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Deciphering the network of signaling pathways in cancer
via protein-protein interactions (PPIs) at the cellular level
is a promising approach but remains incomplete. We used
an in situ proximity ligation assay to identify and quantify
67 endogenous PPIs among 21 interlinked pathways in
two hepatocellular carcinoma (HCC) cells, Huh7 (mini-
mally migratory cells) and Mahlavu (highly migratory
cells). We then applied a differential network biology anal-
ysis and determined that the novel interaction, CRKL-
FLT1, has a high centrality ranking, and the expression of
this interaction is strongly correlated with the migratory
ability of HCC and other cancer cell lines. Knockdown of
CRKL and FLT1 in HCC cells leads to a decrease in
cell migration via ERK signaling and the epithelial-mesen-
chymal transition process. Our immunohistochemical
analysis shows high expression levels of the CRKL and
CRKL-FLT1 pair that strongly correlate with reduced dis-
ease-free and overall survival in HCC patient samples,
and a multivariate analysis further established CRKL and
the CRKL-FLT1 as novel prognosis markers. This study
demonstrated that functional exploration of a disease net-

work with interlinked pathways via PPIs can be used to
discover novel biomarkers. Molecular & Cellular Pro-
teomics 12: 10.1074/mcp.O112.020404, 1335–1349, 2013.

Hepatocellular carcinoma (HCC)1 is the third leading cause
of cancer-related deaths worldwide and is a global health
concern (1). The malignant phenotype of HCC may result in
part from the disruption and dysregulation of several biolog-
ical pathways (2). Moreover, metastasis is one of the main
causes of mortality from solid tumors, and metastasis is a
poor prognostic factor for HCC. Understanding protein-pro-
tein interactions (PPIs) may uncover the generic organization
of functional networks in cancer cells when both the spatial
and temporal aspects of the interactions are considered (3).
Recently, several studies applied a protein network-based
approach and a differential network-based approach to iden-
tify markers to predict patient prognosis (4, 5). These compu-
tational approaches demonstrated great potential and could
be further enhanced if more thorough PPI and pathway infor-
mation is available, especially at the cellular level, and ana-
lyzed with a more sophisticated method.

Cancer can be considered as perturbations of highly inter-
linked cellular networks. Our hypothesis is that uncovering new
PPI links within or between, referred to as interlinked PPIs
(cross-talk PPIs), different signaling pathways could recapitulate
the relationship between the genotype and phenotype in HCC.
Multiple signaling cascades are interlinked in cancer cells via a
variety of cross-talk connections with other pathways leading to
several of the hallmarks of cancer (e.g. proliferative signaling,
angiogenesis, invasion, and survival) (6, 7). Therefore, targeting
these interlinked pathways could provide an opportunity for

From the aGraduate Institute of Biomedical Electronic and Bioin-
formatics, National Taiwan University, Taipei 106, Taiwan, the cInsti-
tute of Clinical Medicine, National Yang-Ming University, Taipei 112,
Taiwan, the dDivision of General Surgery, Department of Surgery,
Taipei Veterans General Hospital, Taipei 112, Taiwan, the eGenomics
Research Center, Academic Sinica, Taipei 115, Taiwan, the fInstitute
of Statistical Science, Academia Sinica, Taipei 115, Taiwan, the gIn-
stitute of Information Science, Academia Sinica, Taipei 115, Taiwan,
the hInformation Sciences Institute, University of Southern California,
Marina del Rey 4676, California, the iInstitute of Biomedical Informat-
ics, National Yang-Ming University, Taipei 112, Taiwan, the jDepart-
ment of Microbiology, Tzu-Chi University, Hualien 97004, Taiwan, the
kInstitute of Clinical Medicine, College of Medicine, National Cheng
Kung University, Tainan 701, Taiwan, the lInstitute of Biopharmaceu-
tical Sciences, National Yang-Ming University, Taipei 112, Taiwan,
and the mDepartment of Biotechnology and Laboratory Science in
Medicine, National Yang-Ming University, Taipei 112, Taiwan

Received May 4, 2012, and in revised form, December 21, 2012
Published, MCP Papers in Press, February 8, 2013, DOI 10.1074/

mcp.O112.020404

1 The abbreviations used are: HCC, hepatocellular carcinoma; PPI,
protein-protein interaction; EMT, epithelial-mesenchymal transition;
PLA, proximity ligation assay; PDGFR, platelet-derived growth factor
receptor; SMC, simple matching coefficient; IHC, immunohistochemis-
try; SH, Src homology; VEGFR, VEGF receptor; EGFR, EGF receptor.

Research
© 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 12.5 1335



therapeutic application (6–10). Here, we present a systems
approach that computationally infers the interlinked pathways
from numerous PPIs in HCC up-regulated genes and empiri-
cally detects endogenous PPIs using an in situ proximity ligation
assay (PLA), which allows quantitative and localized detection
of endogenous PPIs in cells (11). Empirically, we validated 67
endogenous PPIs within or between signaling pathways in
HCC. To the best of our knowledge, applying in situ PLA to this
scale in cancer cells is unprecedented.

We demonstrate its effectiveness with the identification of a
prioritized interaction, CRKL-FLT1, which links the c-Met,
IGF1, PDGFR-�, and VEGFR1/VEGFR2 pathways together.
CRKL-FLT1 was identified as a hub in the PPI network in HCC
and is crucial for migration in HCC cells. CRKL, an adaptor
protein important in the regulation of several GTPases, is
involved in many intracellular signaling cascades (12, 13) and
mediates cell morphology and movement (14). Recently, a
genomic and functional analysis identified CRKL as an onco-
gene that is amplified in lung cancer (15). FLT1, a VEGFR
family member, mediates the migration of endothelial cells
and monocytes/macrophages (16, 17). Our analysis result
shows the expression of CRKL-FLT1 is strongly correlated
with the migratory ability of cancer cell lines. Moreover, we
demonstrate that CRKL and FLT1 was involved in the ERK
pathway and regulated the epithelial-mesenchymal transition
(EMT) process in migration of HCC. Furthermore, we demon-
strate that, via an immunohistochemistry analysis, high ex-
pression levels of either CRKL alone or CRKL-FLT1 combined
strongly correlate with reduced overall and disease-free sur-
vival in 192 HCC tissue samples. In summary, this study
provides broad insight into potential therapeutic and progno-
sis biomarkers by building an interlinked pathway map via
PPIs in HCC.

