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Abstract

Although emerging evidence suggests that transposable elements (TEs) have contributed novel regulatory elements to the
human genome, their global impact on transcriptional networks remains largely uncharacterized. Here we show that TEs
have contributed to the human genome nearly half of its active elements. Using DNase I hypersensitivity data sets from
ENCODE in normal, embryonic, and cancer cells, we found that 44% of open chromatin regions were in TEs and that this
proportion reached 63% for primate-specific regions. We also showed that distinct subfamilies of endogenous retroviruses
(ERVs) contributed significantly more accessible regions than expected by chance, with up to 80% of their instances in open
chromatin. Based on these results, we further characterized 2,150 TE subfamily–transcription factor pairs that were bound in
vivo or enriched for specific binding motifs, and observed that TEs contributing to open chromatin had higher levels of
sequence conservation. We also showed that thousands of ERV–derived sequences were activated in a cell type–specific
manner, especially in embryonic and cancer cells, and we demonstrated that this activity was associated with cell type–
specific expression of neighboring genes. Taken together, these results demonstrate that TEs, and in particular ERVs, have
contributed hundreds of thousands of novel regulatory elements to the primate lineage and reshaped the human
transcriptional landscape.
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Introduction

Nearly half of human DNA is derived from sequences known as

TEs that have successfully replicated in the genome during the

evolution of our species [1]. Although the parasitic behavior of TEs

was initially put forward as a sufficient explanation for their

maintenance within genomes [2,3] there is growing evidence to

support the alternative view that TEs have facilitated genomic

innovations [4,5] and contributed critical regulatory elements to

their host [6]. Indeed, a number of studies have shown recently that

TEs have been the source of binding sites for various mammalian

transcription factors (TFs) [7–9] and that they have rewired different

developmental regulatory networks [10–12]. However, given that

previous studies were limited either by the number of TFs they

surveyed [7–10,13,14] or by the cell types they explored [10,11,15],

a key question that remains is to what extent have TEs globally

contributed to human transcriptional networks in undifferentiated

and differentiated cells. The importance of characterizing the

functional role of TEs and other repetitive regions in the human

genome is accentuated by the facts that these sequences constitute

most of the sequence diversity between mammalian species [16] and

are a significant source of human polymorphisms [17] and of somatic

mutations in healthy and disease tissues [18–20].

To systematically survey the contribution of TEs to human

regulatory networks across a range of cell types, we made use of

DNase I hypersensitive sites (DHS) data generated at the

University of Washington (UW) and Duke as part of ENCODE

[21,22]. The benefit of using these chromatin accessibility maps is

that they highlight active DNA sequences [23,24] independently of

a selected set of TFs. Although accessibility does not equate

regulatory function, we build upon these data sets to measure the

global activity profile of all classes of transposon-derived sequences

and systematically characterize the impact that ancient and recent

TEs expansions have had on the human chromatin landscape.

Results

TEs have contributed a large fraction of accessible
regions in human cells

Starting from 106 DHS data sets we performed extensive

quality control and retained 75 data sets defining a total of

11,848,530 regions of open chromatin in 41 distinct human cell

types derived from normal, embryonic, and cancer tissues (Table 1

and Table S1, see Materials and Methods). These DHS data were

further grouped across cell types into 1,643,643 distinct regions of

open chromatin. By measuring the overlap with repeat elements,

we found that 725,610 (44.1%) DHS regions overlapped instances

of the 4 major classes of TEs (ERV, also known as LTR, DNA,

LINE and SINE). Notably, by partitioning the DHS regions based

on the presence or absence of homologous sequences at
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orthologous loci in other species, we also found that this

proportion reached 63.1% for elements embedded in primate-

specific sequences (Figure 1A, see Materials and Methods). A large

fraction of these primate-specific DHS regions were observed in

repeat subfamilies that were themselves specific to the primate

lineage as estimated from the divergence of the repeat instances

from their consensus (Figure S1, see Materials and Methods).

Given that repeats are ubiquitous in the genome, we wanted to

compare the proportion of DHS regions observed in TEs relative

to what would be expected by chance. Using annotation-matched

random distributions we found that specific repeat subfamilies

were significantly over-represented in individual DHS data sets

(see Materials and Methods). For example, we observed that 1237

of the 2337 (52.9%) LTR7 repeat instances (a subfamily of the

LTR/ERV class) were contributing to open chromatin in the

human embryonic stem cell (ESC) line H7 when we would have

only expected 60.5 (2.6%). This corresponds to a 20-fold

enrichment and is highly significant (p,1.0E-100). We call such

repeat subfamilies DHS-associated repeats (DARs) and, using a

stringent cutoff (p,1.0E-05), we identified 8937 DARs enriched in

various cell types (Table S2). These DARs provided on average

6.7% and up to 11.9% more open chromatin regions than

expected by chance in the data sets surveyed (Figure 1B).

