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Label-free quantification using precursor-based intensi-
ties is a versatile workflow for large-scale proteomics
studies. The method however requires extensive compu-
tational analysis and is therefore in need of robust quality
control during the data mining stage. We present a new
label-free data analysis workflow integrated into a mul-
tiuser software platform. A novel adaptive alignment al-
gorithm has been developed to minimize the possible
systematic bias introduced into the analysis. Parameters
are estimated on the fly from the data at hand, producing
a user-friendly analysis suite. Quality metrics are output in
every step of the analysis as well as actively incorporated
into the parameter estimation. We furthermore show the
improvement of this system by comprehensive compari-
son to classical label-free analysis methodology as well
as current state-of-the-art software. Molecular & Cellu-
lar Proteomics 12: 10.1074/mcp.0112.021907, 1407-1420,
2013.

Shotgun liquid chromatography (LC)'-MS/MS is widely
used for quantitative proteomics research. There are several
LC-MS/MS approaches that rely on chemical labels as inter-
nal standards, and additionally numerous label-free work-
flows exist. Of these options, label-free quantification has
lately emerged as a viable approach because of its lack of
limitations concerning the number and types of samples un-
der investigation (1-3). Despite the advantages, there are a
number of data analysis challenges (4) associated with the
label-free methodology that may unnecessarily increase tech-
nical variation. This has led to an uncertainty toward the usage
of the label-free workflows, to much extent because of diffi-
culties in assessing how well the data analysis works for the
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experiment at hand. There is a large amount of software
available for label-free data processing and recent studies
have shown that the results of data analysis vary considerably
with the choice of software (5-7).

Two major types of label-free quantification exist; spectral
count and precursor-based. The former is based on the num-
ber of times a peptide has been subjected to fragmentation
using MS/MS. The counts for the peptide content of a protein
are subsequently recalculated into a protein count, which is
related to the protein abundance (3). Although straightfor-
ward, this quantification strategy has proven less accurate
than the precursor-based method as the number of spectra
necessary to quantify more subtle expression changes in-
creases exponentially (8). As quantification is coupled to iden-
tification, the dependence on the semirandom MS/MS sam-
pling process leads to variability in protein abundance (9). The
quantification coverage is further limited as the commonly
employed dynamic exclusion for increasing the number of
identifications introduces saturation effects into the analysis
(8). In contrast, label-free quantification using precursor inten-
sities shows great potential for large-scale proteomic analy-
ses (1-3, 10-13).

Data from a label-free sample consists of LC-MS files that
can be visualized individually as three-dimensional maps
where the dimensions correspond to mass-to-charge ratio,
retention time and intensity. Two fundamental steps that
need to be performed in any precursor-based label-free
pipeline are the extraction of peptide information from the
maps (feature detection) and matching of corresponding
peptides between maps for subsequent differential expres-
sion analysis (alignment).

A feature is a three-dimensional cluster of spectral peaks,
detected in consecutive mass scans (the time dimension), and
represents an eluting potential peptide at the MS level. Fea-
tures are extracted based on defined criteria depending on
the algorithm used, e.g., a high signal-to-noise ratio or a
certain fit to a computational model of the isotopic envelope
(14, 15). The output from feature detection algorithms con-
sists of feature lists containing basic information for every
feature such as mass-to-charge ratio, the start and end as
well as apex time points for the elution profile, charge and
some form of abundance measure (integrated and/or apex
intensity). Using parallel MS/MS and identification using pep-
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tide fragment fingerprinting, a feature can be assigned a pep-
tide identity. Feature detection is therefore the basis for pep-
tide, and subsequently protein, quantification. The number
and quality of features detected by different software suites
have been investigated in (5) and possible approaches for
dealing with missing features such as a combination of fea-
ture detection modules have been suggested in (6, 7).