EXPERIMENTAL PROCEDURES

Identification of HCC-related Pathways—In this over-representa-
tion analysis, N represents the total number of genes in the back-
ground population; n represents the number of HCC-related genes;
and m denotes the number of genes within the given pathways. The
number of genes that overlapped with both HCC-related genes and
this pathway is denoted as k. A p value was calculated by the
cumulative hyper-geometric distribution to evaluate statistical signif-
icance of pathways as shown in Equation 1,

p � 1 � �
i � 0

k � 1�m

i
��N � m

n � i
�

�N

n
� (Eq. 1)

This is a one-sided test for over-representation. In this study, a
pathway is considered significantly enriched for selection as a node if
its q is less than 0.05 with an adjustment of q using a false discovery
rate. Our HCC gene signatures n is derived from the Encyclopedia of
Hepatocellular Carcinoma Genes Online 2 (18, 19), an integrative
platform to systematically collect and identify 4,020 HCC-related

signatures. The core of the Encyclopedia of Hepatocellular Carci-
noma Genes Online 2 is a collection of 14 HCC-related gene sets from
a wide range of sources, including text-mining results from PubMed,
reports of high throughput studies, computational predictions, and
validations. All of the pathways with their m gene members are
derived from an integrated pathway database, ConsensusPathDB
(20), which integrated 12 pathway databases with 2,100 pathways.
We prioritized 60 pathways that were statistically significant by this
test for rewiring pathways via PPIs; 12 out of 60 pathways were
reported as important therapeutic pathways (10).

Interlinking of HCC-related Pathways via PPIs—Here, we present
the formal definition of the interlinked PPIs among HCC-related path-
ways. The interlinked PPIs that occur in HCC were identified by
pathway information and PPI databases. We represent the interlinked
PPIs among M HCC-related pathways as an undirected simple graph
G � (VG, EG), where VG � (v1, v2, � � �, vM) a finite set of M vertices
representing the M pathways, and EG � VG � VG is the set of edges
representing the pairs of interlinked pathways. Each such graph can
equivalently be represented by a symmetric M � M adjacency matrix
AG, if pathway Vi has at least interlinked PPIs with pathway Vj and 0
and otherwise by the following Equations 2 and 3. To detect inter-
linked PPIs among pathway profiles, we first calculated the score
IVi,Vj(X,Y) of each PPI from PPI databases.

IVi,Vj�X,Y� � �1, if X � Vi and Y � Vj, Vi � Vj

0, otherwise (Eq. 2)

IE�K� � �1, if K � overexpression
0, otherwise �

Interlink(X,Y,Vi,Vj) � IVi,Vj�X,Y�IE�X�IE�Y� (Eq. 3)

y � �1, if Interlink�X, Y, Vi, Vj� � 0
0, otherwise �

Where (X,Y) denotes the pair of PPI, and Vi,Vj denotes the pair of
pathway. IE(K) is the function to extract the expression for each
protein from the profile of HCC-related genes. Finally, we generated
a binary outcome y by calculating Interlink(X,Y,Vi,Vj) in which inter-
linked PPIs are matched to overexpression/overexpression pattern.

We applied the overexpression patterns stored in Encyclopedia of
Hepatocellular Carcinoma Genes Online 2 to estimate IE(K) in HCC
and identified 375 interlinked PPIs from POINeT (59,639 binary PPIs
(21)) and PIPS (37,606 binary PPIs (22)), respectively.

Detection of Protein-Protein Interaction by in Situ Proximity Liga-
tion Assay—Recently, the in situ PLA was developed to detect and
visualize endogenous PPIs and post-translational modifications of
proteins with a high sensitivity and specificity (11, 23). To detect PPIs,
the dual targets of primary antibody pairs were added. If an antibody
pair is in close proximity, secondary antibodies with oligonucleotides
will be close enough to serve as templates for the ligation of two
additional linear oligonucleotides into a DNA circle. The DNA circle
can be amplified with the oligonucleotide in one of the secondary
antibodies using rolling circle amplification. Rolling circle amplifica-
tion can then be hybridized with fluorescent-labeled oligonucleotides
to reveal dot-signal representing both their subcellular locations and
the frequency of the PPI occurrences (11, 23). This technique opens
new opportunities to accurately quantify PPIs in cells.

The cells were washed with PBS and fixed in 3.7% paraformalde-
hyde for 30 min on ice. After washing with PBS, the cells were
permeabilized with 0.2% Triton X-100 in PBS for 3 min at room
temperature. To reduce the nonspecific signal, the cells were incu-
bated with a blocking solution (OLINK Bioscience) for 30 min at 37°C.
Then, primary 1� antibody Diluent (OLINK Bioscience) with two pri-
mary antibodies (1:50 dilution for mouse monoclonal antibody and
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1:1200 for rabbit polyclonal antibody) were added to the cells and
incubated overnight at 4°C. The negative control was performed by
only one primary antibody (rabbit polyclonal antibody) into cells for
incubation at 4°C overnight. All of the procedures were performed
according to the manufacturer’s instructions. The images of the cells
were acquired using an Olympus BX61 microscope (Olympus, Up-
psala University, Sweden). Images for each slide with an in situ PLA
sample were acquired at five different fields with two z axis images.
Then the images were analyzed with Blob Finder Version 3.2, which
automatically counts the number of dots per cell. The detection of a dot
signal with signal ratio was defined as SR � (Spos/Cpos)(Sneg/Cneg). The
PPI was determined to be a positive PPI only if SR �20 (Spos/Cpos) �10;
Spos was the signal, and Cpos was the cell number for dual recognition
with one rabbit polyclonal antibody and one mouse monoclonal anti-
body; Sneg was the signal and Cneg was the cell number for the negative
control, in which only one rabbit polyclonal antibody was added. All the
experiments were repeated at least three times, except fro Fig. 1C (the
screening of PPIs). The antibody pairs for the in situ PLA for detection of
the PPIs are listed in supplemental Table 1.

Clustering and Visualization—The information structure embedded
in our database for positive PPIs, pathways, and cell lines is highly
dimensional and very complex in nature. We adopted a clustering and
matrix visualization environment in generalized association plots (24,
25) to explore and summarize this information structured at various
levels as follows. First, we elucidated the tripartite interactions of
positive PPIs, pathways, and cell lines. In all, 67 of the 194 PPIs tested
via the in situ PLA method were considered positive PPIs in one or
both of the cell lines (Mahlavu or Huh7). Thus, the positive PPIs can be
grouped into three types as follows: 1) Mahlavu only; 2) Huh7 only,
and 3) both positive. Matrix M (Fig. 2A) was prepared to store infor-
mation regarding the 67 PPIs (rows), 21 pathways (columns), and cell
lines as follows: for Mij � 0, the ith PPI does not engage the jth
pathway (displayed in white in Fig. 2A); 1) the ith PPI engages the jth
pathway only in Huh7 (displayed in magenta in Fig. 2A); 2) the ith PPI
engages the jth pathway only in Mahlavu (displayed in cyan in Fig.
2A); 3) the ith PPI engages the jth pathway in both cell lines (displayed
in purple in Fig. 2A), where i � 1,���,67 and j � 1,���,21.