We were interested in characterizing further the families of TEs

that were contributing to regions of open chromatin. By

combining the DAR instances across the various cell types and

comparing them to the number of repeat instances of each family

across the genome, we found that LINE and SINE repeats were

depleted while DNA repeats were observed at levels expected

(Figure 1C). In contrast, we found that LTR/ERV, Low

complexity, Simple repeats and Others repeat classes were

enriched (Figure 1D). For example, although LTR/ERV repeats

constitute 13.5% of the repeat instances in the genome, they

represent 25.0%, 54.6%, and 33.0% of the DAR instances in

normal, embryonic, and cancer cells, respectively. The over-

representation of LTR/ERVs in DHS corroborates an observa-

tion made previously [22] and did not appear to be a consequence

of intrinsic properties of the repeat subfamilies including

mappability (Figures S2 and S3, see Materials and Methods).

Low complexity, Simple repeats and Others repeat classes were

excluded from most downstream analyses because of their extreme

GC content (Figure S3) potentially affected by sequencing biases

[25].

Next, we looked at the fraction of instances in all repeat

subfamilies that were contributing to open chromatin in relation to

their estimated age (see Materials and Methods). We observed that

for SINE, LINE, and DNA repeats, older subfamilies tended to

contribute more often to open chromatin (Figure 1E). Two of the

subfamilies contributing the most were AmnSINE1 and MER121,

both previously suggested to have acquired functionality in the

host [26,27]. Intriguingly, we observed the reverse pattern for the

LTR/ERV repeats with many of the young subfamilies contrib-

uting to open chromatin at very high levels (e.g. LTR13 with 379

instances contributing to open chromatin out of 492 (77.0%),

LTR2B with 215 out of 332 (64.8%), and LTR7 with 1432 out of

2337 (61.3%)) (Figure 1F). This pattern although dampened was

also visible if we restricted the analysis to the data sets derived from

normal differentiated tissues (Figure S4).

DARs are enriched for binding motifs, occupied by TFs,
and show sequence conservation

We noted that DHS overlapping repeats were enriched in

chromatin states corresponding to promoters, enhancers, and

Author Summary

Nearly half of the human genome is composed of
repetitive sequences, most of which were derived from
transposable elements that have replicated in the genome
during the evolution of our species. There is growing
evidence showing that some of these transposon-derived
sequences have been a source of new binding sites for
various mammalian transcription factors. Considering that
previous studies were targeting only few transcription
factors and cell types, a key question that remains is to
what extent the transposable elements have contributed
to human transcriptional networks. To systematically
survey this contribution, we used datasets generated by
the international Encyclopedia of DNA Elements (ENCODE)
consortium, identifying the location of active regulatory
elements in more than 40 distinct human cell types. Using
this resource we measured the contribution of all classes
of repetitive sequences and systematically characterized
the impact that transposable elements have had on the
human chromatin landscape. Our results demonstrate that
transposon-derived sequences have contributed hundreds
of thousands of novel regulatory elements to the primate
lineage and reshaped the human transcriptional land-
scape.

Table 1. The 75 DNase I data sets used in this study were grouped in 8 tissues.

Tissue Cell lines

Fibroblast Normal, Normal_Park., ProgFib, Neonatal, Fetal_lung (AG04450){, Toe (AG09309){, Gum (AG09319){, Gingival (HGF){, Abdominal
(AG10803){, Lung (NHLF){, Skin (BJ-T){, Cardiac (HCF){

Muscle Myoblast (HSMM), Myotube (HSMMtube), Myocytes (HCM){, Skeletal (SKMC){, Aortic_smooth (AoSMC)

Epithelial Small_air (SAEC), Esophageal (HEE){, Choroid_plex (HCPE){, Retinal (HRPE){, Ciliary (HNPCE){, Renal_cortical (HRCE){, Renal
(HRE){, Prostate (LHSR), Amniotic (HAE){

Lymphoblastoid GM12891, GM19238, GM19239, GM19240, GM12865{, GM18507, GM12878

Others Myometrial, PanIslets, Melanocytes, Epidermal (NHEK), Endothelial (HUVEC)

hESC H1esc, H7esc, H9esc

Solid_tumor HepG2, HeLa-S3{, PANC-1, MCF-7{{, Medullobastoma, Neuroblastoma

Leukemia CMK, HL-60, NB4{, K562{, Jurkat

Cell lines marked with a ‘‘{’’ or ‘‘{{’’ had two or three biological replicates respectively.
doi:10.1371/journal.pgen.1003504.t001

Primate Regulatory Sequences Derived from TEs
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Figure 1. TEs have contributed a large fraction of accessible regions in human cells. (A) Proportion of human DHS regions overlapping
different classes of repeats based on the age of the sequence in which they are embedded. (B) Specific repeat subfamilies, called DHS-associated

Primate Regulatory Sequences Derived from TEs
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insulators as defined previously using histone marks profiles [28]

(Figure S5). To understand why specific TEs were contributing to

open chromatin, we wanted to integrate the DARs with other

more targeted functional genomics data sets. For example, it was

shown previously that the pluripotency TF OCT4 was bound on

LTR9B repeats [10] and it was interesting to see the same repeat

subfamily as a DAR in ESCs (Table S2). When we looked in

LTR9B for the binding motifs of OCT4 and SOX2, another

pluripotency TF, we found them to be specifically over-represent-

ed in the repeat instances contributing to open chromatin

(p = 6.8E-64 and 3.6E-38 respectively, see Materials and Methods).

Notably, the peaks in the aggregate read density profiles of the

DHS data in ESCs were also correlating with the localization of

the motifs within the repeat instances (Figure 2A).