Alignment is used to propagate peptide identities between
features in different LC-MS maps, as the peptides identified
by MS/MS can vary between files to a large extent. The
alignment procedure will thus reduce the number of missing
values in differential expression analysis. However, LC reten-
tion time drifts are common, and the alignment algorithm will
need to handle such drifts, as well as ambiguities in matching
for dense maps. The process can be divided into feature-
based or profile-based approaches, where feature detection
is performed before, or after, alignment, respectively (16). A
further subdivision of algorithms can be performed based on
whether the algorithm uses a reference map or not for the
alignment. Use of a reference file to which the other maps are
aligned facilitates implementation, but the choice of reference
is crucial for the alignment outcome, and the wrong selection
can considerably decrease the number of correctly aligned
features (5). Errors in alignment in general lead to an important
amount of missing values when features representing the
same peptide are not matched between maps, as well as
skewed quantification because of noncorresponding features
being matched up.

To alleviate the introduction of such technical bias, as well
as to estimate the accuracy of the data analysis, quality
control is necessary. There are a number of issues that need
to be addressed during the development of a quality control
pipeline for label-free data analysis. Quality control metrics
should be easy to overview and independent of the data at
hand so as to assess an absolute quality of the analysis that
is comparable between different experiments as well as be-
tween different software solutions and parameter settings.
Some recently introduced metrics require either manual vali-
dation (17) or spiked in peptides to assess quality (6, 18) and
may even require user-defined parameters (6).

Precision and recall are metrics commonly used for evalu-
ation of feature detection and alignment and can also be used
to evaluate the whole analysis (5, 18-23). Precision controls
the false positive rate, while recall controls the false negative
rate, in which the exact definition of a false positive and false
negative depends on the process evaluated. Although preci-
sion and recall are intuitive metrics with a well-defined range,
the conventional application of them is simply as an output
given at the end of the analysis, forcing the user to repeat the
entire analysis to improve the quality of the performance.
Such repeated analysis is not only time-consuming but can be
difficult if many user-defined parameters need optimization.

Here, we present a new data analysis workflow for label-
free LC-MS, which includes a novel alignment algorithm, and

has been implemented within the Proteios Software Environ-
ment (24). The alignment algorithm estimates parameter set-
tings from the data at hand, avoiding the issue of default
settings that may bias results if used indiscriminately between
data sets. The need for a reference run is circumvented be-
cause of a computed order of pairwise map matching based
on shared peptide identifications. The alignment is further-
more not dependent on any particular feature detection algo-
rithm, as it is based on standard feature list information and
can be coupled with any feature detection module of choice.
In addition, quality control has been incorporated into the
algorithm, not merely as an output but also as a regulator of
the parameters, guaranteeing the user an optimized perform-
ance based on the precision and recall metrics. Alignment
quality is continuously evaluated for every pairwise matching
as well as for the end result. The quantification is assessed
as described in (5) where both feature detection and align-
ment is taken into account and the performance of the algo-
rithm is compared with alignment using msinspect (25) and
OpenMS (26). We show that a combination of an adaptive
algorithm and rigorous quality control leads to more reliable
and reproducible data analysis by extensive comparison to
common label-free analysis approaches.

MATERIALS AND METHODS

Workflow Implementation—The label-free workflow was imple-
mented in Java 1.6 within the Proteios Software Environment (24),
and is illustrated schematically in Fig.1A. Plug-ins were implemented
for executing OpenMS (26) and msinpect (25) feature detection in
batch, and for import of the features into a dedicated database
feature table. Common parameters for feature detection can be set in
the web browser user interface. Another plug-in was implemented for
matching of peptide identifications to features. Identifications that
pass a user-defined FDR cutoff after a combination of searches (27)
from any number of the supported search algorithms (currently
Mascot (http://www.matrixscience.com), X!Tandem (http://thegpm.org/
tandem/) with native scoring, X!Tandem with k-score (28), and
OMSSA (29)), are matched with features of the same charge state and
within a certain m/z and retention time tolerance. The latter is required
because MS/MS identifications are sometimes acquired outside the
feature boundary reported by the feature detection algorithm. Another
plug-in was implemented for the novel alignment algorithm described
below. The algorithm assigns features to clusters, in which a unique
cluster ID defines features that have been matched over multiple files.
Features are also assigned a peptide sequence if any of the features
in the cluster has been identified. The user can select whether sam-
ples from different fractions should be matched or not in the case of
fractionated samples. In the case of between-fraction matching being
disabled, fractions are aligned and matched separately, and global
quality metrics are reported for each fraction. The plug-in reports
similarity scores for every pair of files to detect possible outlier files.
Furthermore, precision and recall for the pairwise matching and for
the global alignment (see alignment section) as well as the total
increase in sequence coverage for every file after alignment is re-
ported. Finally, a report plug-in generates a spreadsheet type report
for all samples and feature clusters in the project, which can be
imported to dedicated statistics software. The source code and bi-
naries are available at http://www.proteios.org.

