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Abstract
The enterococci evolved over eons as highly adapted members of gastrointestinal consortia of a
wide variety of hosts, but for reasons that are not entirely clear, emerged in the 1970s as leading
causes of multidrug resistant hospital infection. Hospital-adapted pathogenic isolates are
characterized by the presence of multiple mobile elements conferring antibiotic resistance, as well
as pathogenicity islands, capsule loci and other variable traits. Enterococci may have been primed
to emerge among the vanguard of antibiotic resistant strains because of their occurrence in the GI
tracts of insects and simple organisms living and feeding on organic matter that is colonized by
antibiotic resistant, antibiotic producing micro-organisms. In response to the opportunity to inhabit
a new niche – the antibiotic treated hospital patient – the enterococcal genome is evolving in a
pattern characteristic of other bacteria that have emerged as pathogens because of opportunities
stemming from anthropogenic change.

Introduction
Enterococci began to emerge as leading causes of multidrug resistant hospital acquired
infection in the 1970’s and 1980’s (1,2). They now rank among leading causes of hospital
acquired infection of the bloodstream, urinary tract, surgical wounds and other sites (3).
Prior to that, enterococci isolated from infections were generally regarded as contaminants
(1). Two species of Enterococcus are mainly responsible for hospital infections – E. faecalis
and E. faecium (Figure 1). The most recent data available on enterococcal infection from all
infection sites and all classes of hospitals in the US, which covers the period 01/01/10 –
06/30/12, identified 9,309 bloodstream isolates, 54,709 urinary tract isolates, and 20,032
wound isolates (84,050 isolates total) (TSN® Database, Eurofins, Inc., personal
communication Daniel F. Sahm, Ph.D.). Of the total, 17,360 are vancomycin resistant
(20.6%), and 64,015 (76%) are E. faecalis. Although 24% of isolates are E. faecium, they
represent 14,998 of the 20,038 (75%) of the vancomycin resistant isolates. Similar trends
have been reported for the European Union (4, 5). E. faecium infection appears to be highly
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dependent on resistance to last line drugs, whereas E. faecalis has a greater innate capacity
to cause infection irrespective of resistance (2,6). Interestingly, even though E. faecium are
more dependent on vancomycin resistance to cause infection, and are more likely to be
vancomycin resistant, E. faecalis is the primary species that has transmitted vancomycin
resistance to Staphylococcus aureus (7).

Despite emergence as leading causes of antibiotic resistant infection, enterococci evolved
over eons to be members of a broad range of GI tract consortia. In the 1960’s and 1970’s
Mundt et al. (8,9) grew enterococci from the GI tracts of mammals (71.3%), reptiles
(85.7%), birds (31.8%) and insects (53%) (culture-positive rates typically underestimate
carriage several fold (10), meaning that the actual rate of colonization may be closer to
100%). This indicates that since at least the early Devonian period ~ 412 MYA (11) (time of
last common ancestor of mammals, reptiles, birds and insects), enterococci have been
ubiquitous members of gut microbiomes. Enterococci may in fact have been among the
earliest members GI tract consortia. The phylogeny of the genus Enterococcus is shown in
Figure 1.

Reflecting their highly evolved role as members of a consortium in an extremely
competitive environment, enterococci have reduced genomes. Enterococcus faecalis (cited
as Streptococcus zymogenes (12)) has long been known to require a number of amino acids
(including Val, Leu, Ile, Ser, Met, Glu, Arg, His and Trp) and vitamins (including biotin,
nicotinic acid, pantothenate, pyridoxine, riboflavin, and sometimes folic acid) for maximal
growth, with other species being similar in their fastidiousness. The implication is that it is
more efficient (i.e., there is a selective advantage) for enterococci to acquire these nutrients
from their habitats (e.g., diet of the host or cross-feeding relationships with other microbes
in the gut consortium), as opposed to carrying the additional genetic material necessary for
their biosynthesis from simpler precursors. In other words, the intense competition in the
complex milieu of the gastrointestinal tract has led to a well-adapted, streamlined
enterococcal genome.

