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Abstract
Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using
ordinal logistic regression models that assume proportional odds. When this assumption is not
met, it may be possible to capture the lack of proportionality using a constrained structural
relationship between the odds and the cut-points of the ordinal values (Peterson and Harrell,
1990). We consider a trend odds version of this constrained model, where the odds parameter
increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically
and graphically how this model is related to latent logistic, normal, and exponential distributions.
In particular, we find that scale changes in these potential latent distributions are consistent with
the trend odds assumption, with the logistic and exponential distributions having odds that
increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc
Nlmixed, and perform simulations under proportional odds and trend odds processes. We find that
the added complexity of the trend odds model gives improved power over the proportional odds
model when there are moderate to severe departures from proportionality. A hypothetical dataset
is used to illustrate the interpretation of the trend odds model, and we apply this model to a Swine
Influenza example where the proportional odds assumption appears to be violated.
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1. Introduction
Ordinal data are often analyzed using the Proportional Odds Model (POM). Conceptually
introduced by Aitchison and Silvey in 1957, developed by Snell in 1964, and further
developed by McCullagh in 1980, the Proportional Odds model is a popular extension of
logistic regression to ordinal data [1, 2]. Odds are considered proportional when all possible
dichotomizations of high versus low outcomes result in the same odds metric. This
proportional odds assumption has been justified by a theoretical underlying logistic
distribution with shift in location but constant scale [2]. McCullagh also introduced a linear
“multiplicative model” that relaxes the assumption of a constant scale of the underlying
logistic distribution by introducing scale parameters to be estimated [2]. Peterson and Harrel
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suggested that the lack of proportionality might be relaxed for some of the covariates by
introducing intermediate constrained structural relationship between the odds and the cut-
points [3].

In this paper, we illustrate and investigate a monotone class of Peterson and Harrel’s
constrained non-proportional model, which we will term a Trend Odds model (TOM). We
first review the notation of the cumulative odds model, emphasizing proportional and trend
classes, and give a hypothetical data example where the linear TOM holds. We then show
how latent distributions relate to the TOM, with particular attention given to the logistic
distribution. We show how to fit the TOM using SAS Proc Nlmixed, and present some
simulation results when the data follow the Proportional Odds model and when they follow
the TOM. Finally, we apply the TOM to a swine influenza dataset that appears to come from
a non-proportional-odds process.

2. Cumulative Odds Models: Proportional Odds and Trend Odds models
The Trend Odds model (TOM) belongs to the cumulative ordinal class of models. To better
understand its structure, we revisit the generalized structures of cumulative odds models. For
simplicity we will consider the single predictor case. The models are organized conceptually
and not necessary chronologically.

Suppose there is an observed ordinal outcome Y with I+1 categories (Y=0, 1,…, I), and a
single covariate X. We define Ψix as the log cumulative odds, or the odds of Y having a
level at least as high as each cut-point I, given X. That is, Ψix= log(P(Y≥i|X=x)/(1-P(Y≥i|
X=x))). The general form of the cumulative odds model is known as Unconstrained
Cumulative Odds model, represented as:

Note that this model allows a different odds ratio relating X to Y for each cut-point, since
the β terms are indexed by i. For example, suppose that X represents an exposure status that
is being investigated, with X=1 for exposed and X=0 for unexposed. Several different and
unrelated odds ratio for exposed versus unexposed can be calculated depending on the cut-
point (i.e., θ1=eβ1, θ2=eβ2,…, θI=eβI).

In contrast, a commonly-used cumulative ordinal model known as the Proportional Odds
model constrains the above model by assuming that all βi are equal to a common β [2]. For
the single predictor case, we will notate the Proportional Odds model [4] as:

(1)

With this model, the odds of being at or above any cut-point are assumed to be the same for
all cut-points; this is known as the “proportional odds” assumption. In other words, instead
of having several different odds ratio for exposed versus unexposed, a single odds ratio is
calculated (θ=eβ). When the parameter β is greater than zero and X increases, the response
Y is consistently more likely to be in a higher end. While the Proportional Odds model
makes a strong assumption, it is easy to fit and interpret [5].