Simple matching coefficient (SMC) is a value between 0 and 1
representing how completely similar two objects are. The value is
calculated by counting the number of exact matches of the same
status (presence or attributes) between two objects. SMC � 1 means
two objects are identical in every attribute, and SMC � 0 means two
objects have nothing in common. In this study, we adopted a modi-
fied version of SMC, SMC0, which excludes SMC counts for attributes
with both objects belonging to the nonexistent state (Mi,j � 0, below)
in the calculation for both denominator and numerator. SMC0 is more
robust than SMC for sparse data (data with many nonexistent states),
as in matrix M (Fig. 2A). SMC0 can also be termed the nominal version
of the Jaccard coefficient.

To have a more structural and visual representation, we used SMC0

for representing the between rows (PPIs) and between columns (path-
ways) association structure and to identify PPI clusters with pathway
groups. First, we sorted the rows (PPIs) and columns (pathways) as
follows. Two proximity matrices C (Fig. 2B) and R (Fig. 2C) were
calculated using the modified simple matching coefficient represent-
ing the between rows (PPIs) and between columns (pathways) asso-
ciation structure as shown in Equation 4,

� Cij � �cij
m � cij

0���67 � cij
0�, i � 1, � � � ,21; j � 1, � � � ,21;

where cij
m � count

k � 1,���,67
�Mik � Mjk�, cij

0 � count
k � 1,���,67

�Mik � Mjk � 0�

(Eq. 4)

and Equation 5,

� Rij � �r ij
m � r ij

0���21 � r ij
0�, i � 1, � � � ,67; j � 1, � � � ,67;

where rij
m � count

k � 1,���,21
�Mki � Mkj�,rij

0� count
k � 1,���,21

�Mki � Mkj � 0�

(Eq. 5)

Both Cij (1 � i, j � 67) and Rij (1 � i, j � 21) range between zero and
one with Cij � 1 (Rij � 1) (color-coded in dark red in Fig. 2B) indicating
two PPIs i and j share identical pathway profiles (two pathways i and
j share identical PPI patterns), whereas Cij � 0 (Rij � 0) (color-coded
in blue in Fig. 2B) representing two PPIs i and j share no common
pathways (two pathways i and j share no common PPIs). Two gen-
eralized association plot-divisive hierarchical clustering trees (24, 25)
TR and TC were built on R and C and to sort similar PPIs (PPIs with
higher Cij in Fig. 2B) and related pathways (pathways with higher Rij in
Fig. 2C) into clusters of PPIs and groups of pathways using relative
positions for terminal nodes of TR and TC. Rows (PPIs) and columns
(pathways) of M (Fig. 1A) were also rearranged using corresponding
orders in R (Fig. 2C) and C (Fig. 2B).

Estimation of the Degree Centrality for Differential Hub—The de-
gree of a vertex in a network is the number of edges attached to it. A
graph can be represented by an adjacency matrix A, where Aij � 1 if
there is an edge between nodes i and j and 0 otherwise. The degrees
centrality (DC) of a node i are defined as Equation 6,

DCi � �
j � 1

n

Aij (Eq. 6)

Migration Assay—For Mahlavu stable clones (vehicle, shCRKL, and
shFLT1), 1 � 104 Mahlavu cells were suspended in 200 �l of DMEM
without serum and were seeded into the upper chamber, whereas 750
�l of DMEM containing 10% FBS was added to the outer side of the
chamber. For measuring migratory ability in different HCC cell lines
(HepG2, PLC5, Huh7, SK-Hep1, and Mahlavu), 1 � 105 cells were
seeded into the upper chamber with 200 �l of DMEM without serum.
After being cultured in a 37°C, 5% CO2, 95% air environment and
allowed to adhere for 12–16 h and then incubated, cells on the upper
surface of the membrane were removed by a cotton tip applicator,
and migratory cells on the lower membrane surface were fixed by
methanol and stained with Giemsa (Sigma-Aldrich). Cell migration
values were determined by counting from three independent mem-
branes and then normalized using vehicle cells to give a relative ratio.

Viral Infection—Short hairpin RNAs (shRNA) targeting CRKL and
FLT1 were cloned into the pGIPZ lentiviral vector (Open Biosystems).
Targeting sequences were as follows: shCRKL-1, ATGTAACTA-
AAGGAATCTGAAA; shCRKL-2, AGGTGAGATCCTAGTGATAATA;
shFLT1–1, CGGCTACTCGTTAATTATCAAA; and shFLT1–2: ACA-
CAGTTAACAAGTTCTTATA. Mahlavu cells were infected with lentivi-
ruses expressing either a nonsilencing hairpin control (vehicle) or the
CRKL- or FLT1-targeting hairpins. The infected populations were
selected in puromycin.

MTT Assay for Cell Growth—Mahlavu cells were seeded in 96-well
plates in DMEM containing 10% FBS for 24, 48 and 72 h followed by
MTT assay to quantify the cell growth. Data were normalized against
OD570 value on day 1 of cells.

Immunoprecipitation and Immunoblotting—Transient transfection
of HEK293T was performed with Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. After 48 h of transfec-
tion, the HEK293T cell pellets collected were lysed in the Nonidet
P-40 lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Nonidet
P-40, 0.25% sodium deoxycholate, 1 mM EGTA, 1 mM phenylmethyl-
sulfonyl fluoride, and 10 �g/ml each of leupeptin, aprotinin, and
chymostatin). Lysates were centrifuged and incubated with protein
A/G beads (Santa Cruz Biotechnology) at 4°C for 1 h. The precleared

Differential Network Biology Reveals Novel Prognostic Markers

Molecular & Cellular Proteomics 12.5 1337

http://www.mcponline.org/cgi/content/full/O112.020404/DC1


lysates were then incubated with anti-FLAG M-agarose affinity gel
(Sigma-Aldrich) at 4°C overnight. Beads were recovered by centrifu-
gation, washed three times with the TBST buffer, resuspended in SDS
sample buffer, heated at 95°C, analyzed by SDS-PAGE, and immu-
noblotted with appropriate antibodies. The antibodies used in this
study are listed in supplemental Table 2.

Patient Clinicopathological Data—For this study, which was ap-
proved by our institutional review board (201010021IC), we obtained
archived formalin-fixed, paraffin-embedded material from surgically
resected HCC specimens containing tumor and adjacent liver tissues
from the Taipei Veterans General Hospital. Tissue specimens col-
lected between 1990 and 2006 from 192 liver cancer tumors were
used to construct tissue microarrays. In addition, clinical data and
pathological data were obtained through a detailed retrospective
review of the medical records of the 192 HCC patients. The median
age of these patients was 63 years (range, 21–83 years; mean, 60.9
years). Follow-up was possible for all cases, and the follow-up period
ranged from 0.7 to 172 months (median, 51 months; mean, 58.2
months). During the follow-up period, 151 patients exhibited evidence
of disease recurrence, and 120 patients died. The latest survival data
were collected on August 31, 2011. The total survival rate was 71.8%
at 5 years and 45.4% at 10 years.

