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Abstract
We propose a unified estimation method for semiparametric linear transformation models under
general biased sampling schemes. The new estimator is obtained from a set of counting process-
based unbiased estimating equations, developed through introducing a general weighting scheme
that offsets the sampling bias. The usual asymptotic properties, including consistency and
asymptotic normality, are established under suitable regularity conditions. A closed-form formula
is derived for the limiting variance and the plug-in estimator is shown to be consistent. We
demonstrate the unified approach through the special cases of left truncation, length-bias, the case-
cohort design and variants thereof. Simulation studies and applications to real data sets are
presented.
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1 Introduction
Linear transformation models are a rich class of semiparametric regression models that are
especially useful for the analysis of failure time data. They include the well-known
proportional hazards model and proportional odds model as special cases (Clayton and
Cuzick, 1985; Cuzick, 1988; Bickel, Klaassen, Ritov and Wellner, 1993; Cheng, Wei and
Ying, 1995). Various inferential procedures have been proposed for the estimation of the
regression parameters and the transformation function, including rank-based estimating
equations, martingale estimating equations, and nonparametric maximum likelihood (Cheng
et al., 1995; Chen, Jin and Ying, 2002; Zeng and Lin, 2007). These methods deal with data
that are obtained via simple random sampling, in which case the sampling probability does
not depend on the data. In many cases, either naturally or by design, data are not randomly
sampled from the target population. The purpose of this article is to propose a unified
approach for dealing with many commonly encountered biased sampling schemes where the
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sampling probabilities are data dependent. The usefulness of the proposed approach is seen
from the fact that it covers such commonly encountered biased sampling schemes as length-
biased sampling, left-truncation, the case-cohort design, as well as variants of the case-
cohort design.

There is an extensive literature addressing various biased sampling schemes. Left truncation
occurs naturally in astronomy on red shift (Segal, 1976) and in studies of HIV infection
(Lagakos et al., 1988). It pertains to the existence of a second random variable, in addition to
the variable of interest, such that the observation is truncated if the latter falls below the
former. In other words, left truncation arises when individuals come under observation only
at some known time after the time origin of the phenomenon under study. These data arise
naturally from large-scale panel studies, when entry into the study depends on some event
occurring before the event of interest. For left-truncated data, nonparametric estimators of
the survivor function in the one-sample problem can be found in Turnbull (1976), Vardi
(1982), Woodroofe (1985), Wang (1987), Tsai, Jewell and Wang (1987). Furthermore,
Wang, Jewell and Tsai (1986), Keiding and Gill (1990) and Lai and Ying (1991a) derived
large sample properties. For semiparametric regression models, readers are referred to
Bhattacharrya, Chernoff and Yang (1983), Tsui, Jewell and Wu (1988), Lai and Ying
(1991b), Wang, Brookmeyer and Jewell (1993) and Gross (1996).

Inference on length-biased data has been discussed in studies of ecology (McFadden, 1962),
electron tube life (Blumenthal, 1967), fiber length (Cox, 1969), as well as in shrub data
(Muttlak and MacDonald, 1990) and economic duration data (Kiefer, 1988; Helsen and
Schmittlein, 1993; de Uña Álvarez, 2004). Under the length biased sample, the density of
the observed sample is proportional to the original density multiplied by the length. The one-
sample problem of estimating the survivor function has been explored in Vardi (1982,
1985), Bhattacharyya, Franklin and Richardson (1988), Jones (1991), Asgharian (2004),
Assgharian, M’Lan and Wolfson (2002) and Asgharian and Wolfson (2005). In the context
of regression analysis, Wang (1996) proposed inference for length-biased data using the Cox
model with time-varying covariates but without censoring. More recently, Luo and Tsai
(2009) proposed a pseudo-partial likelihood estimator for the Cox model and derived two
nonparametric estimators; see also Huang and Qin (2011). Qin and Shen (2010) proposed
estimating equations for the Cox model and Chen (2010) proposed inference for size-biased
data using an accelerated failure time model. Shen, Ning and Qin (2009) extended a rank-
based approach used by Cheng et al. (1995) to construct an unbiased estimating function for
the parameters in an accelerated failure time model and linear transformation model.