Commensalism for microbes is not simply the absence of virulence traits, but the active
production of factors that lead to stable relationships and limit entry into potentially
pathogenic pathways. The transition from commensal to pathogen appears to be associated
with changes in ecologies that open new habitats or routes of transmission. Mechanisms that
contribute to destabilization of the commensal/host relationship include the acquisition of
toxins, or blocks of genes related to pathogenesis, such as pathogenicity islands (13).
Alternatively, virulence can result from the loss of key commensal functionality, such as
appears to have occurred Bordetella pertussis. B. pertussis is 99.8% identical at the 16S
rRNA level to the much less virulent species B. bronchoseptica, but through deletion of 20%
of the genome, and conversion of 10% more into pseudogenes by proliferation of the
insertion element IS481, it has lost the ability to colonize the host in a non-pathogenic
manner (14,15). Similarly, Yersinia pestis evolved from less virulent Y. pseudotuberculosis,
mainly by the inactivation of 15% of its genome by deletion and IS element proliferation
and acquisition of a virulence plasmid. It is likely in both B. pertussis and Y. pestis, that
rapid proliferation of IS elements led to the destabilization of the chromosome, contributing
to numerous inversion and deletion events (14,15,16).

Evidence for the recent devolution of the commensal enterococcal
genome, leading to a hospital adapted pathogen

We (17) and others (18,19,20) observed that most multidrug resistant hospital infections
caused by enterococci were caused by hospital endemic, clonal lineages. For example, in a
retrospective study of an outbreak of 206 enterococcal bacteremias over a 36 month period
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(1984 – 1987), we found that 190 were caused by E. faecalis, most of which were resistant
to high levels of aminoglycosides and macrolides (17). Moreover, nearly half of the 190
infections were caused by a single E. faecalis strain that was multidrug resistant as well as
hemolytic, whereas the remainder were caused by largely non-hemolytic idiosyncratic
strains with few identities to each other or the hospital endemic clone, based on pulsed field
electrophoresis pattern (17). The prototype strain, termed MMH594, had become highly
hospital adapted and unusually pathogenic, capable of repeated bed-to-bed transmission. In
parallel studies, colleagues at Barnes-Jewish Hospital at Washington University isolated the
first vancomycin resistant Enterococcus in the US from the bloodstream, urine and feces of a
chronically infected HIV/AIDS patient who had received vancomycin therapy (21). E.
faecalis V583 manifests a novel vancomycin resistance phenotype, termed VanB, but
otherwise possessed numerous similarities to MMH594 (21).

Identification of novel virulence traits and a pathogenicity island (PAI) in hospital adapted
enterococci

In examining the chromosomes of these multidrug resistant hospital outbreak strains, we
identified several traits that had not been known to occur in enterococci, including a capsule
(22,23), and a novel adhesin termed Enterococcal Surface Protein (Esp) (24,25).
Additionally, we observed that MMH594 expressed the enterococcal cytolysin (17), a toxin
that renders E. faecalis infection lethal for humans (17) and animals (26–31), which is
regulated by a novel quorum sensing mechanism (32) enabling enterococci to detect target
cells at a distance (33). In contrast, V583 possessed a defective cytolysin operon. Exploring
the chromosomal organization of virulence traits further in these strains, we found that Esp,
the cytolysin, and another factor, termed aggregation substance (an enterococcal surface
factor that causes clumping (34) and has been shown to be lethally synergistic with the
cytolysin in endocarditis (29)), were encoded by a pathogenicity island (PAI [35]) unlike
anything previously seen in gram positives (Figure 2). The E. faecalis PAI discovered in
MMH594 is over 150 kb in size, includes a phage like integrase and excisionase, is inserted
at a lysyl-tRNA locus, and possesses terminal 10 bp direct repeats. Close comparison of the
PAI in V583, and sister isolates from the same patient (V586), and ward (V587), with
Wisconisin outbreak strain MMH594, revealed a pattern of genome evolution in E. faecalis
similar to that which had been observed for B. pertussis evolving from B. brochoseptica, and
Y. pestis evolving from Y. pseudotuberculosis. Specifically, the E. faecalis genome
appeared to be undergoing an expansion of IS elements (IS256 and IS905), which
volatilized regions of the pathogenicity island (and possibly other regions of the
chromosome), leading to an extremely high rate of pseudogene (and intervening functional
gene) loss (35). A similar evolutionary trajectory has been identified in E. faecium, in which
a large pathogenicity island carrying the esp gene and several IS elements are characteristic
for clinical isolates (36,37).