When the proportional odds assumption is not met, it may be possible to capture the lack of
proportionality using intermediate constrained structural relationship between the odds and
the cut-points [1, 3, 6–8]. In general this can be accomplished by adding a parameter, say γ,
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and a multiplicative scalar that varies with the cut-point, say ti. For the single predictor case,
we will define the Constrained Cumulative Odds model as

(2)

In general the Constrained Cumulative Odds models could potentially have any set of
scalars, as long as the odds ratios from the resulting model adequately fit the data. Consider
again the investigation of exposure status. If this generalized model is used with a set of
scalars that includes consecutive zero values, then there would be proportionality of odds
ratios across some of the cut-points within the same covariate. For example, the scalar
values of t1=1, t2=−1, t3=0, and t4=0 would yield the odd ratios of θ1=eβeγ, θ2=eβe−γ, and
θ3= θ4=eβ. In other words, under the family of constrained non-proportional odd models,
the scalar set can be unstructured.

The TOM is a structured Constrained Cumulative Odds model. Although many types of
trends may be possible, we define the TOM to have a monotonic structure, such that
t1≤t2≤…≤tI. Hence, for the single predictor case, the TOM is

(3)

The parameter space of αi and β is similar to the Proportional Odds model, being comprise
of any real number from minus infinity to infinity. In contrast, based on the underlying
theory that is going to be presented in the following section, the parameter space of γ∙x
depends on the scale of the theoretical underlying distribution of X. A trend in log-odds
ratios will result when the γ is non-zero. If exposure status is being used to predict the
ordinal outcome, and if the proportional odds assumption does not appear reasonable, then
the researcher can test for a trend in the cumulative odds ratio as the ordinal outcome (or the
cut-points thereof) increases. Depending on the values of t1, β, and γ, the odds ratios may all
be below 1, all be above 1, or span the value of 1, but their trend must be monotonic.

3. Latent Logistic Motivation for the TOM Model
Suppose that a response variable, Y*, follows a logistic distribution with location and scale
parameters (m and s) being functions of a predictor variable, X, such that

(4)

Hence, E(Y*|X=x)=mx and Var(Y*|X=x)=π2sx
2/3. For I specific values of interest, say ci,

for i=1, 2, …, I, we would have the cdf of Y*

(5)

By taking the logit function and rearranging terms we have

(6)

Suppose that the ordinal variable, Y, takes on values 0, 1, 2, …, I, based on the latent
variable, Y*, according to the ci values. Specifically, let
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(7)

and

(8)

where c0=−∞ and cI+1=∞.

So, in terms of the ordinal variable from a latent logistic distribution, Equation (6) becomes

(9)

The Logistic distribution can be related to the TOM through known cut-points. In the TOM
introduced in the previous section (Equation (2)), we have, for i=1, 2, …I,

(10)

where the ti are monotonic values specified when fitting the model, and α, β, and γ are
parameters estimated by the fitting procedure. If the cut-points, c1, c2, …cI, are known, we
can choose ti=ci, and then we use the superscript * to indicate the parameters fit in this
situation, such that Ψix = αi

*+ (β* + γ* ci)x.

Hence, combining (9) and (10) when ti=ci, we get

(11)

To get interpretations of the parameters (αi
*, β*, and γ*), we consider what happens under

various values of X. When X=0, we have (m0 − ci)/s0 = αi
* + (β* + γ* ci)0, implying

(12)

For X=x we have

(13)

Combining (12) and (13) and subtracting (m0 − ci)/s0 from both sides, we get

(14)

Gathering the terms that the index i together, we get

(15)

Hence, for x≠0, the parameters are defined as

(16)

and
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(17)

There is no restriction on the parameter space of αi
* and β* as there is no restriction on the

space of the Logistic distribution mean. In contrast, the parameter space of γ* is restricted as
the Logistic distribution scale can only assume positive values (i.e. −1/sx < γ*x < 1/s0).

Figures 1A–1C illustrate the trend in log odds ratio with underlying latent logistic
distributions with location shift only (Figure 1A), scale shift only (Figure 1B), and scale and
location shift (Figure 1C) for a simple binary covariate X.

Conversely, we can also find expressions for the sx and mx functions in terms of the TOM
parameters. This is particularly relevant to better understand the association with continuous
covariates. Solving for sx in (17), we get

(18)

Note that TOM holds for x values satisfying γ*x < 1/s0. The parameter γ* dictates the non-
linearity in the location shifts, and simultaneously dictates the heteroskedasticity, associated
with changing x values. In contrast, when γ* is 0 or close to 0 the latent logistic has a mean
that shifts linearly with changes in x, with constant variance (sx ≈ s0).

Solving for mx in (16) and sx defined in (18) we get

(19)

Note that (8) and (9) have respectively the form of

(20)

and

(21)

where a=−β*s0/m0 and b=−γ*s0.