The case cohort design was proposed by Prentice (1986) to save time and cost for large scale
epidemiological studies. Its basic large sample properties were established in Self and
Prentice (1988). Further developments can be found in Lin and Ying (1993), Chen and Lo
(1999) and Chen (2001) among others. For the semiparametric linear transformation models,
Kong, Cai and Sen (2004) extended the rank-based estimator of Cheng et al. (1995) to the
case-cohort design, while Lu and Tsiatis (2006) extended the martingale estimating
equations of Chen et al. (2002). Extensions of the classical case-cohort design to more
complex sampling schemes can be found in Borgan et al. (2000), Kulich and Lin (2004),
Breslow and Wellner (2007) and Samuelsen, Ånestad and Skrondal (2007).

In this paper, we develop a unified approach to linear transformation models under a general
formulation of biased sampling schemes. We show that our approach leads to estimators that
are consistent and asymptotically normal and we provide simple consistent variance
estimators. The generality and usefulness of our approach are demonstrated through four
special cases of biased sampling schemes, namely left truncation, length-biased sampling,
case-cohort design and generalized case cohort designs.
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The rest of the article is structured as follows. Section 2 introduces notation and specifies the
models. Sections 3 presents details on the weight function for each specific biased sampling
scheme, the estimation procedure as well as the large sample properties of the estimators.
The algorithm and implementation are also explained. Simulation results together with
applications on shrub data and nickel refinery data are included in Sections 4 and 5,
respectively, followed by a discussion in Section 6. All the technical proofs are presented in
the Appendix.

2 Model Specifications
Throughout this paper, we use T to denote the failure time of interest, C the censoring time
and Z the p-vector of covariates. Let T ̃ = min{T, C} and Δ = I(T ≤ C). We assume that T
satisfies the transformation model which is specified through

(1)

where H(·) is an unknown monotone increasing function, β a p-vector of regression
coefficients and ε an error term with a known distribution. In particular, when ε is specified
to follow the extreme value distribution, (1) becomes the Cox (1972) proportional hazards
regression model; when ε follows the logistic distribution, it becomes the proportional odds
model (Bennett, 1983). When the error distribution is also not specified, only the direction
of β is identifiable and we refer to Han (1987), Sherman (1993) and Chen (2002) for details
about parameter estimation.

To introduce our biased sampling scheme, we first consider the situation of the usual
random sampling from a population. Let qZ(t, δ) (t ≥ 0, δ ∈ {0, 1}) denote the joint
conditional density of (T̃, Δ) given covariates Z. Furthermore, let fZ(F̄Z) and gZ(ḠZ) denote
the conditional density (survival) functions of T and C, respectively. Since T and C are
assumed to be conditionally independent given Z, it follows that

Now suppose we have a biased sample from the population with biasing function w(t, δ), t ≥
0, δ ∈ {0, 1}. Following Bickel et al. (1993, p. 86), the conditional joint density of (T̃, Δ)
given Z then becomes

(2)

Note that such a sampling scheme depends on the outcome variables (T̃, Δ). Common
examples include length-biased sampling with w(t, δ) = t (Vardi, 1982; Gill, Vardi and
Wellner, 1988) and case-cohort sampling with w(t, δ) = δ + (1 − δ)p (Prentice, 1986), where
p ∈ (0, 1) is a constant. In addition, we would like to point out that our general approach
also handles the situation in which the biasing function is allowed to depend on Z and other
observed covariates.

3 Main Results
In this section, we first derive the estimating equations for β and H(·) and establish the usual
asymptotic properties for the resulting estimators. Subsection 3.2 presents an algorithm and
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discusses the implementation of the estimation procedure. Special examples that can aid
understanding the generality and the scope of applicability of the new approach are provided
in Subsection 3.3.

3.1 Estimating Equations and Asymptotic Results
Following the counting process notation commonly used in survival analysis, we let Y(t) =
I(T̃ ≥ t) be the at-risk indicator and N(t) = I(T̃ ≤ t, Δ = 1) be the counting process that jumps
to 1 when a failure occurs. Hazard and cumulative hazard functions of ε, which are
completely specified under model (1), are denoted by λ(·) and Λ(·), respectively.
Throughout the rest of the paper, we will suppress the subscript Z in q and q̃ when no
ambiguity arises.