Tissue Microarray Construction and Immunohistochemical Stain-
ing—The hematoxylin and eosin staining of all 192 samples were
reviewed by the pathologist, and the HCC tissue microarrays were
constructed by obtaining three 1-mm-diameter cores from each tu-
mor and the paired adjacent liver tissue. The hematoxylin and eosin
stain of constructed tissue microarrays were reviewed and confirmed
again by the pathologist. The specimens had been fixed in formalin
and embedded in paraffin before they were archived. We used the
archived specimens for immunohistochemical staining. The immuno-
histochemical staining was performed using Bond-Max autostainer
(Leica Microsystems). The hematoxylin and eosin stains of all 192
samples were reviewed by the pathologist, and the slides were
stained with antibodies directed against CRKL (1:50 dilution, Abcam)
or FLT1 (1:250 dilution, Abcam). Briefly, specimens from the paraffin-
embedded blocks were cut into 5-�m sections. The sections were
dewaxed in a 60°C oven and then deparaffinized in xylene, rehydrated
through serial dilutions of alcohol, and washed in phosphate-buffered
saline (pH 7.2). Immunohistochemical staining was performed using
the fully automated Bond-Max autostainer using the onboard, heat-
induced antigen retrieval in citrate buffer with the ER1 protocol for 20
min and a VBS refine polymer detection system (Leica Microsystems).
Diaminobenzidine was used as the chromogen (Leica Microsystems).

RESULTS

Identification of Interlinked PPIs in Cross-talk Pathways in
Human Hepatocellular Carcinoma—We systematically col-
lected �3,000 differentially expressed HCC-related signa-
tures (18, 19) and examined �2,100 pathways from an inte-
grated pathway database (ConsensusPathDB) (20). Then we
prioritized 60 HCC-related pathways according to the HCC-
related signatures and pathway datasets using a hypergeo-
metric test (Fig. 1A, Step 1). The proteins belonging to the
HCC-related pathways (gray nodes on the left) were detected
to determine whether collected PPIs (POINeT) (21) or pre-
dicted PPIs (PIPS) (22) (red dotted line in Step 2 of Fig. 1A)
with overexpressed patterns can link each pathway and en-
able potential interlinking. Specifically, each pathway member
(single gene) among the different HCC-related pathways was
used to map each single protein for each PPI pair in the PPI

dataset, and thus it was possible to identify the cross-talk
relationship (protein 1 and protein 2 in supplemental Table 3).
Because many genes/proteins are involved in multiple path-
ways, most interlinked PPIs map to several different pathways
(Pathway 1 and Pathway 2 in supplemental Table 3). These
PPIs might link the cross-talk pathways together. In this step,
we identified 97 proteins that participate in 375 PPIs occurring
in overexpression patterns from HCC gene expression pro-
files, which revealed the pattern of interlinking among the 60
HCC-related pathways (Fig. 1A, Step 2). The interlinked PPIs
among the signaling pathways can be categorized by topo-
logical characteristics (Fig. 1A, Step 2) as follows: r1, be-
tween/within pathway PPIs, which connect different pathways
and are located in the same pathway(s); r2, between pathway
PPIs, which serve as connections among different pathways.

An in situ proximity ligation assay (PLA) with the available
paired antibodies was used to detect, validate, and quantify
the endogenous presence of 194 PPIs in two HCC cell lines,
Huh7 (minimally migratory cells) and Mahlavu (highly migra-
tory cells). We observed 67 PPIs (49 proteins) among 21
pathways (supplemental Table 4) in either Huh7 or Mahlavu
cells (Fig. 1A, Step 3, and B and C, and supplemental Fig. 1
and Table 5). There are four key features of these datasets.
First, according to a literature survey, 17 PPIs (including 11
PPIs from PIPS) of the 67 PPIs are novel PPIs identified in this
study (Fig. 1E and supplemental Table 6). Second, there are
contrastingly different distributions of the in situ PLA signal for
the 67 validated PPIs between Huh7 and Mahlavu. For exam-
ple, the interaction signals for CRKL-SOS1 were much higher
in Mahlavu cells than in Huh7 cells (Fig. 1, B and C), providing
the opportunity to apply differential network biology to char-
acterize tumor invasion. Third, �69% of between/within the
pathway PPIs (r1) not only reflect the current knowledge on
pathways but also suggest that these PPIs can interlink the
components of unknown pathways. Moreover, the rest of the
�31% of the PPIs belong to the between pathway PPI group
(r2), implying that these corresponding pathways can be
merged into more complete pathways by these PPIs (Fig. 1A,
Step 2). Finally, by integrating bioinformatics identification
and empirical validation, we can effectively construct a con-
cise empirical HCC PPI network from a huge PPI network of
up-regulated genes (Fig. 1D) to a concise empirical network
(Fig. 1E).

In addition to revealing individual PPIs, our purpose was to
provide a global view of the 67 analyzed PPIs and 21 path-
ways in two HCC cell lines (with different migratory abilities).
Briefly, the pairwise modified version of simple matching co-
efficient (SMC0) was employed to construct both the be-
tween-pathway proximity matrix C (with C2

21 � 210 pairs in
Fig. 2B) and the between-PPI proximity R (with C2

67 � 2211
pairs in Fig. 2C) in the first step. In the second step, we
applied two dendrograms (hierarchical clustering trees) to sort
the 21 pathways in C into five clusters of pathways with 7, 5,
3, 3, or 3 pathways each (P1 to P5 in Figs. 2B and 2A) and 67
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PPIs in R as eight groups of PPIs (M1, M2, B1, B2, H1, H2, A1,
and A2 in Figs. 2C and 2A). Then we created three heatmaps
to elucidate the tripartite interactions (Fig. 2, A–C). PPIs that
are specific in Huh7, Mahlavu, and either cell lines or none are
color-coded as cyan, magenta, purple, or white.