To characterize more systematically the role of repeat instances

in the host genome and to identify putative functional factors

associated with the DARs, we used a collection of TF binding sites

determined by ENCODE using ChIP-Seq. In the 19 cell types

where both DHS and ChIP-Seq data were available, we found

that 1014 of the 2784 DARs (36.4%) were statistically enriched for

at least one TF (Table S3). This relied on two statistical tests: one

that showed that the TF was enriched in the same repeat

subfamily and in the same cell type, and one that showed that the

number of instances with both DHS and ChIP-Seq signal was also

significant (see Materials and Methods). Using this strategy, we

found for example that 82.9% of the 210 LTR13 instances that

were contributing to open chromatin in K562 were also bound by

CTCF (p = 1.1E-13, Figure 2B). Additional DARs supported by

specific TFs such as PU.1, BCL11A, and PAX5 in LTR2B are

shown in Figure 2C and Figure S6. Predictably, we found that a

larger fraction of DARs can be explained by the binding of specific

TFs in cell lines where more ChIP-Seq data sets were available

(Figure 2D).

To improve on the limited ChIP-Seq coverage in some cell

types and in order to characterize the DARs more comprehen-

sively, we developed a classifier to predict TF-repeat associations

using Jaspar TF binding motifs (see Materials and Methods). Using

this classifier we were able to suggest 3073 high-confidence motif-

repeat subfamily associations for 1312 DARs (Table S4). By

combining both methods, we were able to predict a total of 2150

unique TF-repeat subfamily associations, which suggest potential

functional candidates for 24.1% of the DARs (Figure 2E).

Finally, to further confirm the functional importance of DARs,

we also used the annotated conserved non-exonic elements

(CNEEs) [29] and assessed the overall sequence conservation of

the TEs that were contributing to open chromatin. In total, while

only 5.5% of all repeat instances were conserved, we found that

9.0% of the repeats contributing to open chromatin were

conserved, a difference that is highly significant (p,1.0E-100,

Figure S7). Notably, for almost all repeat subfamilies, we found

that the subset of instances contributing to open chromatin was

more conserved than expected by chance (Figure 2F).

Thousands of LTR/ERV sequences are activated in a cell
type–specific manner especially in ESCs

Next, we were interested in the contribution of repeats to cell

type-specific DHS. When we calculated the number of cell types

contributing to individual DHS regions, we found that 76.0% of

the loci were open in 4 cell types or less (Figure S8, see Materials

and Methods). We also observed that regions contributed by few

cell types were found more frequently in repetitive sequences

(Figure 3A). To determine the cell type-specificity of each repeat

subfamily we used the median number of open instances in all

DHS data sets as the denominator and calculated the fold

enrichment for each repeat subfamily in each cell type (see

Materials and Methods). A total of 770 DARs showed a cell type-

specific fold enrichment greater than 3 (Figure S8 and Table S2).

Notably, we observed that LTR/ERV repeat subfamilies were

over-represented in the cell type-specific DARs (Figure 3B) and

that on average a higher number of cell type-specific DARs were

found in ESCs and cancer data sets (Figure 3C). These patterns

were also recapitulated in the top 100 repeat subfamilies with the

greatest cell type-specific enrichment (Figure 3D). For example, in

the case of the LTR7 repeat subfamily, we observed a remarkable

enrichment of 131.6- and 88.7-fold in the ESC lines H7 and H1

respectively. While most cell type-specific DARs were found in

ESCs and cancer cell lines, we also found examples, such as the

LTR2B and MER121 subfamilies, which had most of their

instances in open chromatin from normal differentiated cells

(Figure 3E). Additional examples of cell type-specific DARs are

shown in Figure S9. We also found that the cell type-specificity of

various subfamilies of TEs was supported by the chromatin states

previously described [28]. For example, more than 40% of the

LTR2B instances were annotated as enhancers in GM12878 while

only 10% were annotated as such in H1. In contrast, more than

40% of the LTR7 instances were annotated as enhancers in H1

while only 2.2% of them were annotated as such in GM12878

(Figure S10).

Finally, using a collection of TF binding motifs including novel

motifs identified in DNase I footprints [30], we identified tissue-

specific motifs enriched in these cell type-specific DARs (Table S5,

see Materials and Methods). In particular, we observed that many

ESC-specific DARs were supported by ESC-specific motifs that

were not enriched in normal- or cancer-specific DARs (Figure

S11). The top three ESC-specific motifs found in this way were

OCT4, SOX2 and KLF4.

DARs are associated with cell type–specific expression
and over-represented in dsQTLs

To evaluate the impact of DARs on gene regulation, we used 43

gene expression exon-array data sets from ENCODE and

calculated the number of genes in proximity to DAR instances

that were up-regulated in the relevant cell type relative to the

others (see Materials and Methods). We identified 783 DARs with

more proximal up-regulated genes than expected by chance

(Table S6). For example, we identified 11 genes in proximity to

LTR2B instances that were up-regulated in GM12865 while we

would have only expected 4.27 (Figure 4A). Examples of cell type-

specific LTR2B associated genes in GM12865 include NAPSB

and CLECL1 (Figure 4B and Figures S12, S13), two genes that

have been shown to play a role in lymphoblastoid cells [31,32].