Alignment—The new alignment workflow is outlined in Fig. 1B.
Initially, a set of features with shared peptide identities between every
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Fic. 1. Schematic of the Proteios label-free analysis workflow (A) and alignment (B).

possible file pair is determined. This set is used to estimate a similarity
measure for the separate file pairs in the batch, which determines the
order in which the pairs are aligned. Pairwise alignment is subse-
quently conducted in two steps: First, the set of features with shared
peptide identities is partitioned into two equal sized sets. The first set
is used as a basis for a retention time correction function, which
eliminates the need for user-defined tolerances for the correction. The
second step is to find the entire set of features that match within given
m/z and retention time tolerances between the aligned maps. The
Proteios alignment algorithm estimates these tolerances by maximiz-
ing two quality metrics, precision and recall, using the second feature
set. The tolerances set in this stage are critical and can introduce an
important amount of incorrect feature correspondences that can bias
statistical analysis downstream. On matching of the entire feature
complement of the files, clusters of features that are aligned between
multiple files are built, and peptide identities are transferred to aligned
features that were previously missing peptide identity. Finally, the
quality of the alignment is evaluated using the entire set of files.

Quality Measures—To evaluate and optimize alignment perform-
ance, quality control metrics were used. They are based on the
precision and recall metrics described in (5, 23) and quality estimation
is performed pairwise during the alignment and globally for all files
after alignment. The number of True Positives (TPs), False Positives
(FPs), and False Negatives (FNs) are used to calculate the metrics.
FPs are features that have been erroneously linked to a cluster. If a
peptide identity is associated to the feature or the cluster, it will be
propagated throughout the cluster and will impact both qualitative
and quantitative results. FNs are features that have been erroneously
left out of a cluster. A high FN rate indicates that there is an important
amount of clusters with missing features after alignment.

The recall metric is defined as TP/(TP + FN), which in an alignment
context controls the ratio of features that are aligned to the features
that are known to correspond. Precision is defined as TP/(TP + FP)

and controls the assumed one-to-one correspondence of features
between files. A decrease in precision can be caused by errors in
alignment but also to peptide peaks being split into multiple features
during feature detection (peak splitting). The latter can be overcome
by rerunning the feature detection or by performing an additional data
analysis step to merge split peaks (30). Computation of the metrics
requires knowledge of the underlying feature correspondences and
here a set of shared identified features between files is used.

There are two types of precision and recall computed during the
alignment; identity-based and occurrence-based, taking the true pep-
tide identity into account or not. These measures are computed both
for a file pair during alignment and for all files in the batch after
alignment. The occurrence-based metrics represent the evaluation of
alignment of features without peptide identities, where matching of
any feature within the set m/z and retention time tolerances signify a
correct alignment. The identity-based metrics take peptide identifica-
tion information into account when distinguishing between correctly
and incorrectly aligned features, as illustrated in Fig. 2. Based on
these underlying assumptions, the quality metrics can be interpreted
as follows:

Occurrence-based Recall—Missing values are the only form of FNs
possible as seen in the second file in Fig. 2. The occurrence-based
recall therefore measures the introduction of missing values into the
analysis. Because the feature set used for estimation is known to have
correspondences albeit not which ones, missing values is an error
introduced by the alignment.