Genome sequence of V583 reveals a profound influx of mobile elements
Strain V583 was provided to The Institute for Genomic Research (TIGR) in 1997 for
collaborative genome sequence determination. Sequence analysis revealed that 26% of the
3.36 Mb genome consisted of mobile elements, including 7 putative phages, 38 insertion
elements, the above mentioned pathogenicity island, remnants of 3 integrated plasmids, as
well as 3 independently replicating plasmids (Figure 3) (38). Most of the inferred mobile
elements are atypical in nucleotide composition and codon usage compared to that in the rest
of the genome. In addition to the plethora of mobile elements, the genome is notable for
encoding 35 PTS-type sugar transporters, as well as pathways for the utilization of 15
different sugars (38). The importance of V583 as representative of the leading hospital
adapted lineage of E. faecalis was subsequently verified by others (39,40,41).
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Sequence of OG1RF provides a basis for comparison
Following publication of the closed sequence of V583 in 2003, there was little basis for
comparison until publication of the closed genome sequence of strain OG1RF in 2008 (42).
OG1RF is derived from strain 2SaR (which occurred in the oral consortium of a pediatric
dental caries lesion (43)). For laboratory use, spontaneous resistances to rifampicin and
fusidic acid were selected (44). It was determined to be plasmid-free, and not to possess
native resistance to any antibiotic (44). Of oral cavities examined (43), 69% were found to
carry E. faecalis strains independent of caries status indicating that enterococci are
commensals of the oral cavity as well. Since OG1RF had no known or suspected association
with antibiotic resistance or hospital adaptation, as a likely commensal it provided a good
comparator for V583. Moreover, its extensive use in the laboratory made its nucleotide
sequence of special interest. In contrast to the 3.36 Mb genome of V583, that of OG1RF was
found to be 2.74 Mb (42).

One interesting difference between OG1RF and V583 is that OG1RF harbors a clustered,
regularly interspaced short palindromic repeat (CRISPR) locus (42). CRISPRs provide
bacteria and archaea with sequence specific, acquired defense against plasmids and phage
(45). As noted above, hospital endemic strains of E. faecalis, exemplified by V583, are
replete with mobile elements, constituting over 25% of the genome. Since V583 lacked a
CRISPR locus, it was of interest to determine whether presence or absence of CRISPR
correlated with mobile element accumulation in E. faecalis. We therefore generated draft
genome sequences for 16 additional E. faecalis strains (46), selecting those that represented
the deepest phylogenetic nodes spanning the diversity of the species (47). These draft
genome sequences were used to identify polymorphisms in the location and content of
CRISPR loci among these strains (48). From among the CRISPR loci identified, we found
CRISPR spacer identity to pheromone-responsive plasmids as well as phage, indicating that
in E. faecalis, CRISPR influences the movement of these elements between strains. We
found the location of CRISPR loci to be highly conserved, and therefore screened additional
E. faecalis strains, including isolates that predated the use of antibiotics, for CRISPR content
by PCR. A highly significant correlation was found between the absence of a CRISPR-cas
locus and the presence of acquired antibiotic resistance in E. faecalis. Similar results were
found for a more limited set of E. faecium genomes from US isolates (48). The near
complete absence of CRISPR-cas in multidrug resistant strains suggests that antibiotic use
inadvertently selects for enterococcal strains with compromised genome defense (48).