Moreover, we observed that the expression of the DAR-associated

genes were frequently highest in the cell type where the DAR had

been identified (Figure 4C and Figure S14). We also found that

DARs with a higher cell type-specificity score had a higher chance

of being associated with cell type-specific expression (Figure 4D).

repeats (DARs), are over-represented and their cumulative relative contribution (Observed-Expected) is shown as a percentage of all DHS data. (C–D)
Proportion of all repeat instances in the genome (All repeats) and for DAR instances in three classes of cells (Normal, ESC and Cancer). (E–F) Fraction
of repeat subfamily instances that is contributing to open chromatin in at least one data set. The estimated age is in millions of years (Myrs).
doi:10.1371/journal.pgen.1003504.g001

Primate Regulatory Sequences Derived from TEs
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Figure 2. DARs are enriched for binding motifs, occupied by TFs, and show sequence conservation. Aggregate profiles of DNase I tags
(green) over the instances of different DARs: (A) LTR9B in ESC, (B) LTR13 in K562 and (C) LTR2B in GM12878. The profiles over another cell type (Nhlf)
are shown as a control (dashed brown lines). The plots underneath the profiles represent the localization of regulatory motifs or ChIP-Seq peaks in
the same cell lines (yellow, blue, red points). The Venn diagrams represent the proportion of repeat instances (grey) containing DHS and regulatory
motifs or ChIP-Seq peaks using the same color code. (D) Proportion of DARs with at least one enriched TF (blue bars) and the total number of binding
sites reported (black line) for each cell line. (E) Diagram showing the number of DARs supported by at least one TF based on ChIP-Seq or motif
enrichment. (F) Scatterplot showing for each repeat subfamily, the fraction of conserved repeat instances amongst the opened instances. The black
line represents a polynomial trend line of order 2. The red dashed line is the expected distribution.
doi:10.1371/journal.pgen.1003504.g002

Primate Regulatory Sequences Derived from TEs
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Similar results were obtained using ENCODE RNA-Seq data sets

generated by Caltech (Figure S15).

Finally, a recent study combining genotypes with DHS data in

70 lymphoblastoid cell lines has shown that a significant

proportion of open chromatin regions, known as dsQTLs, can

be influenced by polymorphisms [33]. Having demonstrated that

DARs exhibit features associated with regulatory elements, we

wanted to test if they also showed this variation across individuals.

We found that 36.8% of the reported dsQTLs overlapped repeat

instances and that these were contributed by DAR instances in

lymphoblastoid cells more than expected by chance (p = 1.1E-6,

see Materials and Methods).

Discussion

In summary, we found that TEs have contributed nearly half of

the open chromatin regions of the human genome and the

majority of primate-specific elements. This estimate is a lower

bound that is likely to grow given that better strategies using longer

and paired-end reads will be needed to measure the contribution

of young repeat subfamilies and polymorphic sites (Figure S3). An

example is the L1PA2 repeat subfamily where, despite the fact that

the mappability ratio is 0.08, 117 and 257 of the 4904 L1PA2

instances contributed to the H1 and H7 DHSs respectively. This

finding is consistent with previous observations [7,15,34,35] but

greatly expands on our understanding of the repeat families

contributing to open chromatin in the human genome.

To better understand the regulatory functions that could have

been retained in exapted TEs beyond the ones that have already

been studied (e.g. [8–11,14]), we predicted a total of 2150 TF-

repeat subfamily associations and confirmed that a broad range of

functional proteins are targeting these regions (Figure 2 and

Tables S3, S4). This resource will be useful to provide insights into

the regulation of some of the TE-derived loci that have already

been implicated in disease [36]. There is an important distinction

between biochemical activity and functional relevance to the host.

To help confirm the importance of these regions, we also showed

that repeat instances contributing to open chromatin were more

conserved than expected by chance (Figure 2F).

Next, we demonstrated that LTR/ERV repeats have

contributed a disproportionate fraction of cell type-specific

accessible chromatin regions especially in embryonic and cancer

cell lines (Figure 3). This is interesting given that network

rewiring using ERV elements has already been described in

ESCs [10–12] and that it has been shown that stem cell potency

fluctuates with endogenous retrovirus activity in mouse [37].

The level of activity observed in ERV sequences is likely a

consequence of the permissive chromatin state found in ESCs

that it sometimes reinstated in cancer [38]. There is fine balance

between the successful replication of endogenous retroviruses,

from which these repeats are derived, and retrotransposition

control in the host [39]. One intriguing possibility is that the

manipulations that were initially exerted by the ancestral viruses

on their host to by-pass these control mechanisms have also

facilitated co-option [40].

Finally, we also reported that repeat subfamilies activated in a

cell type-specific manner were also frequently associated with

higher expression of neighboring genes. This result corroborates

the fact that at the level of expression, TE-derived transcripts,

including lincRNAs [41], are also usually tissue-specific [42].

Interestingly, this pattern was observed not only in ESCs but also

in differentiated and cancer cells (Figure 4 and Table S6).

Taken together, these results demonstrate that TEs, and in

particular endogenous retroviruses, have considerably transformed

the transcriptional landscape during primate evolution.