Occurrence-based Precision—The occurrence-based precision
only decreases if the one-to-one correspondence between features is
violated, which is exempilified in the third file in Fig. 2. This could be
because of a co-eluting compound with similar m/z, but also because
of peak splitting. Because the evaluation is performed on the basis of
identified peptides, known to be relatively high abundant and there-
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Fic. 2. Global precision and recall computed for one feature aligned between four LC-MS maps. The ovals represent detected features.
The colors represent a priori knowledge of the underlying correspondences. The green features are known to represent the same peptide
based on peptide identity information. The gray boxes surrounding the features represent a feature cluster after matching; the features
contained in the boxes are aligned. The size of the box represents the m/z and retention time tolerance used after retention time correction.
An empty box indicates a missing value, i.e., there is no feature matched in the cluster for that file. The yellow feature is a false positive for both
identity- and occurrence-based metrics, violating the assumption of a one-to-one correspondence between features. The red feature on the
other hand, would be considered a false negative for the identity-based recall, as false positive for the identity-based precision, but a true
positive for the occurrence-based metrics. This leads to an identity-based recall of 2/(2 + 2) = 0.5 and precision of 2/(2 + 2) = 0.5 whereas
corresponding occurrence-based metrics equal 3/(3 + 1) = 0.75 and 3/(3 + 1) = 0.75, respectively. Every feature with an associated identity
that is shared between all files before alignment is evaluated after the process as described above, leading to overall estimates of the alignment

performance.

fore more prone to peak splitting, the decrease in occurrence-based
precision will to a large extent reflect this feature detection artifact.

Identity-based Recall and Precision—FNs are features that have
not been aligned to other features with the same identity. This could
be caused by either a missing value or incorrect matching with a
feature of another or no identity. The latter will be counted as a FP and
decrease the identity-based precision. As the identifications repre-
sent known correspondences in the data, the identity-based metrics
give an indication of the true performance of the analysis.

In Fig. 2 the computation of global occurrence- and identity-based
metrics for one feature cluster in four aligned LC-MS maps is
illustrated.

Similarity Estimation—To determine which files are biologically
most similar, a pairwise ratio of the number of shared unique (peptide
sequence and charge) feature identifications to the total number of
unique feature identifications is computed, i.e., 2" (# shared unique
identifications between file 1 and 2)/(# unique identifications file 1 + #
unique identifications file 2). This is performed for every possible file
pair. The combination of precursor charge and peptide sequence is
used so the same peptide identification will be handled separately for
each precursor charge state. A ratio of one would indicate that a file
pair share all identifications. The feature set sharing unique identifi-
cations constitutes the basis for the alignment. To avoid errors when
estimating the retention time correction function, outlier removal
based on the interquartile range of retention time differences is per-
formed. When a file pair has less than 20 features in common, no
alignment is performed for that file pair. This lower limit restricts
matching of distantly related samples, but did not come into use in
the present study.

Alignment Limit and Order—The alignment is terminated when
every file has been aligned a certain number of times. This limit is
empirically derived and illustrated in Supplemental Figs. S1 and S2. In
addition, an upper limit for the number of alignments per file is set to
obtain a uniform distribution and so ensure that no file will be aligned
more times than the rest and subsequently introduce bias into the
analysis. Inspection of the number of features aligned per run showed
that the pairwise ratio of features already sharing a cluster to new
features added into clusters saturated rapidly (supplemental Fig. S1B)
and continued alignment of a file would only marginally increase recall
at a relatively high cost of precision (supplemental Fig. S2).

The computed order of pairwise alignments is based on the calcu-
lated similarities; the pair with the highest similarity consisting of at
least one file not yet aligned will be next in line. If no alignment limit
were set the order would be irrelevant, as all possible file pairs would
be processed. However, because the number of alignments is re-
stricted, the biologically most similar files are selected to minimize
possible errors in alignment. Specifically, the probability of two un-
identified features within tolerance limits actually corresponding to
the same peptide and not different ones sharing similar m/z and
retention time is higher if the files are biologically more similar.

When a file pair has been selected for alignment, the set of features
with common identifications are uniformly partitioned into two sets
that are used for retention time correction and for parameter estima-
tion, respectively.