Under model (1), in the absence of sampling bias,

is a martingale process, where β0 and H0 denote the true values of β and H. In particular,
this process has zero mean, a key property that gives unbiased estimating equations of Chen
et al. (2002). Under the biased-sampling scheme, however, it is no longer a zero mean
process and proper adjustment needs to be made. As we will see in Lemma 3.1, one such
adjustment is to insert into the integrand of the compensator the following weight function

(3)

which is a product of two terms, q(T, Δ)/q̃(T, Δ) and q̃(t, 1)/q(t, 1). These two terms can be
viewed as the Radon-Nikodym derivatives between the true and the biased densities for the
risk set and the counting process, respectively. Since both the counting process and the risk
set are observed under biased sampling scheme, whereas the hazard function corresponds to
the true density, we have to convert both dN(t) and the risk set Y(t) by the corresponding
Radon-Nikodym derivatives so that all the components in estimating equation (4) that we
are going to introduce are evaluated under the same measure. Our method resembles the idea
of risk-set re-sampling first investigated in Wang (1996) that corrects the bias resulting from
biased sampling. Note that the weight function ω may depend on Z.

With the above argument, we arrive at the following lemma which helps us obtain unbiased
estimating equations.

Lemma 3.1—Under the biased sampling scheme, i.e. (T ̃, Δ) follows q̃Z given by (2) and
ω(t, T̃, Δ) is defined by (3), we have

(4)

where EZ denotes the conditional expectation given Z.

A formal proof of (4) is given in the Appendix. For truncation and case-cohort sampling,
one may, as one of the referees suggested, view this problem from missing data perspective
in the following sense: Let D = 1 or 0 be the indicator of observing an individual or not.
Then, with a slight abuse of notation for T ̃ = t, we can write
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where π(T̃, Δ) = P(D = 1|T̃, Δ) and . It
follows that

and hence

Equation (4) leads to the following:

(5)

(6)

where H is a nondecreasing function satisfying H(0) = −∞ and τ is a prespecified constant
such that Pr{T̃ ≥ τ} > 0. They are analogous to the martingale estimating equations derived
in Chen et al. (2002). Note that the condition on τ is common and is imposed to avoid
possible tail instability with censored data.

For a fixed β, equation (5) entails that H is a uniquely defined and monotone increasing step
function with jumps only at observed failure times t1, …, tK and H(t) = −∞ for all t < t1. Let
Ĥ(β; ·) be the unique solution to (5). Thus, the resulting estimator of β0 satisfies U(β) = 0,
where

(7)

We let β̂ denote the solution to (7) that estimates β0. Thus Ĥ(t, β̂) estimates H0(t). Numerical
solutions to equations (5) and (6) may be obtained using iterative methods. More details on
the implementation of the computational algorithm will be presented in Subsection 3.2.

Note that the expectations of (5) and (6) are zero. This unbiasedness is crucial for obtaining
asymptotically unbiased estimators for β0 and H0. However, due to the bias-adjustment
weight ω(t, T̃, Δ) that appears in (5) and (6), the process
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(8)

is no longer a martingale but a mean zero process instead. For this reason, the martingale
argument given by Chen et al. (2002) to derive large sample properties needs to be modified
accordingly. To identify the limiting distributions of the estimators, we define the following
terms:

where λ̇ denotes the first derivative of λ. These terms are similar to those defined in Chen et
al. (2002) that are used to simplify the expression of the limiting distribution of β̂. In
addition, we define

(9)

and

We need to impose the following regularity conditions:

A1 For any finite K, λ(x) is strictly positive and λ̇(x) is bounded and continuously
differentiable on (−∞, K);

A2 The covariate vector Z is bounded in the sense that Pr{||Z|| < m} = 1 for some
constant m;

A3 The true transformation function H0 is continuously differentiable with a strictly
positive derivative on [0, τ];

A4
.

A5 Both Σ* and Σ* are nonsingular.

Remark: Condition A1 is a mild condition and is satisfied for distributions of ε in
commonly encountered transformation models. Condition A2 is imposed so that modern
empirical process theory can be applied without modification. Condition A4 is a mild
assumption on the weight function ω(t, T̃, Δ). For case-cohort sampling as well as left-
truncation, this condition can be easily verified. We can also show that the condition holds
also for the length-biased sampling setup. Condition A5 is necessary since otherwise the
problem becomes singular. Nonsingularity assumption on Σ* is very mild. In fact, it
basically means that the covariate vector Z does not reside in a lower dimensional
hyperplane. For Σ*, however, it is in general not trivial to verify the nonsingularity with a
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single simple-to-verify condition. However, we find that for specific families that are
commonly used for the transformation models, namely, the proportional hazards model, the
proportional odds model and the normal transformation model, we can show that Σ* is
nonsingular at β0 = 0 due to the strictly increasing property of the corresponding hazard rate
functions.