Materials and Methods

DNase I hypersensitive sites datasets
We retrieved 106 ENCODE DHS data sets available from the

October 2010 freeze which included replicates for 50 different cell

types from a variety of normal differentiated cell types, human

ESCs and cancer cell types using the UCSC ENCODE portal

(http://genome.ucsc.edu/ENCODE/). These data had been

generated from performing DNase I digestion of intact nuclei,

isolating DNase I digested fragments and direct sequencing of

fragment ends [23,24]. We discarded 3 data sets involving

treatments and performed extensive quality control of the data

sets. Specifically, for each peaks file generated by UW corresponds

one tagAlign file such that we calculated the average GC content

of the tags and removed data sets with GC bias (.55% or ,45%).

We also used FastQC (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/) on these files to remove data sets that failed

the per sequence quality criteria (when the most frequently

observed mean quality is below 20) or where the total number of

overrepresented sequences was above 1 million. Multiple tagAlign

files generated by Duke had been combined to call the peaks and

we analyzed the individual tagAlign files as described above. The

quality control summary is presented in Table S1. In the end, we

retained 75 data sets that did not have any unusual deviation

based on our quality metrics: 51 produced by UW and 24 by

Duke, covering 41 different cell types grouped in 8 ‘‘tissues’’

(Table 1). Most of the UW data sets had a read length of 36 bp

while the Duke data sets had a read length of 20 bp. For the

downstream analyses, we used the narrow peak files that were

generated from the uniquely mapped reads and provided by

ENCODE.

Overlap between DHS regions and repeats
The peak regions from the 75 data sets were combined and

those within less than 100 bp were grouped in 1,643,643 distinct

DHS regions. These DHS regions were resized to 200 bp using

their middle point before intersecting with the 5,269,366 repeat

instances of RepeatMasker [43] from the UCSC Genome Browser

[44] (Figure 1A). In order to calculate the proportion of DHS

regions overlapping different classes of repeats based on the age of

the sequence in which they are embedded, we sequentially used

the liftOver utility from UCSC using default parameters and

minMatch set to 0.5. The DHS regions (hg18) were first converted

to the mouse genome (mm9), those not converted were then

mapped to the marmoset genome (CalJac3), and again those not

converted were mapped to the chimp genome (PanTro2) to

identify the 23,917 human-specific DHS regions. Primate species

divergence time taken from [45]. We also obtained an alignment-

free estimate of the age of the repeat subfamilies using the average

Figure 3. Thousands of LTR/ERV–derived sequences are activated in a cell type–specific manner, especially in ESCs. (A) Proportion of
DHS clusters that overlap repeats based on the number of distinct cell types in which they are observed. (B) Proportion of cell type-specific DARs and
of all repeat subfamilies (Expected) by repeat class. (C) Average number of cell type-specific DARs per data set in normal, embryonic and cancer cell
lines. (D) Heatmap showing the cell type-specific fold enrichment for the top 100 repeat subfamilies. (E) Number of instances contributing to open
chromatin for the LTR2B, LTR7 and MER121 repeat subfamilies.
doi:10.1371/journal.pgen.1003504.g003

Primate Regulatory Sequences Derived from TEs
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divergence between the instances and the ancestral repeat

consensus (milliDiv value reported by RepBase) and applying the

Jukes Cantor method with a substitution rate of 2.2610-9 per site

per year [7]. The ages obtained using this method were largely

consistent with previous estimates [16,46]. Repeat subfamilies with

an estimated age ,95 Myrs were said to be primate-specific.

Figure 4. Cell type–specific expression of DAR–associated genes. (A) Distribution of the expected number of up-regulated genes in proximity
to the LTR2B DAR instances in GM18265. Actual number of up-regulated genes is shown using an arrowhead. (B) UCSC genome browser view of the
NAPSB gene with selected RNA-Seq and DHS ENCODE tracks (y-axis maximum set to 20 and 100 respectively). The LTR2B repeat is highlighted in pink
along with its cell type-specific open chromatin and expression profiles. (C) Boxplots showing the expression values across cell types for the DAR-
associated genes that are up-regulated. Red lines are connecting the expression values observed in GM18265. (D) Cell type-specific DARs have more
cell type-specific expression. DARs were binned according to their cell type-specific fold enrichment and the proportion of them having a Z-score of
cell type-specificity expression above 3 is shown.
doi:10.1371/journal.pgen.1003504.g004

Primate Regulatory Sequences Derived from TEs
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Annotation-matched random distributions and DAR
identification

For each DHS data set, we calculated the number of overlaps

within each repeat subfamily using a 200-bp window surrounding

the center of the DHS peaks. Next, following a strategy developed

on ChIP-Seq data sets [7,10], we annotated each DHS with

respect to its nearest RefSeq genes and we binned the DHS into

six categories according to the peak location: TSS (within 1 kbp of

a TSS), promoter (up to 5 kbp upstream of TSS), intragenic

(within the RefSeq gene boundary), proximal (up to 10 kbp away

from the gene boundaries), distal (up to 100 kbp away from the

gene boundaries) and desert (more than 100 kbp away from any

RefSeq genes). We then generated for each DHS data set a

random set of 200,000 regions with the same annotation

distribution as the true regions and intersected with the

RepeatMasker track to obtain the expected number of overlaps

for each repeat subfamily. We used a one-sided binomial test to

compare the observed number of repeats intersecting the true

DHS with the expected numbers from the annotation-matched

background. We identified repeat subfamilies with statistically

significant contribution to open chromatin (p,1E-5) as DHS-

associated repeats (DARs).