Hence, equations (20) and (21) show how the parameters of a latent logistic distribution
must depend on the covariate X in order for the TOM to hold, when the cut-points (ci) used
for categorizing the data are known. For example, a negative trend in log odds ratio is
obtained with underlying latent logistic distributions with scale and location shift as a
function of a continuous covariate X, when m0=10, s0=1, a=0.625 and b=0.25 (Figure 2,
Supporting Information).

4. Other underlying distributions
The logistic distribution provides a theoretical basis for the Proportional Odds model and for
the TOM. It is feasible, however, that the trend odds assumption could hold when the
underlying latent variable Y* follows other distributions (Figures 1D to 1I). To investigate
this, we calculated log odds ratios from two-group situations with Y* following normal and
exponential distributions. Figures 1D to 1F illustrate the log odds ratio with underlying
latent normal distributions with location shift only (Figure 1D), scale shift only (Figure 1E),
and scale and location shift (Figure 1F) for a simple binary predictor X. Note that when a

Capuano and Dawson Page 5

Stat Med. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scale shift occurs, the trend is monotonic non-linear, with the log odds ratio spanning the
value of 0. For the location shift only (Figure 1D), the trend is non-monotonic, but the log
odds ratio is always positive. Figures 1G to 1I illustrate the log odds ratio with underlying
latent exponential distribution with increasing shift in location-scale for a simple binary
predictor X. Note that these log odds ratio trends are all monotonic, and nearly linear.

Table 1 shows the log odds ratio as a function of ci that follows logistic, normal or
exponential distributions. The existence of a closed form solution makes it possible to show
theoretically when the proportional odds or the trend odds assumption holds. For the logistic
distribution, using Equation (9), the log odds ratio would be

(22)

When the scale is the same (s=sx=s0) but there is a location shift, the log odds can be
represented by (mx-m0)/s, which is independent of ci (proportional odds assumption holds).
That is, for a Proportional Odds model, the common log odds ratio is proportional to the
distance in mean underlying response given two values of a predictor X [9, 10]. In contrast,
if there is a shift in scale with or without a shift in location the log odds ratio, then the trend
in odds has a slope proportional to the inverse difference in scale (trend odds assumption
holds). The first derivative

(23)

is a constant, that can be shown to correspond to cix or −(b/s0)x by using respectively
equations (17) or (20).

For the exponential distribution, with parameter λx (i.e., with a mean of 1/λx) the log odds
ratio can be represented by

(24)

Shifts in location-scale result in log odds ratio (provided in Table 1) that are a monotonic
non-linear function of ci (trend odds assumption holds). The first derivative

(25)

has a limit of

(26)

That is, although the finite trend is non-linear, it approaches linearity with increasing y*.

5. Simulation Study
The properties of the TOM were compared to the Binary Logistic Model at different cut-
points, and the Proportional Odds model. Simulation was performed in SAS considering the
simulation steps suggested by Burton et al. [11]. Simulated scenarios included different
sample sizes (50 to 1000 per group), different reference multinomial distribution, and
combinations of β and γ to represent holding proportional odds assumption or trend odds
assumption. A total of 1000 datasets were randomly generated from a multinomial
distribution using different seeds. The data were modeled with the binary logistic model, the
Proportional Odds model, and the TOM. This was accomplished using Proc Logistic and
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Proc Nlmixed in SAS. Bias, coverage, accuracy performance, test size and power were
evaluated in the statistical methods for different scenarios.

Table 2 shows the simulation results of modeling using TOM and the Proportional Odds
model. The Proportional Odds model was performed in SAS Proc Logistic and Proc
Nlmixed, with practically identical results. In the scenarios where the proportional odds
holds (γ=0; flat trend), mean and median common estimated odds ratios are very close to
the true odds ratio (3.0). The observed coverage for the 95% confidence intervals was
between 93% and 96%. In the scenarios where the trend odds holds, mean and median
common estimated odds a ratio are close to the odds ratio of the first cut-point due to higher
frequency of lower titers. Not surprisingly, coverage was poor for this situation, as the
confidence interval for the estimate common odds does not cover 3 levels of true odds
ratios.