Theorem 3.1—Under Conditions A1 – A4, there exists a neighborhood of β0 within which

β̂ exists and is unique for all large n. Furthermore,  and

 converges weakly to a Gaussian process. Consistent estimators of Σ* and
Σ* can be obtained by substituting β0 and H0 by their estimators, i.e.

where M ̂i(t) and ẑ(t) are similarly defined as in (8) and (9) with β0 and H0 replaced by their
respective estimators.

The proof of Theorem 3.1 will be given in the Appendix. The limiting covariance function

of  can be obtained through the usual asymptotic expansions and can be
estimated by the same plug-in method.

3.2 Algorithm and Implementation
The computational algorithm closely follows that of Chen et al. (2002). First we choose an
initial value β̂(0), which can be obtained, for example, by using the maximum partial
likelihood estimator and assuming the Cox proportional hazards model. With β̂(0) being
fixed, we then obtain an estimate of H(t1), where t1 is the first observed failure time, by
solving:

This step is straightforward (e.g. via the Newton-Raphson algorithm) since Λ is a strictly
monotone increasing function. We then estimate H(tk) by solving successively, for k = 2, …,
K,

(10)

The monotonicity of Ĥ(t) can be seen from (10) that in order for the right-hand side to be
one H(tk) > H(tk−1) must hold since Λ(·) is a monotone increasing function while both ω(t,
T̃i, Δi) and Yi(t) are non-negative. Note also that
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Denote by Ĥ the resulting estimate, which clearly is monotone increasing, we estimate β0
again by solving

Recall that t0 < t1 and, therefore, Ni(t0) = 0 for i = 1, …, n. Suppose β̂(1) is the new resulting
estimate, we then substitute β̂(0) by β̂(1) and repeat the procedure described above until
convergence. Our experience indicates that convergence is usually achieved in a small
number of iterations.

4 Special Cases
Biased sampling appears in many applications, either naturally or by design. Here we
present six special cases involving biased-sampling that can be dealt with by our proposed
method to obtain explicit expressions for the weight functions.

4.1 Length-biased Sampling
Under the length-biased sampling, the density of (T ̃, Δ) can be expressed as

In this case, ω(t, T̃, Δ), the bias-adjustment weight function is, therefore, given by

Note that T̃ is the length of follow-up time. Therefore, equations (5) and (6) become

(11)

(12)

It is noteworthy to mention that the current set up is designed for handling censoring first
and followed by length biased sampling. This setting occurs naturally when cross-sectional
sampling (censoring) is done in which the probability for a sample to be selected is
proportional to the follow-up period T̃ instead of the event time T. In practice, there may be
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a second censoring following the length biased sampling. This additional censoring can be
handled by inverse probability weighting similar to Shen et al. (2009). Note that which
specific inverse probability weighting scheme to use depends on what assumptions are made
on the censoring mechanism.

4.2 Left Truncation
Left truncation arises in situations in which individuals come under observation only when
their survival times are beyond some prespecified time points; see, for example, Kalbfleisch
and Prentice (2002, p. 14). The risk set just prior to an event time does not include
individuals whose left truncation times exceed the given event time. In this case, denoting
by U the truncation variable, the biased joint conditional density of (T̃, Δ) given U can be
obtained by

Writing q̃(t, δ) = κI(U < t)q(t, δ), where κ is the normalization constant, it follows that

Note that I(U < T ̃) = 1 since, for every observation, T̃ > U always holds. Furthermore,

Combining the two ratios yields

(13)

Under left truncation, with the weight function specified as in (13), equations (5) and (6)
become

(14)

(15)

This can be viewed as a natural extension of Chen et al. (2002) to accommodate the left
truncation. If we assume specifically that the underlying model is the Cox proportional
hazard model, (14) and (15) become the usual estimating equations derived from the partial
likelihood of β; see Lawless (2003).
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4.3 Case-cohort Design
Under the case-cohort design, complete covariate information is collected only on all cases
(Δ = 1) and a random subset of censored subjects (Δ = 0). Suppose that the probability of
selecting a censored individual into the sub-cohort is p, the weight function can be obtained,
again, via considering the ratio between the biased and the unbiased conditional joint
densities.