Properties of repeat subfamilies and mappability ratio
We verified that various properties of the repeat subfamilies

were comparable across repeat classes. Specifically, we checked for

an association between the fraction of repeat instance contributing

to open chromatin and the number of instances in a given

subfamily, average size and GC content (Figure S2). We only

detected an association between open chromatin contribution and

GC content affecting Low complexity, Simple repeats and Others

repeat classes, which we excluded from most analyses. The

majority of the ENCODE processed data sets, such as the narrow

peak files that we used in the current study, rely on uniquely

mapped reads [47,48]. To test the impact of such a criteria on the

detection of TEs regulatory activity, we extracted 50 million 20 bp

and 36 bp sequences (to mimic Duke and UW read lengths

respectively) from random location on the human and re-mapped

these artificial reads using the Bowtie program [49] and allowing 1

and 2 mismatches respectively. The goal of these simulations was

to compute a mappability ratio for each repeat subfamily that is:

the ratio between the number of uniquely mapped tags in a

particular subfamily and the number of tags that were extracted

from this subfamily (Figure S3).

Chromatin states analyses
The DHS from the six cell lines (some with two replicates for a

total of eight DHS data sets) for which the chromatin states (CS)

were available [28] were used for this analysis. The DHS were

associated to one of the 15 CS (overlap .50%) using inter-

sectBed from BEDtools [50], then grouped whether they overlap

any repeat instance or not. For each data set, the proportion of

DHS annotated as each CS was computed, and similar CS were

combined together (ex: strong and weak enhancers grouped as

enhancers). Similarly, random DHS (using shuffleBed) were

generated and overlapped with the CS. Figure S5 is showing the

average and standard deviation over the eight data sets. Repeat

instances from specific DARs (LTR7, LTR2B and LTR13) were

intersected with the CS using a similar strategy (Figure S10).

ChIP–Seq analysis
We used 183 distinct ENCODE ChIP-Seq data sets generated

by the Broad Institute, Duke, HudsonAlpha and Yale, covering 87

different TFs from 19 cell lines for which we also used DHS. For

each of these data sets we applied the same procedure as to

identify the DARs and identified a total of 9367 TF-repeat

subfamily pairs. These pairs were then intersected with the DARs

and for each combination from the same cell type and the same

repeat subfamily we applied a hypergeometric to test the

significance of the number of instances with ChIP-Seq peak and

DHS. Using a stringent cutoff (p-value,0.001), we identified 2800

statistically significant combinations of DAR-ChIP Seq for 1014

distinct DARs (Table S3).

Motif analysis
Using ChIP-Seq data sets obtained previously [51], we trained a

classifier that uses the over-representation of TF binding motifs

and other features of repeat subfamilies to predict TF-repeat

associations. Briefly, five features of repeat subfamilies were used:

1) fraction of repeat instances with motif, 2) fraction of motifs

contained within repeat subfamily, 3) motif score ratio between

bound and unbound repeat instances, 4) enrichment test for

binding motifs within repeat subfamilies, 5) simulations looking at

the potential of repeat sequences to generate binding motifs. By

combining these individual features using a weighted rank average

we were able to achieve an Area-Under-the-Curve (AUC) of 0.81

for this classifier (Jeyakani et al., in preparation). Using 103

JASPAR TF binding motifs derived from human or mouse [52],

we applied our classifier to the list of putative motif-repeat

subfamily pairs and using a stringent cutoff (top 10%) we identified

2337 potential associations. These motif-repeat subfamily pairs

were then intersected with the DARs and for each combination

from the same repeat subfamily we applied a hypergeometric to

test the significance of the number of instances with motifs and

DHS. Using a stringent cutoff (p-value,0.001), we identified 3857

statistically significant combinations of DAR-motif from 1312

distinct DARs (Table S4).

Cell type specificity and motif enrichment
In order to calculate the cell type-specific enrichment for each

repeat subfamily, we determined the median number of repeats

bound across the DHS data sets (these numbers were further

normalized to the total number of sites in each data sets). The

median value was computed independently for the UW and the

Duke data sets because of the expected differences in mappability

given the differences in read lengths. Next, we calculated a cell

type-specific fold enrichment for each repeat subfamily in a given

cell type by dividing the observed number of repeats contributing

to open chromatin in this particular DHS data set by the median

number of repeats contributing to open chromatin for this

subfamily. This was done for all DARs and non-DARs (Figure

S8). Next, we scanned the 56,837 DHS from the 770 cell type-

specific DARs for motifs using the FIMO software tool with a

maximum p-value threshold of 161025 as was done in [30]. We

provided motif templates from Jaspar [52], TransFac [53],

Uniprobe [54] and novel de novo motifs identified previously in

DNAse I footprints [30]. For each DAR, we then identified the

motifs present in .25 repeat instances and in .20% of the

instances contributing DHS (Table S5). We also calculated the

proportion of DARs from ESC, Cancer and differentiated normal

cells with support of at least one of the 28 ESC-specific motif

identified in [30] (Figure S11).