E. faecium genomics
The first release of an E. faecium genome sequence was noted in a press release in 2000,
which reported generation of draft genome sequence for E. faecium strain DO in a day
(Press release May 9, 2000, Joint Genome Institute, David Gilbert; http://www.jgi.doe.gov/
News/news_5_9_00.htm ). However, that data was not assembled in a practically useful
form and analyzed until 2012 (49). The first genome sequence-based analysis for E. faecium
appeared in 2010 (50). van Schaik and coworkers reported the generation, assembly and
analysis of high quality draft genomes for 7 strains, including 4 infection derived strains, 1
hospital-associated fecal strain, and 2 commensal strains of E. faecium without known
connection to a health care setting. Compared to E. faecalis, E. faecium strains appeared to
possess more metabolic pathways for the utilization of carbohydrates of plant origin, but
lacked the pathway for ethanolamine utilization, and also lacked genes for the detoxification
of reactive oxygen species. Instead, E. faecium appears to have a glutathione peroxidase to
protect the cell from oxidative damage (50). It was noted that one commensal strain, E980
was substantially diverged from the other six strains (50). This study also revealed that the
pathogenicity island carrying the esp gene is highly variable in clinical isolates and can be
transferred by conjugation (50).
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A Broad Institute collaboration in 2010 also announced the initial generation and public
release of draft genome sequence data for the above mentioned diverse 16 E. faecalis strains,
and additionally 8 E. faecium strains, 3 E. casseliflavus strains and 1 E. gallinarum strain
(46). A complete analysis of these genomes was reported in 2012 (51). Based on comparison
of the 2113 core genes common to each of the 8 E. faecium strains, it was noted that the
strains fell into two distinct clades – Clade A, which consisted entirely of infection derived
isolates, and Clade B, which consisted mainly of commensal strains and one infection
derived isolate. Closer examination of the core genes shared by E. faecium strains showed
that average nucleotide identity between Clade A and B (93.9% – 95.6%) approximated the
degree of divergence that typically occurs between species. Moreover, strain E980, the most
divergent strain from the previous study, was included in this commensal clade. Further, the
most divergent strains of Clade A were shown to be mosaics of Clades A and B. Similar
results were found comparing a much smaller subset of 100 core genes occurring in these
genomes, the genomes sequenced by the van Schaik group, and several other genome
sequences in the public domain (52). Of potential but yet untested importance, the hospital
adapted vancomycin-resistant E. faecium strains possessed an elaborate cell wall
carbohydrate locus that included putative sialic acid biosynthesis (neuABCD) genes in a
region found to vary among E. faecium isolates, along with a divergently transcribed, which
is annotated as a β-lactamase gene, but is likely to be involved in cell wall transpeptidation
(51). The observation that hospital-adapted strains have the genetic potential for altered cell
surfaces, possibly camouflaged by a coating of sialic acid, a molecule common in host
tissues, raises the possibility of enhanced immune evasion.

Recently, the first complete E. faecium genome was reported (53). Analysis showed that the
MLST type 17 Clade A strain contained a proliferation of 77 insertion elements in the
chromosome, including a Tn1549 vanB element, along with 3 novel phages. Inverted copies
of a prophage appear to have mediated an inversion of 683 kb around the replication
terminus, resulting in an imbalance in the replichore. Even though this genome is
representative of the leading hospital-adapted clade of E. faecium, its genome is
approximately 10% smaller than that of E. faecalis V583, with much of that difference
attributable to the presence of fewer phages that are lysogenic in the genome.