Since

we have q(t, 1)/q̃(t, 1) = κ and

where κ is a normalization constant. This leads to the following weight function

The resulting estimating equations are

(16)

(17)

Note that (16) and (17) have the same form as equations (5) and (6) in Lu and Tsiatis (2006).
However, in our model, (T̃i, Δi) refer to the samples selected in the subcohort, which is
slightly different from the set up specified in Lu and Tsiatis (2006).

4.4 Case-cohort Sampling on a Length-biased Sample
Suppose that a case-cohort design is applied to length-biased data arising from a cross
sectional study. As a result, the biasing function is proportional to t[δ + p(1 − δ)] and

The corresponding weight function is, therefore, given by
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In this case, the estimating equations are given by

(18)

(19)

4.5 Stratified Case-cohort Design
Borgan et al. (2000) and Kulich and Lin (2004) proposed a stratified case-cohort design, in
which the probability of selecting a censored observation into the subcohort is dependent on
X, a vector of covariates that may or may not overlap with Z. Let p(X) denote this selection
probability. Then, proceeding as in previous examples, we get

Hence ω(t, T ̃, Δ) = [Δ + p(X)(1 − Δ)]−1 and the estimating equations take the same form as
in Subsection 4.3, but with p being replaced by p(X).

4.6 Generalized Case-cohort Design
We now propose a generalized case-cohort design that covers the sampling schemes
discussed in Subsections 4.3 and 4.5 as special cases. Under this design, cases are sampled
with the sampling probability p1(T̃, X) whereas controls are sampled into the subcohort with
the selection probability p2(T̃, X). It should be noted that the sampling probabilities now
depend on Δ, T̃ and X.

The joint density of (T̃, Δ) can be shown to be

and the weight function thus becomes

Therefore, we have the following estimating equations
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(20)

(21)

5 Simulations
We first specify q(T̃, Δ) from which initial data are generated. In each subsection we
describe how we resampled data with a weight proportional to the weight function ω
described in Section 3. The simulation results are tabulated in Tables 1–6.

Following Chen et al. (2002), we generated data from H(T) = −β1Z1 − β2Z2 + ε, with the
hazard function of ε, λ(x) = exp(x)/{1 + r exp(x)}, where r = 0, 0.5 and 1. For the
transformation function H, we used H(t) = log(t) for r = 0 and log(r−1et−r−1) for other r
values. Note that r = 0 corresponds to the proportional hazards regression while r = 1
corresponds to the proportional odds regression.

Covariates Z1 and Z2 were generated from uniform (0, 1) that are independent of each other.
The parameters β1 and β2 were chosen to be −1.0 and 1.0. Two censoring proportions (CP)
were used, namely 0.1 and 0.2 for the length-biased sampling as well as 0.8 and 0.9 for
various case-cohort designs. The censoring time was generated by ea+0.5U where U was a
uniform random variable and values of a were set to attain desired censoring proportions.

5.1 Length-biased Sampling
Given the data we generated by q(T ̃, Δ), units were resampled if Ui ≤ T̃i/γ, where Ui’s are
from the uniform (0, 1) distribution, and γ a constant larger than T̃i for all i = 1, …, n.
Computation was conducted on the resampled individuals of sizes 50 and 300; simulations
were based on 1000 replications.

Tables 1 to 2 summarize the simulation results. The simulation results indicate that the
proposed method performs well in large samples. The parameter estimates have negligible
bias, compared to standard deviations and to the biased estimates of the unadjusted method
of Chen et al. (2002). The means of estimated variance are close to the empirical variance of
the parameter estimates, and the 95% confidence intervals (CI’s) are close to nominal
coverage probability. Such CI’s obtained have a better coverage probability than that of the
CI’s constructed using Chen et al. (2002) procedure that does not adjust for the length bias.

5.2 Case-cohort Design
A full cohort of sample size 3000 was generated and then case-cohort samples were selected
from each full cohort by selecting from cases with a probability of p such that about two
thirds of the selected samples in the subcohort are controls. The average sample size for a
subcohort is 1000. The parameters β1 and β2 were set to be −1.0 and 1.0 respectively with
the censoring proportions 0.8 and 0.9. Simulations were based on 1000 replications.