In the scenarios where the proportional odds holds (flat trend), mean and median common
estimated odds ratios are very close to the true odds ratio (3.0), with acceptable coverage for
the parameters 94% to 96% (γ=0 and β=1.1). In the scenarios where the trend odds holds,
the mean estimated odds ratio per cut-point is higher than expected for smaller samples but
approaches the true odds ratio as the sample increases. The median estimated odds ratio is
close to the true odds ratio regardless of the sample size. Coverage for the parameters is
acceptable, from 95% to 96% (γ=0.7 and β=0.4).

Test size and power were investigated in the simulations by varying sample size, β and γ.
Overall, when using the likelihood ratio test with the intercept only model as a reference, the
models performed well. The percentage of simulated models that was significant using this
test is reported in Table 2. Initial simulation of power were obtained with a fixed sample size
of 150 per group, a fixed β of log (1.5), and varying values of eγ, which can be thought of a
multiplicative factor. As eγ gets larger, the TOM becomes more powerful than Proportional
Odds model, with the crossover point being when eγ is around 1.25 (Figure 3, Supporting
Information). In this example that would represent a series of odds ratios of 1.5, 1.875 (or
1.5 times 1.25) and 2.34 (or 1.875 times 1.25). Additional simulation of power were
obtained with a fixed sample size of 150 per group, a fixed eγ=1.0 (proportional odds is
true; flat trend), and varying β. The Type I error rate of the models stayed in an expected
level around 0.05. The level of the Type I error for TOM was reasonable. The Proportional
Odds model presented a superior simulated power in this setting where there is a real
proportionality of odds with no trend (Figure 4, Supporting Information).

6. Application to swine influenza data
Zoonotic influenza A viruses, such as avian and swine influenza, have caused many human
pandemics. Introduction of avian influenza to humans was thought to be the cause of
pandemics in 1918–1919, 1957–1958, and 1968–1969. These human pandemics left more
than 20 million people dead. A swine influenza H1N1 outbreak in 1976 resulted in
thousands of infected humans [12, 13]. Influenza virus transmission is complex. Viral
shedding depends on several factors. For example children, and individuals who are
immunocompromised and symptomatic may shed higher titers than other individuals,
whereas, people with subclinical or asymptomatic infection are may shed lower titers than
others. In addition to the viral shedding variation, there are several possibilities for contact
with the virus. Transmission may occur by contacting aerosolized respiratory droplets, or by
touching respiratory secretions contaminated objects [14]. Influenza can also be transmitted
interspecies. Swine are thought to have a major role in interspecies transmission because
they have receptors for both human and avian influenza viruses. For this reason swine are
considered a “mixing vessel host for creation of novel reassortant progeny virus” [15, 16].
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In some epidemiological studies of zoonotic influenza, researchers try to understand the
etiology of the disease by retrospectively studying populations considered at risk. These
researchers try to link infections to certain exposures or risk factors. Human response to
influenza virus infection involves antibody response that can be used as evidence of
previous infection. Using antibody titers is often an important diagnostic tool in
epidemiological assessment of infections, especially in studies where infection may be sub-
clinical. The use of some laboratory methods based on titers often produces data that are
categorized into ordinal levels. Examples of these methods are microneutralization and
hemagglutination inhibition [17] where dilutions are reported. The ordinal titer categories
are recorded based on the sequence of dilution used (e.g. “< 1:10”; “1:10”; “1:20”, “1:40”
etc.). The inverse of the dilutions is usually equal spaced in the log scale. The first recorded
level represents antibody concentration that cannot be detected at the first dilution (e.g.
“<1:10”). The second recorded level represents antibody concentration that is detected at the
first dilution but cannot be detected at the second dilution (e.g. “1:10”), and so on. In
general, the data would fall into K+1 categories based on K cut-points.

For didactical reasons, we start by illustrating the trend odds concept with simple
hypothetical frequencies across titer levels (Figure 5). Suppose a cross-sectional study
obtained exposure status (exposure versus non-exposure) and levels of antibody titers
(<1:10, 1:10, 1:20 and 1:40). In the general TOM, any monotonic scalar set, ti, could
potentially be adopted. It is, however, of practical use to consider structures that eases the
model interpretation, provided that they adequately fit the data. Scalar sets starting at zero
are convenient so that β is interpreted as the baseline odds ratio (the odds ratio at the first
cut-point, θ=eβ). That is,

(27)

In addition, one may consider a set such that ti=i−1 (where ti=0,1, 2, …I), for a model
interpretation based on increments in the ordinal observed variable Y. When data are
collected in equal spacing, it may be reasonable to say that i∙k=ci−c0, where k is an
unknown constant. Related odds ratio can then be calculated from the baseline odds ratio
using δ=eγ, so that, for i=1, 2, …I,

(28)

In this simple example, there are 3 cut-points and 3 possible odds ratios. In our hypothetical
example the odds ratios present an increasing trend with a positive γ giving a δ>1 (in this
case, δ=2). The baseline θ is 1.5, meaning that exposed participants have at least fifty
percent higher odds of having higher antibody titers. The odds ratio doubled with increasing
ordinal titer levels. The next odds ratios can be calculated as 1.5 • 2=3.0, and 3.0 • 2=6.0.