Conclusion
In conclusion, the enterococci are ancient, highly evolved members of GI tract consortia of
all animals studied, suggesting that they were part of an early GI tract consortium in the last
common ancestor. Their ability to survive the grinder of the nematode Caenorhabditis
elegans and bind to its intestinal wall (54) may provide a mechanism for the genesis of the
original GI tract consortium. Enterococci may have remained resident in the GI tract of a
simple organism, such as C. elegans, where it was bathed in the lysates of other bacteria
from which it derived nutrition, perhaps allowing for genome reduction and further
specialization. Speculatively, as other types of microbes survived the grinder and adhered to
either the intestine or to enterococci, the complexity of the consortium may have evolved.
Since enterococci colonize the guts of insects (and potentially non-insect fauna of organic
soils such as nematodes), enterococci in these gut reservoirs may well be continuously
exposed to antibiotics and antibiotic resistance genes occurring in antibiotic producing
organisms that are co-resident in the organic matter on which they feed. This may provide
an initial opportunity for entry of resistance genes into enterococci, and subsequent selection
for resistant strains. Insect enterococci then may comingle with the enterococci of reptile,
bird and mammalian predators, up the food chain, creating a tenuous connection between
antibiotic production and resistance in the soil, and antibiotic resistance in mammalian-
adapted strains of enterococci. The large scale application of antibiotics in humans and
agriculture during the last sixty years may then have selected for the outgrowth of rare
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antibiotic resistant lineages, and the occurrence of strains lacking CRISPR protection with
enhanced ability to exchange resistances. This natural pipeline may have set the stage for the
ongoing emergence of enterococci among the vanguard of multidrug resistant hospital
pathogens.

As for other microorganisms that rapidly adapted new niches stemming from
anthropological changes (e.g., B. pertussis (14,15) and Y. pestis (16)), hospital adapted
lineages of the enterococci appear to be undergoing a similar changes to the genome. IS
elements are proliferating in hospital-adapted enterococcal genomes (38,53) leading to the
generation of many pseudogenes as the result of inactivation of genes that were important
for competitive growth in the GI tract, but which are no longer required for non-competitive
growth in the antibiotic-cleared ecology of the hospitalized patient ([35], unpublished, van
Schaik et al. In preparation). It is likely that this IS element expansion will be followed by
active genome reduction and loss of these pseudogenes (55), especially as IS elements
proliferate to an extent where smaller and smaller spacing between copies increases the
chance of penalty-free deletion by recombination across identical copies of an IS element.
The ultimate outcome may be a highly hospital adapted pathogenic Enterococcus with
altered biology including refined mechanisms for transmission in the hospital environment,
analogous to the evolution of human pathogen B. pertussis from the generalist B.
bronchoseptica.
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Highlights

• Enterococci are ancient commensals in the GI tracts of hosts ranging from
insects to man

• Enterococci are now leading causes of multidrug resistant infection and are
spreading resistances

• Genomes of hospital adapted strains of enterococci consist of over 25% mobile
elements

• Loss of CRISPR protection of the genome correlates with the accumulation of
resistance and virulence traits

• Pathogens evolve from generalists by adapting to new ecologies created by
anthropogenic change
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Figure 1.
Dendrogram of the genus Enterococcus. A dendrogram of all available 16S rDNA sequences
for members of the Enterococcus genus was compiled using the Geneious software
(Biomatters Ltd) using the neighbour-joining algorithm and the 16S sequence of
Tetragenococcus solitarius as an outgroup. Boostrap values were generated over 1000
iterations. The species E. faecalis and E. faecium are highlighted in blue.
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Figure 2.
Microevolution of the E. faecalis pathogenicity island showing the basis for variation
between PAI copies in CC2 strains MMH594, V583 and V586 (35). MMH594 is a highly
virulent clone that caused approximately 85 E. faecalis bacteremias over a 17 month period
(17). V583 and V586 were obtained from the bloodstream of a chronically infected patient
(21), and show a process of steady attenuation common in strains associated with chronic
infection. In evolving from the prototype PAI of MMH594, IS expansion occurred resulting
in new insertions of IS256 and IS905 in strain V586, followed by high frequency excision of
a 17 kb fragment encoding half of the cytolysin operon and the esp gene (35). Adapted from
(35).
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Figure 3.
Comparative mobile element content of the genomes of the commensal-like strain OG1RF,
and the hospital-adapted strain V583. (V583 diagram adapted from (38)).
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