The performance of the proposed estimators under the case-cohort design is summarized in
Table 3. The empirical biases were negligible and coverage probabilities were close to 0.95.
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5.3 Stratified Case-cohort Design
A full cohort of sample size 3000 was generated and then case-cohort samples were selected
from each full cohort by selecting from cases with a probability of pi = 1 − {1 + exp(1 +
Z1i)}−1, and selecting among controls with a probability of pi = 1 − {1+exp(−3+2Z1i)}−1.
The average sample size for a subcohort is 1000, with one third of the samples are cases.
The parameters β1 and β2 were set to be −1.0 and 1.0 respectively with the censoring
proportions 0.8 and 0.9. Simulations were based on 1000 replications.

We assessed the performance of the proposed estimators under the case-cohort design. Table
4 summarizes the performance of the estimators using the average bias, 95% coverage
probability, and estimated variances. For the models, the empirical biases were negligible
and coverage probabilities were close to 0.95. The estimated variances were close to the
variance from the simulations.

5.4 Generalized Case-cohort Design
Table 5 reports the results of simulations for the generalized case-cohort design where the
probability of selection in the weight function depends on the follow-up time. Similar to the
stratified case-cohort design simulation, we first generated 3000 samples and then randomly
chose, on average, 1000 subjects into the subcohort, using the selection probability p(T̃) = 1
− {1 + exp(1 + T̃γ)}−1, where γ = 1.2, 2 for p1(T̃) and p2(T̃) respectively. We found that the
estimates for β were essentially unbiased and the means of the estimated standard error are
close to the empirical standard errors. The coverage probabilities were close to 0.95.
Simulations were based on 1000 replications.

6 Real Data Examples
6.1 Application to Shrub Data

We applied our estimation procedure to the data on 46 shrubs used by Wang (1996),
originally described in Muttlak and McDonald (1990, Table 3). Data were collected using a
line-intercept sampling method for vegetation. Under the biological sampling technique, the
probability a shrub was included in the sample was proportional to the width, where the
width was defined to be the distance between tangents of the shrub that are parallel to the
transect (Muttlak and McDonald, 1990). Two indicator covariates were used to denote the
three groups of transects to which the shrubs belonged. In Wang (1996), the first covariate
Z1 was an indicator of whether the shrub belonged to transect I, and Z2 corresponded to
transect II.

For the analysis reported in Table 6, we defined Z1 and Z2 to be indicators that the shrub
belonged to transect I and transect III, respectively, so that the second transect was the
reference group. The recoding of the covariate was to ensure that numerically more stable
estimates can be obtained compared with the counterparts estimated by using the third
transect as a reference group. This is due to the fact that only six observations belonged to
this category. Table 6 reports the fitted transformation models with λ(x) = exp(x)/{1 + r
exp(x)} for values of r = 0 (proportional hazards), 0.5 and 1 (proportional odds). The
significant effect of β1 does not change for different values of r. Qualitatively, the estimates
for β1 are significant and β2 are not significant for all of the models that were fitted.

It is natural to compare which of the following models is more appropriate to fit the
observed data: the proportional hazards (PH) model or the proportional odds (PO) model?
We here suggest an ad hoc χ2-type goodness-of-fit selection criterion when Z is categorial
as is the case here.
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Under the length-biased sampling scheme, the conditional probability density function of T
given Z is given by

(22)

where fε(·) denotes the density of ε. Based on (22), we can compute the expected number of

observations within an interval, say [ta, tb], which is equal to . Recall that our
estimation procedure provides users with both β̂ and Ĥ(tk; β̂) where tk is the kth ordered
observation. Thus, the probability of T falls between tk−1 and tk is approximated by

For the shrub data, we divided t into three subintervals and constructed χ2-type statistics for
transect I and transect II for the two families (extremely-value and logistic) of distributions.
Transect III is not considered due to its small sample size. The resulting values for transect I
are 11.9183 and 35.6116 for PH and PO models, respectively. For transect II, they are
2.2147 and 3.4971, respectively. For either transect, use of the PH model results in a lower
χ2 value. This provides some evidence that, between the two models, PH may be preferred.

6.2 Application to Case-cohort Design - Welsh Nickel Refiners Study
Data from Appendix VIII of Breslow and Day (1987) contain complete records for 679
workers employed in a nickel refinery in South Wales before 1925. The follow-up through
1981 uncovered 56 deaths from cancer of the nasal sinus. Lin and Ying (1993) reanalyzed
the mortality data on the nasal sinus cancer using the Cox model with (modified) case-
cohort design. Previous studies found three significant risk factors which include AFE (age
at first employment), YFE (year at first employment) and EXP (exposure level).