To illustrate the TOM and its interpretation in practice, we now use actual real data from a
cross-sectional occupational epidemiology study among farmers, meat processing workers,
veterinarians, and healthy controls. The data were collected from 2002 to 2004 in the Center
for Emergency Infectious Diseases at the University of Iowa [15]. Age was collected at
enrolment using a questionnaire, and sera were collected and tested according to the Centers
for Disease Control and Prevention (CDC) HI serologic protocol. In this example we use age
(in decades) to predict the hemagglutination inhibition (HI) titers against swine H1N2 (A/
Swine/WI/R33F/01) virus. Modeling was performed in SAS with Proc Nlmixed. A reference
code is provided (Appendix A, Supporting Information). The TOM indicates a significant
negative trend in odds ratios (γ=0.515, SE(γ)=0.052, p-value=0.01). Odds of having
increased antibody titers against swine H1N2 are significantly higher for older participants
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but the effect decreases with increasing antibody titers. As seen in Table 3, estimated odds
ratios are 1.67 at baseline (first cut-point, 1:10, β=0.133, SE(β)=0.085, p-value <0.01) and
decreases as titers go up (eγ=δ = 0.88). That is the increase in one level in antibody titer
decreases the odds ratio in 12%. In practice such information can raise several hypotheses
about the transmission of the virus, as mentioned in the discussion section.

7. Discussion
When fitting data with statistical models, there is often a tradeoff between model simplicity
and adequate fit. Although the Proportional Odds model has a somewhat simple
interpretation, it may give inadequate fit when its proportionality assumption is violated. In
this case, the TOM is a type of Constrained Cumulative Odds model that may be a good
compromise when dealing with this tradeoff. Specifically, it may give improved model fit at
the added complexity of only one additional parameter.

This paper examines the relationship between the trend odds model and underlying latent
distributions, especially the logistic distribution. The Trend Odds model can do an adequate
job in describing non-proportional odds even when the latent variable distribution is
unknown. Although we did not explore this issue in this paper, it is likely that the choice of
the ti could make a difference in the adequacy of model fit, depending on how different the ti
are from the ci and what the underlying distribution is. If the ti happen to be chosen to be
proportional to, or a linear transformation of, the ci, then the incorrect specification could be
accommodated by the model through the β and γ parameters, in order to provide meaningful
odds ratios. Similarly, if the ti are highly correlated with the ci, the model may still give
reasonable estimates. In future work we hope to examine the robustness of the choice of the
ti.

As a matter of convenience in practice, it may work well to assign t1=0 so that the estimate
of β will correspond to the log odds ratio at the lowest cut-point. This is why we set ti=i−1 in
our two data examples. It is possible, however, to use other parameterizations. For example,
in some applications with clear neutral central level, it may make sense to set a middle ti
value to zero, so that β would be a central cumulative odds ratio.

Note that the Trend Odds model, with β>0, does not guarantee that the probability of high
values of Y increases with X at all cut-points. For the distribution shown in Figure 1B, for
example, the odds ratio would be 0.08 at Y*=5, 1.0 at Y*=10, and 12.18 at Y*=15 (or
respectively log odds of −2.5, 0 and 2.5). Hence, if the variances are different but the means
are the same at two different values of X, then one is likely to see odds ratios that cross the
value of 1 as cut-points go from smallest to largest.