For example, the CRKL-FLT1 interaction was observed in
the M1 cluster, which might involve the c-Met pathway, IGF1
pathway, PDGFR-� signaling pathway, and VEGFR pathway.
Specifically, the M1, H1, and B1 clusters contain PPIs in-
volved in both P1 and P2, which include signaling pathways
such as mammalian target of rapamycin, PI3K/AKT, and
c-Met among others. Although the PPIs in the M1, H2, and B1
clusters are involved in pathways from the P1 group only,
PPIs in the M2, H1, and B2 clusters are involved in pathways
from clusters P1 and P2 simultaneously. One interesting note
is that in this study the P2 pathways are found to never work
alone and are observable only in the presence of the P1
pathways but not vice versa. Unlike P1 and P2 that compli-
cate pathway clusters, P3 pathways are connected by only
one or two PPIs from the M1, B1, or B2 clusters. Finally, the
P4 and P5 pathways are related to DNA replication and the
cell cycle. P4 contains three DNA replication-related path-
ways that, with CDC6 related PPIs, are involved in Huh7,
Mahlavu, or both cell lines. P5 contains three pathways that
are connected by CCNB1-related PPIs, mostly in Mahlavu
cells or in both cell lines. A1 and A2 only occur in the clusters
of P4 and P5. Overall, the clustering analysis shows that most
of the PPIs are involved in the P1 pathway group, suggesting
pathways in P1 group might play an important role in hepa-
tocarcinogenesis. PPIs in M1 can only be observed in
Mahlavu cells (highly migratory cells) and belong to the P1
pathway group. Therefore, this allows for intuitive selection of
candidate PPIs (e.g. CRKL-FLT1) from M1 for further func-
tional characterization. In addition to the similarity among the
validated PPIs, pathways, and cell lines, we show these in-
terlinked pathways as an undirected graph with no self-loops
and with weights on the edges (number of involved PPIs)
among the vertices (pathways) (Fig. 2D). The color of the
edges in this graph also provides the quantitative information
for the PPIs among the pathways. The edges with different

colors indicate a different density of PPIs cross-talking be-
tween the two pathways, e.g. the CRKL-EGFR interactions
(supplemental Table 3) connect the cMet and EGFR path-
ways. Moreover, the graph revealed that the c-Met, IGF1,
PDGFR-	, and VEGFR pathways are highly connected with
other pathways in HCC, suggesting the possibility of an HCC
therapeutic strategy for disrupting the interlinked PPIs among
these four pathways.

Analysis of the Differential Interaction Hubs in PPI Net-
works—A graphic theoretical analysis of PPI networks can
reveal the essential genes/proteins that are over-represented
among proteins with high centralities. Such hubs (the highly
connected nodes) are of general interest because of their
central roles, and pathway errors related to hubs usually
cause lethality. In addition, previous studies suggest that
hubs are more likely to be cancer-related genes than proteins
with few interaction partners (27, 28). Moreover, a recent
study suggests that a differential network biology approach,
such as differential interaction hubs, is a promising approach
to dynamic network discovery under multiple conditions, such
as environment, tissue type, disease state, development, or
speciation (29, 30).

These observations led us to measure the number of inter-
actions to identify the differential interaction hubs for ranking
essential genes/proteins/pairs, which might be involved in
migration in HCC from this PPI network (Fig. 2E). For each
protein in the differentially expressed network, CRKL is the
hub with the highest degree of centrality in Mahlavu cells (Fig.
2E). CRKL interacted with the other 11 proteins. Eight of the
11 CRKL-interacting proteins (FLT1, HCK, PDGFRB, PTPN11,
RAF1, PIK3R1, MAPK1, and GAB1) were detected empirically
by in situ PLA assay in Mahlavu cells, but not in Huh7 cells,
whereas CRKL interacted with EGFR, SOS1 and PTK2 in both
Mahlavu and Huh7 cells (Fig. 2F). This topological analysis
suggests that CRKL may play a crucial role in the malignant
network, especially in the Mahlavu cells. FLT1, another hub
with seven partners in Huh7 cells and six partners in Mahlavu
cells, ranks second in degree centrality (Fig. 2E). These two
hubs, CRKL and FLT1, interact with each other in the network
of Mahlavu cells. Interaction between CRKL and FLT1 thus

FIG. 1. Schematic illustration of the major steps in our combined computational and experimental approaches to identify interlinked
PPIs in signaling pathways. A, Step 1, identification of HCC-related pathways. We identified 60 HCC-related pathways (443 proteins) by
applying a hypergeometric test with the HCC gene signatures set and pathway databases. Step 2, interlinking of PPIs in signaling pathways.
The proteins belonging to the HCC-related pathways (gray nodes on left side) indicated whether any PPIs (red dotted line on left side) with
overexpressed patterns could link each pathway and enable potential interlinking. Eventually, we identified 194 PPIs with the potential for
interlinking. This topological property suggests that interlinked PPIs can be categorized into two classes as follows: r1) between/within pathway
PPIs, and r2) between pathway PPIs. Step 3, PPIs that had available antibody pairs were identified and further tested in HCC cell lines with
in situ PLA technology. We validated 67 PPIs in this step. B, MAPK14-AKT1 (top) interaction was highly expressed in Huh7 cells and in Mahlavu
cells; the CRKL-SOS1 (bottom) interaction was higher in Mahlavu cells than Huh7 cells. C, histogram of PLA signals for 67 validated PPIs
showed a differential expression pattern between Huh7 and Mahlavu cells. D, huge PPI network from up-regulated genes (1062 nodes and
2777 edges). E, evaluation of the expression of PPIs from the in situ PLA assay in HCC. The color of each link in the sub-network (49 nodes
and 67 edges) indicates whether its interaction can be observed through a manual curation of protein interactions from the literature (blue) or
not (red). The interactions with red color are novel interactions. The node sizes correlate with the number of interactions. The combined
computational and experimental approaches can construct effectively a concise empirical HCC PPI network (E) from a huge PPI network of
up-regulated genes (D).
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has a higher connectivity than other interactions, suggesting
that the CRKL-FLT1 interaction might be important. More
importantly, FLT1 has seven interaction partners but only
CRKL occurred in highly migratory cells (Fig. 2F), implying an
unusual relationship between these two proteins. According
to the pathway analysis, the CRKL-FLT1 interaction was in-
volved in the c-Met, IGF1, PDGFR-�, VEGFR1, and VEGFR2
pathways, which are well known invasion and metastasis
pathways in HCC (2). Consequently, CRKL-FLT1 might be a
crucial interaction among the 67 PPIs in the cross-talk path-
way map of highly migratory HCC cells.