Expression analyses
From the 70 ENCODE UW Affy All-Exon Arrays expression

data sets, only those from the cell types with DHS were selected.

These data sets were clustered showing that a few replicates were
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inconsistent and therefore removed of the downstream analyses,

leaving 43 expression data sets (most of them in duplicate). Note

that we tried to combine these data sets with the ENCODE

Duke Affy All-Exon Arrays data sets but found that the platform

correlation was higher than the biological correlation between

biological replicates so we therefore decided to only use the UW

data (data not shown). Expression data was available in the cell

type for 6054 of the 8937 DARs. A gene was called up-regulated

in a cell type if it had a Z-score .2 in at least one of the data set

compared to the other data sets. For each DAR, the Z-score of

cell type-specific expression based on the number of up-

regulated genes was computed on permutation tests by

randomly picking 10,000 times the same number of genes that

associated with the DAR from the set of 35,865 different gene

names covered by the arrays. For example, from the 2337

instances of LTR7 in the genome, 788 were contributing to

open chromatin in H7 and those were associated to a total of

561 distinct genes. The fact that 85 of these genes were up-

regulated in the ESC cell type while only 19.6 (+/24.3) were

expected based the permutation test gives a Z-score of 15.1

(Figure S13 and Table S6).

Similarly, 13 RNA-Seq data sets generated by Caltech from 7

distinct cell types were used to calculate the association of DARs

with up-regulation of expression. A 50 kb window centered in the

middle of each repeat instance was used and, to estimate the

background, the genome was independently segmented in non-

overlapping 50 kb windows. For each RNA-Seq data set, the

average tag density was calculated in each window. For each

window, the mean and SD of the average tag density was then

calculated across the 13 RNA-Seq data sets in order to identify up-

regulated windows defined as a Z-score .2 in one of the data set of

the same cell type compared to the other data sets. For the 2124

DARs for which expression data was available, the Z-score of cell

type-specificity expression was computed using permutation tests

by randomly picking 10,000 times the same number of windows

than the number or repeat instances contributing to open

chromatin in this cell type from the background genomic segments

(Figure S14).

dsQTLs analysis
The 1,034,427 DHS from the 8 lymphoblastoid DHS data sets

were first grouped into 430,159 clusters as described above. Using

intersectBed, we found as expected that most (4891 of 6070

(80.6%)) short dsQTLs from [33] were overlapping these DHS

lymphoblastoid clusters. We also found that 2234 of 6070 (36.8%)

short dsQTLs were overlapping a repeat instance. Considering

that 995 of the 4891 (20.3%) short dsQTLs overlap one of the

77,135 DHS lymphoblastoid clusters contributed by DAR

instances in lymphoblastoid cells (17.9% of all lymphoblastoid

clusters), this overlap is highly significant (hypergeometric

p = 1.11E-6). Doing the same for the DHS lymphoblastoid clusters

that were overlapping DAR instances from the other cell types

gave a more marginal enrichment (hypergeometric p = 1.09E-2).

Supporting Information

Figure S1 Proportion of DHS overlapping primate-specific

repeats in each branch of Figure 1A. Repeat subfamilies were

defined as primate-specific based on the average divergence of

their instances relative to their respective repeat consensus (see

Materials and Methods).

(PDF)

Figure S2 For each repeat subfamily, proportion of instances

contributing to open chromatin in at least one data set (y-axis)

relative to: (A) the number of instances, (B) their average size and

(C) their average GC content. The only strong correlation is

observed between the proportion of instances of Low_complex,

Simple_rep and Others repeat subfamilies in open chromatin and

GC content.

(PDF)

Figure S3 (A) Coverage of uniquely mapped short reads on

repetitive regions. Fifty million random locations were selected

from the human genome. For each of these locations 20 bp and

36 bp sequences were extracted to mimic UW and Duke DHS

data sets. These artificial reads were re-mapped using Bowtie

allowing for 1 mismatch and 2 mismatches respectively. For

each repeat subfamily, a mappability ratio was computed as the

number of reads uniquely mapped to this family divided by the

number of artificial reads coming from this family. Overall we

found that 36 bp reads perform significantly better than the

20 bp reads and 75% of the repeat families have a mappability

ratio above 0.8. (B–C) Proportion of simulated reads that can be

unambiguously mapped to the reference genome for all repeat

subfamilies organized by class. Estimated age in millions of

years (Myrs).

(PDF)

Figure S4 (A) Fraction of repeat instances in each DNA, SINE

and LINE subfamily that is contributing to open chromatin in at

least one normal data set. (B) Same for repeat subfamilies from the

LTR/ERV class. In contrast to Figure 1E–1F this analysis is

restricted to the normal cell lines.

(PDF)

Figure S5 DHS overlapping repeats are enriched in active

chromatin states at a similar level than the DHS outside repeats,

and are enriched compared to a random distribution of the DHS.

The 15 original states were combined into seven distinct states.

The averages and standard deviations are calculated over the eight

cell types for which DARs were identified, on the proportion of

DHS overlapping (blue) or not (red) repeats or over random

distribution (green).