Retention Time Correction—The apex retention time points of the
shared features are used for spline interpolation to temporarily adjust
retention times of features in the map being aligned to those of the
target map in a file pair. First, a local regression smoothing is per-
formed (LOWESS (31)) to reduce the effect of variation and outliers. A
cubic spline function is subsequently interpolated between the time
points. The Apache Commons Mathematics Library v. 2.2 (http://
commons.apache.org/math/) was used for this section of the
analysis.

Parameter Estimation—For two features to belong to the same
cluster, they have to share charge as well as fall within certain m/z and
retention time limits after the spline function is applied. The m/z
tolerance is set as the largest deviation seen in the set of features
sharing identity. The other half of the partitioned set is used to
determine the retention time tolerance. The shared identity features of
one file are matched to all features detected in the second file, and
matches based solely on charge and m/z tolerance are computed.
The retention time differences of these matches are stored in two
lists; one containing the smallest retention time difference found for
every feature and one list containing all other matches. These lists are
subsequently sorted and the precision and recall metrics are com-
puted as shown in Fig. 3. The retention time difference at which both
metrics are simultaneously as large as possible is set as retention
time tolerance for this file pair. It should be noted that the precision
and recall used for the estimated tolerance optimizes the total number
of TPs with respect to FNs and FPs for the pairwise alignment. Using
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Fic. 3. Example retention time parameter estimation in a set containing four features sharing identifications (“A,” “B,” “C,” “D”)
between a file pair. The correct match known beforehand is marked with a corresponding letter in the top table. Features without identity are
denoted N/A. The time difference for all possible matches, based on the set m/z tolerance and charge between the four features from the first
file and all features detected in the second file, are shown in the panel to the right (eight in total). For feature “B,” the match with the smallest
time difference is not the feature with corresponding identity. Precision and recall is computed in the bottom panel for four different retention
time tolerances. They are equivalent to the list of the smallest retention time differences for each feature, as these represent the minimum cost
in terms of FPs for including a TP. Both identity- and occurrence-based metrics are computed as seen in the table. Abbreviations used in the
table: Tol, Tolerance; Prec, Precision; Occ, Occurrence-based; Id, Identity-based. When two settings result in the same sum of precision and
recall, the setting that results in the highest recall is selected. Here, the retention time tolerance used for subsequent alignment would be set

to 5 min.

the set tolerances, the precision and recall used for comparison to the
global values described below are calculated as in Fig. 2. A high
agreement between pairwise and global metrics implies that the file
batch has been aligned as expected and subsequently, as the quality
metrics are maximized, as optimally as possible.

Global Evaluation—During the similarity calculations, features with
unique identifications common to all files in a sample cohort before
alignment are saved. At the end of the process, these features are
extracted and precision and recall are computed as seen in Fig. 2.
This is performed for every feature cluster with a unique identification
and the average is used as global evaluation of the alignment.

Experimental Data—Two sets of samples were used for the results
in this study. Potato secretome samples were prepared by extraction
from three potato clones; Desiree, Sarpo Mira, and SW93-1015. Two
data sets were collected before and after infection with Phytophthora
infestans. The first consisted of an uninfected sample and one sample
collected 3 days after infection from the same potato clone (Desiree),
referred to as the TimePoint data set (Table I). The other data set
consisted of samples from two different potato clones, Sarpo Mira
and SW93-1015, collected 6 h post-infection, referred to as the Clone

data set (Table Il). Secretome isolation and Phytophthora infections
were performed according to our previously described experimental
setup (32). Thirty microliters of the secretome sample was dissolved
in 6 X SDS-PAGE buffer containing dithiothreitol and separated for 1
cm with SDS-PAGE. After staining with Coomassie, the gel lane from
each sample was cut into about 1 mm? sized pieces and subjected to
in-gel digestion with trypsin (modified sequencing grade; Promega,
Madison, WI) overnight at 37 °C. The peptides obtained were extracted
in 50-80% acetonitrile. Acetonitrile was vaporized using vacuum with
centrifugation and desalting was performed using UltraMicro spin col-
umns (Nest group). Samples were analyzed pure and mixed 1:2 or
2:1, giving four mix-points for each data set. To evaluate the repro-
ducibility of the analysis when scaling the experiments, two biological
replicates from each time point (0 h, 6 h, 24 h, and 3 days) for each
pure potato secretome sample (Ali et al. in preparation), totaling 24
files, were added.