Functional and Histopathological Analysis of CRKL and
FLT1 in HCC—Because of the high degree of similarity of
CRKL and CRK, we have confirmed the specificity of CRKL
antibody by Western blotting with overexpression of CRKL or
CRK in HEK293T cells (supplemental Fig. 2). The role of
CRKL, FLT1, and the prioritized CRKL-FLT1 interaction, in
HCC remains unclear. Thus, we measured CRKL-FLT1 inter-
action in hepatocyte and five different HCC cell lines (HepG2,
Huh7, PLC5, SK-Hep1, and Mahlavu) (Fig. 3A). Compared
with the migratory ability of five HCC cell lines, the CRKL-
FLT1 interaction correlates with the migratory ability of the
cells analyzed (Fig. 3B), which is consistent with our hypoth-
esis. The expression of EMT markers in the tested cell lines
also consists of the migratory ability (supplemental Fig. 3).
Moreover, we extend the measurement of CRKL-FLT1 inter-
action and migratory ability in other cancer cells, including
cervical cancer (HeLa), lung adenocarcinoma (A549), colon
cancer (HT29), and prostate cancer (PC3) (Fig. 3, C and D,
and supplemental Fig. 4). The intensity of in situ PLA for
CRKL-FLT1 interaction and migrated cells/high power field
showed a positive correlation with a correlation coefficient of
0.886 (p � 0.001), as estimated by the p value by t test for
Pearson product-moment correlation when we observed all
nine cancer cells (Fig. 3E). Taken together, the expression of

CRKL-FLT1 interaction is correlated with cell migration not
only in HCC but also in other cancer cells.

Next, we established five different Mahlavu stable clones
with knockdown of CRKL or FLT1 to investigate the biochem-
ical function of CRKL and FLT1. The specificity of knockdown
of CRKL was confirmed by in situ PLA for CRKL-FLT1 inter-
action (Fig. 3F) and immunoblotting (Fig. 3G). We then tested
the effect of reducing CRKL and FLT1 on migration and
proliferation in highly migratory Mahlavu cells. Depletion of
CRKL and FLT1 decreased the migration of Mahlavu cells
�60 and 40%, respectively (Fig. 3H), but did not affect the
proliferation rate of Mahlavu cells (supplemental Fig. 5). Our
Western blotting analysis of p-ERK at Thr-202/Tyr-204 and
mesenchymal markers, e.g. N-cadherin, Vimentin, Snail, and
Twist, suggested that CRKL and FLT1 are involved in the
migration process via ERK phosphorylation to regulate the
mechanism of EMT (Fig. 3I). Moreover, the ablation of CRKL
reduced FLT1 expression, implying that CRKL and FLT1
might have a feedback regulation relationship via phosphor-
ylation and protein stability. Finally, we also showed the SH2,
SH3(N), and SH3(C) domains of CRKL interacted with FLT1 by
immunoprecipitation and in situ PLA (supplemental Fig. 6).
Together, CRKL and FLT1 may play a crucial role in the
regulation of metastasis in HCC.

CRKL Is a Novel Marker and Is Associated with FLT1 Ex-
pression and Poor Prognosis in HCC—To provide an inde-
pendent validation of the prognostic value of the CRKL and
CRKL-FLT1 pair, their expression levels were measured using
a 192 pairwise HCC tissue microarrays. Both CRKL and FLT1
were expressed significantly higher in tumors than in the
adjacent normal tissue (data not shown). The relationships
between the expression levels of CRKL and FLT1 with the
clinicopathological characteristics of HCC are summarized in
Table I. High CRKL expression levels (scores of 2 and 3) in
tumors were strongly correlated with reduced disease-free

FIG. 2. Tripartite association of PPIs, pathways and cell lines, and analysis of the differential interaction hubs in the PPI networks.
Sixty seven positive PPIs within 21 pathways are displayed as a matrix map using generalized association plots (24, 25) with a measurement
of modified SMC and hierarchical clustering. A, PPIs that are specific in Huh7, Mahlavu, both cell lines, or none are color coded as cyan,
magenta, purple, or white, respectively; the 67 positive PPIs can also be partitioned into eight clusters (M1, M2, B1, B2, H1, H2, A1, and A2).
The PPIs in the M1 and M2 clusters were observed only in Mahlavu cells, whereas the PPIs in the H1 and H2 clusters were observed only in
Huh7 cells. The PPIs in the B1 and B2 clusters were observed in both cell lines. The PPIs in the A1 and A2 clusters were observed in either
one cell line or both cell lines, but they did not belong to larger clusters because of the similarity of the corresponding pathways. B, similarity
of the pathways is to measure the similarity of between-PPI using a modified SMC, which ranges from 0 (dissimilarity/no association, dark blue)
to 1 (high similarity/perfect association, dark red). Abbreviations for the pathway names were used and different sets of colors were generated
to represent branching structure of different hierarchical clustering trees. The shortened pathway names make the links between the matrix and
clustering tree stand out much better, and the grouping (clustering) patterns are now visually more readily apparent. C, similarity of the PPIs
is to measure the similarity of between-pathway using modified SMC and reveals the hierarchical linkage of the PPIs. D, inferred interlinked
pathway map via interlinked PPIs. The nodes in this network represent pathways, and the edges in the network indicate whether at least one
interlinked PPI can be observed through in situ PLA. The line colors reflect the number of the interlinked PPIs that appear within the pathway
pairs. E, scatterplot shows the number of interactions in highly migratory cells (Mahlavu cell) and the number of interactors in minimally
migratory cells (Huh7 cell) for each protein in this study. The proteins that only have one interactor in either Huh7 cells or Mahlavu cells are not
labeled in this figure. F, Venn diagram showing the overlap of protein interactions and differential protein interactions in CRKL (top) and FLT1
(bottom). Three of the 11 CRKL interaction partners occurred in both minimally migratory cells and highly migratory cells, but the remaining
eight partners only occurred in highly migratory cells. FLT1 has seven interaction partners, and the only partner that occurs in highly migratory
cells is CRKL.
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(p � 0.002) and overall survival (p � 0.001) relative to low
CRKL expression levels (scores of 0 and 1) (Fig. 4, A and B).
Our univariate and multivariate analyses showed that ad-
vanced stage major vessel invasion and CRKL overexpres-
sion were significant, independent prognostic indicators for
disease-free and overall survival rates (Table II and supple-
mental Table 7). High FLT1 expression was significantly cor-
related with disease-free survival (p � 0.047) and showed
trends with overall survival (Fig. 4C). The FLT1 score, how-
ever, was not significantly correlated with disease-free (p �

0.156) and overall survival (p � 0.185), as assessed by a
multivariate analysis (Table II). In summary, a high level of
CRKL can be used as a novel prognostic marker in HCC.