(PDF)

Figure S6 Complement of Figure 2 showing additional TF-

repeat associations. Aggregate profiles of DNaseI tags (green) over

the instances of different DARs: (A) LTR22 in HEPG2, (B)

LTR15 in K562, (C) LTR41 in K562 and (D) LTR21B in K562.

The profiles over another cell type (Nhlf) are shown as a control

(dashed brown lines). The point’s plots underneath the profiles

represent the localization of regulatory motif or ChIP-Seq peaks in

the same cell lines (yellow, blue, red points). The Venn diagrams

represent the proportion of repeat instances (grey) containing DHS

and regulatory motifs or ChIP-Seq peaks using the same color

code.

(PDF)

Figure S7 Repeat instances contributing to open chromatin tend

to be more conserved than expected. Venn diagram showing the

overall overlap of 87,219 between the Repeatmasker instances

[43], the annotated conserved non-exonic elements (CNEEs) [29]

and the DHS (this study).

(PDF)

Figure S8 (A) Distribution of the number of cell types for all

DHS regions showing that 75% of the clusters were contributing

to open chromatin in 4 cell types or less. (B) Proportion of DARs

and non-DARs repeat subfamily by bin of cell type-specific fold

enrichment computed for each repeat subfamily in each data set.

(PDF)
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Figure S9 Cell type specific DAR examples. (A–C) LTR2B,

LTR7 and MER121 from Figure 3. (D) LTR13 which is bound by

CTCF (Figure 2B) and contributing to open chromatin in almost

all cell type. (E) LTR1 which is showing re-activation of repeats in

ESCs and some cancer cell lines but not in the others. (F) LTR47B

which is contributing to open chromatin in many cell types except

the lymphoblastoids, ESCs and leukemias. (G) LTR10C which is

specifically contributing to open chromatin in HEE and SAEC

epithelial cell types. (H) LTR10A which is contributing to open

chromatin in few epithelial cell types as well as in solid tumors. (I)

LTR72 which is contributing to open chromatin in many normal

cell types and leukemia.

(PDF)

Figure S10 Cell type-specific DARs are also supported by

chromatin-state data. Repeat instances from specific DARs were

intersected with the CS in the cell type where the DAR was

identified (LTR7 in H1 and LTR2B in GM12878) but also in the

other cell type. LTR13 was observed as a DAR in both H1 and

GM12878. The CS result for LTR13 is consistent with the fact

that the insulator protein CTCF was also enriched in this repeat

subfamily (Figure 2B).

(PDF)

Figure S11 (A) Cell type-specific DARs with an ESC-specific

motif as defined in [30] in different fraction of the DAR DHS

instances (..2, ..25, etc.) and with at least 25 motif instances. (B)

ESC-specific motifs that are enriched in the ESC-specific DARs

(with at least 25 motifs and ..2 of the DAR DHS instances). Only

the most abundant motif per DAR is shown, but all combinations

are available in Table S5.

(PDF)

Figure S12 UCSC genome browser view of the NAPSB gene

with RNA-Seq and DHS ENCODE tracks. The LTR2B repeat is

highlighted in pink along with its cell type-specific contribution to

open chromatin and expression profiles.

(PDF)

Figure S13 UCSC genome browser view of the CLECL1 gene

with RNA-Seq and DHS ENCODE tracks. The LTR2B repeat is

highlighted in pink along with its cell type-specific contribution to

open chromatin and expression profiles.

(PDF)

Figure S14 Cell type-specific expression of DAR-associated

genes. (A) Distribution of the expected number of up-regulated

genes in proximity to the DAR instances for LTR7 in H7 (left) and

LTR15 in K562 (right). Actual number of up-regulated genes is

shown using an arrowhead together with the corresponding Z-

score. (B) Boxplots showing the expression values across cell types

for the DAR-associated genes that are up-regulated. Red lines are

connecting the expression values observed in the relevant cells.

(PDF)

Figure S15 Cell type specific expression of the DARs based on

RNA-Seq data. (A) Distribution of the expected number of up-

regulated genes in proximity to the DAR instances for LTR7 in

H7 (left), LTR15 in K562 (middle), and LTR2B in GM18265

(right). Actual number of up-regulated genes is shown using an

arrowhead together with the corresponding Z-score. (B) Boxplots

showing the expression values across cell types for the DAR-

associated genes that are up-regulated. Red lines are connecting

the expression values observed in the relevant cells. (C) Cell type-

specific DARs tend to have more cell type-specific expression.

DARs were binned according to their cell type-specific fold

enrichment and the proportion of them having a Z-score of cell

type-specificity expression above 3 is shown.

(PDF)

Table S1 List of the 106 ENCODE DHS data sets. The

ordering of the 75 retained dataset is included, as well as the

quality control analysis for the 31 data sets that were removed.

(XLS)

Table S2 List of the 8937 DARs along with their proprieties and

summary of their TF ChIP-Seq and motifs support as well as

number of up-regulated genes and corresponding Z-score.

(XLS)

Table S3 DARs enriched for TFs ChIP-Seq and their statistics.

(XLS)

Table S4 DARs enriched for TFs motifs and their statistics.

(XLS)

Table S5 Motifs enriched in cell type-specific DARs.

(XLS)

Table S6 DARs enriched for up-regulated genes from exon-

array.

(XLS)
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