In Table 7, the first column presents the estimated parameter values obtained from the full
cohort dataset via estimating equations (5) and (6). In this case, p = 1 for all observations.
The estimates are comparable to Lin and Ying (1993). The second column displays the
results from fitting the same model to data obtained from a randomly drawn, hypothetical
subcohort. Such a subcohort contains all the observed failures and some censored subjects
that make up two third of the size of the subcohort. We also performed an analysis on
another hypothetical subcohort which was drawn from the generalized case-cohort sampling
scheme discussed in Section 4.6. We used selection probability p(T̃) = 1−{1+exp(1+T̃γ)}−1,
where γ = 0.012 and 0.020 for p1(t) and p2(t), respectively. The estimated values of β and
their standard deviations, which are summarized in the third column of Table 7, are
consistent with the conclusion of Lin and Ying (1993). All of these studies indicate that the
covariates log(AFE − 10) and log(EXP + 1) are statistically significant. Compared with the
full-cohort study, the estimated standard deviation of β̂ presented in the second and the third
column of the table are slightly inflated. This is due to the fact that only a subset of the data
is used for the estimation. The estimates obtained from this generalized case-cohort
sampling scheme are closed to the corresponding values obtained by using a full cohort and
Lin and Ying (1993). Under the generalized case-cohort setting, however, only 70% of the
cases were included in the subcohort.
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7 Discussion
We proposed a general inferential procedure for the regression parameter and transformation
function in linear transformation models under biased sampling schemes. It provides a
unified approach to all semiparametric linear transformation models as well as commonly
encountered biased sampling schemes.

A key ingredient in the proposed approach is the weight function which is used to make
appropriate adjustment to obtain unbiased estimating equations. It is important to note that,
for the method to work in practice, the weight function needs to have a manageable form.
Fortunately, as demonstrated in the examples, for many important cases the weight functions
are simple.

Zeng and Lin (2007) proposed using the nonparametric maximum likelihood estimation
(NPMLE) for the family of the semiparametric transformation models. They showed that the
NPMLE gives consistent and asymptotically efficient estimators. It is certainly desirable to
see if the NPMLE can be used in the setting with biased sampling, so that efficient
estimation can be achieved. Unfortunately, the approach does not seem to be directly
applicable. A major difficulty appears to be in that the censoring distribution cannot be
factored out. On the other hand, one may include a general weight function in the integrand
of the estimating function to improve the efficiency. Such an improvement, however, is
obtained at the cost of increasing computational complexity. The asymptotic variance of the
corresponding efficient estimator does not generally have a closed form representation. A
simple inference procedure is not readily available as a result.
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8 Appendix: Proofs
This appendix provides proofs of Lemma 3.1 and Theorem 3.1. Note that when there is no
ambiguity, E and P denote, respectively, the conditional expectation and probability given Z.

A1. Proof of Lemma 3.1
By definition, N(t) = I(T̃ ≤ t, Δ = 1). Since q̃(t, 1) is the sub-density of T̃ on Δ = 1, it follows
that E[dN(t)] = q̃(t, 1)dt. Therefore, it suffices to show that E[ω(t, T̃, Δ)Y(t)λ(t)dt] = q̃(t,
1)dt.

Recall that ω(t, T̃, Δ) = [q(T̃, Δ)q̃(t, 1)]/[q̃(T ̃, Δ)q(t, 1)]. We have

Hence, it follows that

where the last equality follows from the fact that q(t, 1) = f(t) [1 − G(t)].

A2. Proof of Theorem 3.1
Following Chen et al. (2002), we divide the proof into three steps:

Step 1
Let Ĥ0(t) = Ĥ(t; β0), where β0 is the true parameter value. We first show that Ĥ0 converges
to H0. Here, the proof follows closely the proof of Proposition in Lu and Ying (2004).
Suppose H̃ is a limit of Ĥ0. By Helly’s Lemma (van der Vaart, 2000), to show convergence
of Ĥ0 to H0, it suffices to show that H̃ must be H0. By (5) and the law of large numbers, we
have

This implies that H̃(·) is differentiable and must satisfy

(A1)
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which is a smooth function of t and H̃(t). Since (A1) is a Cauchy problem, its solution exists
and is unique under local smoothness assumptions (Reinhard, 1987, Theorem 3.4.1). Note
that by Lemma 3.1, H0 satisfies (A1). Therefore, H̃ = H0 and hence Ĥ converges to H0.