To investigate the interplay between CRKL and FLT1 in
HCC patients, we subsequently performed an IHC analysis of
CRKL and FLT1 in serial sections of HCC tissues. The repre-
sentative IHC staining for CRKL and FLT1 (Fig. 4D) showed a
positive correlation with a correlation coefficient � 0.506 (p �

0.001), as analyzed by the Spearman’s nonparametric corre-
lation test. This result is consistent with the biological findings
in HCC cells. Moreover, a subgroup analysis using both CRKL
and FLT1 expression levels further showed that patients with
high CRKL and FLT1 levels had significantly poorer disease-
free (p � 0.001) and overall survival (p � 0.002) compared
with the group of patients with low CRKL and FLT1 levels (Fig.
4E). An IHC score of CRKL and FLT1 
3 remains an inde-

FIG. 3. Characterization of the CRKL-FLT1 interaction in HCC cell lines. A, images (left) and quantification (right) of in situ PLA signal for
CRKL-FLT1 interaction in hepatocytes and five HCC cell lines (HepG2, Huh7, PLC5, SK-Hep1, and Mahlavu) are shown. B, migratory ability
and CRKL-FLT1 interaction were evaluated in five HCC cell lines. The Mahlavu cell is highly migratory cells among five HCC cell lines. The
CRKL-FLT1 interaction via in situ PLA (C) and migratory ability (D) was measured in other cancers, including prostate cancer cells (PC3), colon
cancer cells (HT29), lung cancer cells (A549), and cervical cancer (HeLa). E, CRKL-FLT1 expression was correlated with cell migration. The
intensity of in situ PLA for CRKL-FLT1 interaction and migrated cells/high power field showed a positive correlation with a correlation
coefficient � 0.886 (p � 0.001) as analyzed for Pearson product-moment correlation when we observed all nine cancer cells. F, five different
stable clones of CRKL and FLT1 Mahlavu cells (vehicle (scramble control), shCRKL-1, shCRKL-2, shFLT1–1, and shFLT1–2) with knockdown
of CRKL or FLT1 were established. The expression of CRKL-FLT1 interaction was decreased in Mahlavu stable clones with knockdown of
CRKL or FLT1 compared with vehicle control cells. G, expression of CRK was not affected by knockdown of CRKL in Mahlavu cells. The
shCRKL-1 and shCRKL-2 specifically target CRKL, but not CRK. H, knockdown of CRKL or FLT1 reduced migration ability compared with
vehicle control cells. I, lysates from Mahlavu cells with CRKL or FLT1 knockdown were subject to Western blotting for mesenchymal markers
and several markers of signaling pathways. Western blot analysis showed that both CRKL and FLT1 participated in the ERK but not in JNK
or p38 signaling pathway and that they were also involved in EMT process. Vehicle, scramble control.

TABLE I
Relationship between CRKL and FLT1 expression and clinicopathological factors in 192 HCC patients

CRKL expression FLT1 expression

Characteristics
Low High

p valuea
Low High

p valuea

(n � 81) (n � 111) (n � 81) (n � 111)

Age 0.694 0.759
Years (mean 	 S.D.) 61.19 	 12.53 61.77 	 11.61 61.95 	 11.15 61.21 	 11.9

Gender 0.269 0.502
Male 73 94 72 95
Female 8 17 9 16

AFPc 0.163 0.079
�400 ng/ml 68 84 69 83

400 ng/ml 13 27 12 28

Stage 0.432 0.432
I 
 II 59 75 59 75
III 22 36 22 36

Hepatitis B virus 0.507 0.058
Negative 30 36 34 32
Positive 51 75 47 79

Hepatitis C virus 0.975 0.049b

Negative 60 82 54 88
Positive 21 29 27 23

Recurrence status 0.089 0.316
No 23 20 21 22
Yes 58 91 60 89

Major vessel invasion 0.096 0.224
No 75 94 74 95
Yes 6 17 7 16

a p value for age was derived from Student’s t test; other p values were derived with a two-tailed Pearson �2 test. S.D. represents standard
deviation.

b p � 0.05.
c AFP represents �-fetoprotein.
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pendent predictor of shortened time of disease-free (HR �

1.271, 95% CI, 1.0–1.549, p � 0.018) and overall (HR �

1.313, 95% CI, 1.052–1.638, p � 0.016) survival after analy-
ses by multivariate Cox regression (Table II). To clarify this
issue, we stratified patients into four groups as follows: CRKL
high/FLT1 high, CRKL high/FLT1 low, CRKL low/FLT1 high,
and CRKL low/FLT1 low, and performed Kaplan-Meier anal-
ysis of disease-free survival. The result showed that patients
with CRKL high/FLT1 high indeed had the most dismal out-
come (Fig. 4F, red line). However, if we analyze this issue from
the perspective of FLT1, combining both CRKL and FLT1
status can further enhance the prognostic value, which im-
plies the interaction of both proteins was indeed associated
with HCC progression (Fig. 4, C and E). These results indicate
that CRKL expression is clinically associated with FLT1 ex-
pression and that such expression can be used as an inde-
pendent prognostic factor to predict the treatment outcomes
of patients with HCC.

DISCUSSION

Our study was inspired by the notion that cross-talk con-
nections (interlinked PPIs) with new pathways may lead to
hallmark capabilities (6) in cancer and that the interlinking of
signaling networks drives phenotypic alterations while main-

taining the robustness of the network during tumor progres-
sion (32). Therefore, we applied a cost-effective computa-
tional method using existing PPI databases to infer the
candidates are likely to be involved in HCC migration. We
subsequently validated these candidates using an empirical
method to boost the accuracy, followed by computational
analysis to prioritize the candidates for a functional assay.
This is the first systematic and quantitative measurement of
PPIs at the cellular level via an in situ PLA assay. The resulting
PPI data from highly migratory and minimally migratory HCC
cells were used in differential network biology to study the
fundamental biological responses and to reveal the architec-
ture of an interactome, which can be massively rewired during
a cellular or adaptive response (29, 30). Finally, the identifica-
tion and characterization of the CRKL-FLT1 interaction in
HCC cell lines and patient specimens establish the CRKL and
CRKL-FLT1 pair as new prognosis markers in HCC. We an-
ticipate that this scalable and general approach will be appli-
cable to other cancer types and complex diseases.

FLT1 is a therapeutic target for several clinically utilized
tyrosine kinase inhibitors (e.g. Vatalanib, Cediranib, and
Sorafenib) and is detected on bone marrow-derived hemato-
poietic progenitor cells, which home to tumor-specific pre-

FIG. 4. Overexpression of CRKL is a marker of poor prognosis in HCC. A, CRKL and FLT1 protein expression in a representative HCC
specimen. The expression levels of CRKL and FLT1 were quantified according to the staining intensity. The results were stratified into two
groups according to the intensity of staining; in the low expression group, either no staining was present (staining intensity score 0) or positive
staining was detected in �10% of the cells (staining intensity score 1); in the high expression group, positive immunostaining was present in
10–30% (staining intensity score 2) or �30% of the cells (staining intensity score 3). A Kaplan-Meier curve of disease-free (up) and overall
(down) survival in 192 HCC patients was stratified by CRKL (B) and FLT1 (C) expression. D, representative IHC staining of endogenous CRKL
and FLT1 in serial paraffin sections of HCC tissue is shown. Note the significant positive correlation between the level of CRKL and that of FLT1
(correlation coefficient � 0.506, p � 0.001 using Spearman’s nonparametric correlation test). E, disease-free (left) and overall (right) survival
of 192 HCC patients according to the combination analysis of CRKL and FLT1 expression. F, disease-free survival analysis of HCC patients
stratified by CRKL and FLT1 status.