Analyses based on the entire spectrum of the ordinal outcome are particularly important in
studies that seek the etiological understanding of the disease spread and identification of
high-risk groups. These analyses serve as justification and motivation for the development
of the TOM. While the Proportional Odds model allows researchers to identify populations
at a uniform higher risk of worse outcomes, the TOM allows the identification of
populations whose wider variability results in a non-uniform but increasingly higher risk of
worse outcomes. The interpretation of both the Proportional Odds model and the TOM is
based on odds ratios, a statistic that is familiar to most health professionals. The
identification of a trend has public-health implications. It is important not only to find
populations with constantly higher odds of worse outcomes, but also to identify populations
whose wider variability yields higher odds of worse outcomes for certain individuals. Trends
in odds can also indicate an underlying higher variability that may be caused by lurking
variables, generating further hypothesis to be tested. For example, in our influenza real data
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example we saw a decreasing risk of higher titers with increasing age. That may be
associated to the fact that antibody titers tend to vary with time from infection. That may
also indicate that younger populations have other risk factors that increase the variability by
yielding higher odds of worse outcomes for certain individuals. Short term, this information
is important in the implementation of preventive measures such as the use of protective
equipment [18]. Long term, it can increase knowledge about the disease by hypothesis
generation for future research.

For certain applications the use of dichotomization has scientific justification. In this case,
optimal cut-point methods such as the ROC curve technique [19] may be an alternative.
When there is no strong reason to dichotomize the data, fitting multiple binary Logistic
models for different cut-points may be useful as an exploratory step [20], before fitting the
TOM.

Although not the scope of this work, it is important to note that there are some alternative
analyses to the model proposed. One can, for example, explore different link families to
obtain parallelism or proportionality, or seek to estimate the underlying latent distribution
parameters (i.e. predicting location and scale) [2, 21].

In this paper, we have focused on models with a single predictor variable. With multiple
covariates, Peterson and Harrell [3] presented models to accommodate a mixture of
covariates that do and do not adhere to the proportional odds assumption. Extending this
idea, it is feasible to allow the effect of some of the covariates to adhere to the proportional
odds assumption, some to adhere to the TOM assumptions, some to require non-trend
constraints, and some to be completely unconstrained. Furthermore, it is unclear whether all
covariates that are fit with the TOM assumption should have the same set of scalars or
whether they should vary, and, if the latter, whether this can be data dependent. Further
study on these issues is needed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Panel of underlying logistic, normal, and respective log ratios. (A) Logistic(17,2) versus
(10,2),(B) logistic(10,2) versus (10,1), (C) logistic(25,2) versus (10,1), (D) N(20,3) versus
(10,3), (E) N(10,3) versus (10,1), (F) N(10,3) versus (8,1), (G) exponential(1.5) versus (1),
(H) exponential(1.75) versus (1), and (I) exponential(2) versus (1).
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Figure 2.
Underlying Logistic and respective log odds ratio for continuous X. Logistic(mx, sx) where
mx and sx are defined by equation 19 and 20, and m0=10, s0=1, a=0.625 and b=0.25.
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Figure 3.
Simulation of power with the non-exposed group outcome following a multinomial(n=150,
(0.30, 0.26,0.24,0.20)), β of log(1.5), sample size of 150 per group and 1000 replications.
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Figure 4.
Simulated power with the non-exposed group outcome following a multinomial(n,
(0.30,0.26,0.24,0.20)), γ of 0 (no trend in odds ratios), sample size of 150 per group and
1000 replications.
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Figure 5.
An illustration of the trend odds concept.
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Table 1

Some examples of distributions for the hypothetical underlying latent variable Y* and holding relation with
log odds ratios

Latent Distribution Parameter shift from X=0 to X=x Log Odds Ratio
Ψix -Ψi0)

Holds

Logistic Location (m) (mx− m0)/s Proportional Odds

Logistic Scale (sx) (m − ci)(1/sx− 1/s0) Trend Odds –
linear monotonic

Logistic
Location (mx)
and scale (sx)

(mx−ci)/sx−(m0−ci)/s0
Trend Odds –
linear monotonic

Normal
Mean (µx)
and variance (σx)

log((1−Φ(ci/σx −µx/σx))/Φ(ci/σx −µx/σx))−
log((1-Φ(ci/σ0 −µ0/σ0))/Φ(ci/σ0−µ0/σ0))

Trend Odds –
non-linear monotonic

Normal Variance (σx)
log((1−Φ(ci/σx −µ/σx))/Φ(ci/σx −µ/σx))−
log((1−Φ(ci/σ0 −µ/σ0))/Φ(ci/σ0 −µ/σ0))

Trend Odds –
non-linear monotonic

Normal Mean (µx)
log((1−Φ(ci/σ −µx/σx))/Φ(ci/σ −µx/σ))−
log((1−Φ(ci/σ −µ0/σ0))/Φ(ci/σ −µ0/σ)) Quadratic

Exponential Location-scale (λ0) log(eciλ0−1)−log(eciλx−1)
Trend Odds –
non-linear monotonic
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