For t in a compact subset of the interior of the support of T̃, we can show that the derivative
of Ĥ(t, β) with respect to β is bounded in the neighborhood of β0. Therefore, Ĥ(t, βn) − Ĥ0(t,
β0) → 0 provided that βn converges to β0. Since Ĥ0(t) → H0(t), it follows that Ĥ(t, β̂) →
H0(t) provided that β̂ is a consistent estimator.

We next show the consistency of β̂. Let U̇(β) denote the derivative of U(β) with respect to β.
Applying the uniform law of large numbers (Pollard, 1990), we can show, for β in a
neighborhood of β0, that n−1U(β) converges uniformly to a nonrandom limiting function
u(β) and that n−1U̇(β) converges uniformly to u̇(β). Thus, n−1U̇(β) is nonsingular in a
neighborhood of β0, provided that u̇(β0) = −Σ*, which is to be shown in the next step. Since
u(β0) = 0, it follows that there exists a neighborhood of β0 such that β̂ exists and is unique
and that β̂ → β0.

Step 2
We next show that n−1U̇(β0) converges to −Σ*. Let a > 0 and b be constants and define

for t > 0 and x ∈ (−∞, ∞). Here, a and b are chosen such that the integrals are finite. By the
definition of B(t, s), we easily see that

(A2)

Similarly, by the definition of B1(t), we can get

From these and mimicking Steps A2 and A3 of Chen et al. (2002, p. 666), we get

(A3)

(A4)

Finally,
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where the last equality follows from (A3) and definitions of B1, B2,  and . Combining
this with (A4) and rearranging terms, we get

which converges to −Σ*.

Step 3
Finally, we show the asymptotic normality of U(β0). Write

(A5)

Again by following the derivation of Chen et al. (2002, p. 667), we can show that the last
term in (A5) is equal to

Combining this with (A.2), (A.5) and the definition of z(t), we get

which is a sum of independent zero-mean random vectors. Thus the classical central limit
theorem implies that n−1/2U(β0) converges to (0, Σ*). From this and the result of Step 2,

we have . To show the weak convergence of

, observe that

(A6)

By (A4), the first term on the right hand side of (A6) equals
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(A7)

where . To tackle the second term, observe that

(A8)

Let  and . Then (A8) can be used to
show that

Therefore,

It follows that

(A9)

Combining (A8) and (A9), we have

(A10)

Both the first and the second terms on the right hand side of (A10) are sums of iid mean-

zero variables. Observe that  is bounded above by

 and by Condition A4, this envelope function has a finite second
moment. Since B(s, t)/B2(s) is bounded for all s and t, the second term on the right hand side
of (A10) has also a finite second moment. By the multivariate central limit theorem,

 converges in finite dimensional distribution to a mean-zero Gaussian
process. Similar to Bilias et al. (1997), z(t) is of bounded variations, all the major terms on
the right hand side of (A10) can be written as differences between two monotone functions
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in t. Since Mi(t) is also a difference of two monotone functions in t, it follows that, due to

the fact that monotone functions have pseudodimension one,  is
manageable in the sense of Pollard (1990). As a result, we can claim that the process

 is tight and hence converges weakly to a Gaussian process (Pollard,
1990).
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Table 7

Cox regression analysis of time from the first employment to the nasal sinus cancer death for the Welsh nickel
refiner study

Parameter Full-cohort Case-cohort Generalized Case-cohort

log(AFE − 10)

Est. 2.2091 1.8426 2.1804

S.E 0.4097 0.4405 0.4323

P-value 3.48e – 08 3.44e – 05 4.57e – 07

(YFE − 1915)/10

Est. 0.0768 0.4801 0.0963

S.E 0.2925 0.3824 0.3418

P-value 0.6036 0.209 0.7781

(YFE − 1915)2/100

Est. −1.2951 −1.2025 −1.4334

S.E 0.5104 0.6846 0.5913

P-value 0.006 0.079 0.0153

log(EXP + 1)

Est. 0.7883 1.1610 0.7654

S.E 0.1629 0.1934 0.1838

P-value 6.519e – 07 1.94e – 09 3.123e – 05
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