TABLE II
Cox multivariate regression analysis of prognostic factors of CRKL, FLT1, or CRKL/FLT1 expression for disease-free survival (DFS) and overall

survival (OS) in 192 HCC patients

Factors
CRKL FLT1 CRKL/FLT1

HRb (95% CIc) p value HR (95% CI) p value HR (95% CI) p value

Disease-free survival
CRKL (low vs. high) 1.579 (1.125–2.216) 0.008a

FLT1 (low vs. high) 1.275 (0.912–1.783) 0.156
CRKL/FLT1 (others vs. high/high) 1.271 (1.043–1.549) 0.018a

Stage (I and II vs. III) 1.687 (1.153–2.469) 0.007a 1.706 (1.161–2.507) 0.007a 1.679 (1.146–2.458) 0.008a

AFPd (�400 vs. 
400 ng/ml) 1.147 (0.737–1.786) 0.543 1.076 (0.687–1.686) 0.750 1.090 (0.699–1.699) 0.703

Major vessel invasion (yes vs. no) 1.904 (1.117–3.246) 0.018a 2.040 (1.204–3.457) 0.008a 1.954 (1.148–3.325) 0.014a

Overall survival
CRKL (low vs. high) 1.747 (1.186–2.573) 0.005a

FLT1 (low vs. high) 1.289 (0.886–1.876) 0.185
CRKL/FLT1 (others vs. high/high) 1.313 (1.052–1.638) 0.016a

Stage (I and II vs. III) 1.694 (1.139–2.517) 0.009a 1.686 (1.130–2.514) 0.01a 1.687 (1.134–2.509) 0.010a

AFP (�400 vs. 
400 ng/ml) 1.326 (0.857–2.051) 0.205 1.297 (0.833–2.019) 0.249 1.280 (0.825–1.984) 0.271
Major vessel invasion (yes vs. no) 1.694 (1.054–2.571) 0.031a 1.881 (1.111–3.185) 0.019a 1.799 (1.060–3.053) 0.029a

a p � 0.05.
b HR represents hazard ratio.
c CI represents confidence interval.
d AFP represents �-fetoprotein.
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metastatic sites and form clusters (33). CRKL is a molecular
bridge connecting tyrosine kinases and their substrates to
many cellular signaling processes (34). A recent study re-
vealed that CRKL may be a potential druggable target for
tumors resistant to kinase inhibitors (35) and that its CRKL
amplification may be a mechanism of primary or acquired
resistance to EGFR kinase inhibitors in non-small cell lung
cancer (36). We also found that the knockdown of FLT1 in
Mahlavu cells decreased the phosphorylation level of CRKL at
Tyr-207 (data not shown), which is a well known site for
regulating the signaling cascade triggered by CRKL. This
finding suggests that FLT1 could regulate CRKL phosphory-
lation. Moreover, when CRKL was depleted, FLT1 expression
was also down-regulated. These data indicate that CRKL and
FLT1 might provide feedback regulation at a functional level in
HCC; this finding warrants further investigation. Thus, a com-
bination therapy of a kinase inhibitor and targeting CRKL may
result in a better anti-cancer clinical response.

Clinically, CRKL amplification at the 22q11.21 is frequently
detected in lung cancer patients with elevated CRKL expres-
sion in tumor cells (15). In previous studies, CRKL was dem-
onstrated to facilitate migration/invasion in non-small cell lung
cancer (15), colon cancer (37), and breast cancer (38). How-
ever, to our knowledge there are no data indicating that CRKL
participates in the migration and progression of HCC. Despite
the high degree of similarity of CRKL and CRK, recent struc-
tural investigations show that the intramolecular assembly of
CRKL is entirely distinct from that of CRK (39). The review
article also indicates that CRKL and CRK are expected to
have different signaling characteristics (34). We characterized
CRKL participating in migration via the ERK pathway in HCC,
which is consistent with a previous study in hematopoietic
cells. CRKL is also known to be a key effector in Bcr-Abl
activity and a prognostic indicator for chronic myelogenous
leukemia (41). However, the clinical relevance of CRKL in HCC
remains unknown. We demonstrate that CRKL acts as a novel
prognostic marker and that CRKL may be a therapeutic target
in HCC. In some cancers, FLT1-mediated signaling could
promote tumor invasion (42, 43). The prognostic impact of
FLT1 expression is significantly related to disease-free sur-
vival and trends toward overall survival. A recent study shows
that FLT1 expression is significant for recurrence-free and
overall survival in HCC patients who underwent surgical re-
section (44), but their study included a smaller patient cohort
than our study as reported here. Overexpression of CRKL and
FLT1 was also identified as a significant prognostic factor for
HCC by our multivariate analysis and was associated with
significantly worse disease-free and overall conditions. Col-
lectively, these results indicate that CRKL expression is clin-
ically associated with FLT1 expression and that such expres-
sion could be used as an independent prognostic factor to
predict the treatment outcomes of patients with HCC.

Notably, HCC is frequently resistant to systemic therapies
and recurs even after aggressive local therapies. The need for

molecular markers to identify which groups of patients have a
high recurrence probability and which groups have a high
Sorafenib-resistant rate is an important unmet medical need
(45). The feasibility of using CRKL or CRKL-FLT1 for risk strat-
ification in clinical practice needs to be investigated.

Other interactions in the network might also contribute to
the malignant phenotype of HCC. For example, a prioritized
CRKL-EGFR interaction was found and may explain why
combining Erlotinib (EGFR inhibitor) and Bevacizumab (VEGF
inhibitor) in an HCC phase II study was more effective than
single drug treatment (31). Another example is the HCK-CRKL
interaction, which is a prioritized PPI and ranks as a third
prioritization of pairwise degree centrality in the HCC PPI
network (supplemental Fig. 7). In addition, we found that HCK
had several novel interaction partners, including CRKL, FLT1,
EGFR, SOS1, PLCG1, and PIK3CB, in our PPI network. A
recent study indicates that HCK mediates tumor-associated
macrophage migration and matrix remodeling in the migratory
capacity of tumor cells within the tumor environment in breast
cancer (40). Although there is no evidence of a migratory role
for HCK in HCC, functional analyses of these interactions may
allow us to better characterize its role in cancer cell behaviors
and responses.

In summary, we anticipate that our integrated approach and
analysis will improve the interpretation of interlinked PPIs and
pathways and facilitate the development of novel prognosis
markers and drug targets in HCC research.
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