maf< 1%;
P< 0.01). No significant difference was observed in nsSNVs
with higher population frequency (maf> 1%), because they
will be frequently exposed to purifying selection in homozy-
gous states.

In summary, the approach of evolutionary balancing of
training data sets leads to better predictive models aimed
at identifying function-impacting nsSNVs. It is, however,

Table 1. Performance of Original and Evolutionary Balanced Versions of PolyPhen-2 and SIFT and Complete Concordance Methods Using the
HumVar Data Set.

Method Evolutionary
Conservation

TN FP FN TP Diagnosis Rate (%) Accuracy (%)

TNR FPR FNR TPR BAcc MCC

PolyPhen-2

Ultra 197 862 495 9,628 19 81 5 95 57 21
Well 2,958 1,778 1,204 5,207 62 38 19 81 72 44
Less 11,403 1,130 1,265 818 91 9 61 39 65 35

Balanced Poly-Phen-2

Ultra 542 517 2,349 7,774 51 49 23 77 64 29
Well 3,227 1,509 1,492 4,919 68 32 23 77 72 45
Less 8,896 3,637 639 1,444 71 29 31 69 70 40

SIFT

Ultra 531 528 1,303 8,820 50 50 13 87 69 40
Well 3,451 1,285 1,682 4,729 73 27 26 74 73 47
Less 10,956 1,577 1,187 896 87 13 57 43 65 34

Balanced SIFT

Ultra 761 298 2,693 7,430 72 28 27 73 73 45
Well 3,451 1,285 1,682 4,729 73 27 26 74 73 47
Less 8,797 3,736 730 1,353 70 30 35 65 68 35

Concordant

Ultra 332 107 508 4,928 76 24 9 91 83 67
Well 2,281 476 437 3,489 83 17 11 89 86 72
Less 5,973 1,271 239 986 82 18 20 80 81 63

NOTE.—The diagnosis rates and accuracy were estimated using the full HumVar data set.
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clear that the current methods can reliably predict functional
impacts of less than half (44% in our case) of population
variants. This is because all current computational tools are
designed to identify disease-associated alleles that have rela-
tively large effects, owing to the dependence of the statistical
models on training data implicated in Mendelian diseases.
Many nsSNVs showing medium to low impact scores and,

thus, insignificant P values may be involved in complex heri-
table diseases (Thomas and Kejariwal 2004). Furthermore,
when one interprets the diagnoses from predictive models
that use disease-associated variants as positive controls, it is
important to consider that the disease association of variants
and their biochemical functional impact do not have a one-
to-one mapping. Although an nsSNV may disrupt biochem-
ical functions, it is not a necessary or sufficient condition for
it to lead to a disease, which is an ultimate organismal phe-
notype determined by multiple factors. Similarly, an nsSNV
showing no functional impact in experimental assays may in
fact be involved in disease, because not all protein functions
are known and can be assayed. Therefore, the use of forecast-
ing methods discussed in this work as guides for including or
excluding nsSNVs in further experimental and clinical analysis
should depend on the objective of individual studies, where
the improvements described here will now provide signifi-
cantly better predictions for thousands of existing and novel
variants. We have implemented these advances in the EvoD
webserver (www.mypeg.info, last accessed March 13, 2013),
which reports predictions and P values produced by EvoD,
PolyPhen-2, and SIFT using both original and new thresholds,
together with the concordance diagnosis. Batch processing is
supported and can be used to analyze small- and exome-scale
data sets.

Materials and Methods
We used the HumVar data set for training and testing the
predictive models (Adzhubei 2010; Kumar et al. 2012). This
data set consisted of 22,196 non-neutral nsSNVs associated
with human diseases and 21,119 neutral nsSNVs commonly
found in the human population. We also analyzed a popula-
tion variation data set that contains exome sequencing
data (269,277 nsSNVs) for approximately 5,400 individuals
available from the ESP5400 Project at University of
Washington (Tennessen et al. 2012). Precomputed
PolyPhen-2 and SIFT scores for HumVar and ESP5400 variants
were retrieved from dbNSFP (Liu et al. 2011). Variants with
missing PolyPhen-2 or SIFT scores were removed (1,332 from
HumVar data and 27,460 from ES5400 data). EvoD predic-
tions were obtained using the EvoD online server (www.
mypeg.info, last accessed March 13, 2013). To cross-reference
data from different resources and methods, we mapped all
variants to chromosomal locations and imposed a require-
ment for perfect matches on protein IDs, protein positions,
wild-type amino acids, and variant amino acids. Unresolved
and mismatching variants were excluded from subsequent
analysis (5,038 from HumVar data and 192 from ESP5400
data). This resulted in a total of 36,945 and 240,625 nsSNVs
in the final HumVar and ESP5400 data sets, respectively.

We employed several parameters to measure the perfor-
mances of predictive models, including TPR (sensitivity), true-
negative rate (TNR, specificity), FPR, FNR, overall accuracy,
balanced accuracy, and Matthews correlation coefficient
(MCC). We defined true positive (TP) as the number of
correctly predicted disease-associated nsSNVs, true negative
(TN) as the number of correctly predicted nsSNVs not
associated with any disease (neutral), false positive (FP) as

FIG. 3. Diagnosis accuracy. (a) Balanced accuracy and (b) MCC for
EvoD, balanced PolyPhen-2, balanced SIFT, majority consensus, and
complete concordant diagnosis.

FIG. 4. Analysis of population variation data. Proportions of nsSNVs
diagnosed to be non-neutral by using complete concordance approach
(solid lines) in different maf categories. A total of 240,625 nsSNVs from
the ESP5400 Project were analyzed (Tennessen et al. 2012). Private
nsSNVs are those observed only once in the population. The other
maf categories contain nonprivate nsSNVs. A negative correlation was
observed between maf and proportion of nsSNVs diagnosed to be non-
neutral (percentages displayed above columns).
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the number of neutral nsSNVs incorrectly predicted to be
function impacting (non-neutral), and false negative (FN)
as the number of disease-associated nsSNVs incorrectly
predicted to be neutral. The aforementioned performance
parameters are as follows: TPR = TP/(TP + FN); TNR =
TN/(TN + FP); FPR = FP/(TN + FP); FNR = FN/(TP + FN).
Overall accuracy = (TP + TN)/(TP + FN + TN + FP); balanced
accuracy = (TPR + TNR)/2; MCC = (TPR� TNR – FPR�
FNR)/ˇ([TPR + FNR]� [TNR + FPR]� [TPR + FPR]�
[TNR + FNR]). Because the extreme imbalance in the
HumVar data in each evolutionary class affects the overall
accuracy, we used the balanced accuracy to measure the
performance of various methods. MCC, an alternative
measurement that accounts for moderate imbalance in the
data, is also inadequate in these extreme cases (Obayashi
and Kinoshita 2009; Eiland et al., submitted). Therefore, we
used values in a normalized joint probability table that
are equivalent to replacing the TP, TN, FP, and FN in the
MCC equation with TPR, TNR, FPR, and FNR, respectively
(Kumar et al. 2012; Eiland et al. submitted). To test the null
hypothesis of equal accuracy, we employed the two-propor-
tion z test (one tailed) (McAfee 2010).
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