MS analysis was performed on a LTQ orbitrap XL mass spectrom-
eter (Thermo Electron, Bremen, Germany) interfaced with an Eksigent
nano-LC system (Eksigent technologies, Dublin, CA). A 5 ul sample
was injected onto a fused silica emitter, 75 um X 16 cm (PicoTipTM
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FIGURE 4 —continued

Emitter, New Objective, Inc.Woburn, MA), packed in-house with Re-
prosil-Pur C18-AQ resin (3 um Dr. Maisch, GmbH, Germany) at a
constant flow rate of 600 nl/min in three technical replicates for each
ratio cohort. The peptides were subsequently eluted at a flow rate of
300 nl/min in a 90 min gradient of 3 to 35% (v/v) acetonitrile in water,
containing 0.1% (v/v) formic acid. The LTQ-Orbitrap was operated in
data-dependent mode to automatically switch between Orbitrap-MS
(from m/z 400 to 2000) and LTQ-MS/MS acquisition. Four MS/MS
spectra were acquired in the linear ion trap per each FT-MS scan,
which was acquired at 60,000 FWHM (Full Width at Half Maximum)
nominal resolution settings using the lock mass option (m/z
445.120025) for internal calibration. The dynamic exclusion list was
restricted to 500 entries using a repeat count of two with a repeat
duration of 20 s and with a maximum retention period of 120 s.
Precursor ion charge state screening was enabled to select for ions
with at least two charges and rejecting ions with undetermined charge
state. The normalized collision energy was set to 35%), and one micro
scan was acquired for each spectrum. Some of the injections were
performed several months after the others, to simulate large projects
that can typically not be run back-to-back. Information about acqui-
sition time points is given with the raw data, available at the Swestore
repository, as listed in Supplemental Table S1.

Files were converted to mzML (33) and Mascot Generic Format
(MGF) using Proteowizard (34), and the mzML files have been depos-
ited in the Swestore repository. MGF files were used for MS/MS
identification, and mzML files for feature detection using msinspect
and OpenMS. lIdentification searches were performed in Mascot
2.3.01 and XITandem Tornado 2008.12.01.1 with native scoring in a
database consisting of all Solanum proteins in UniProt as of 2011-
08-24 (http://www.uniprot.org) and all annotated proteins from the
potato genome project (http://www.potatogenome.net (35)) plus re-
verse sequences and 11 common proteins, totaling 248627 se-
quences. One missed cleavage was allowed. Search tolerances were

5 ppm for precursors and 0.5 Da for MS/MS fragments. Fixed carb-
amidomethylation of cysteines and variable methionine oxidation
were considered as modifications. After import of search results into
Proteios, FDR was calculated for the combined searches using re-
verse sequences in Proteios (27). msinspect as well as OpenMS
feature detection was performed directly from Proteios and the fea-
tures were imported and matched to identifications within the same
LC-MS/MS runs in Proteios using a retention time tolerance of 0.2
min, and a m/z tolerance of 0.005 Da as well as an FDR cutoff of 0.01.
Alignment was performed directly in Proteios, and a report of the
features was exported and further analyzed in MATLAB R2011a v.
7.12.0.635 (http://www.mathworks.org).

Comparison to msinspect and OpenMS—Feature lists were ob-
tained using both the msinspect (build 633) and OpenMS (1.9.0)
feature detection modules from within Proteios, and were used for the
respective solution’s alignment algorithms, as well as for the Proteios
alignment.

mslinspect feature detection was performed with default settings.
For the alignment, the feature files were exported and aligned with the
“—optimize” option, where the mass- and scan windows were set
automatically to 0.025 Da and 400 scans, respectively, for both data
sets. The resulting details.tsv file was used for further analysis.

OpenMS feature detection was run in two steps; the PeakPicker
module was run with the “high resolution” option followed by the
FeatureFinder module where “charge high” and “mz tolerance” in the
“isotopic pattern” section were set to 6 and 0.005 Da, respectively,
and the “min rt span” in the “feature” section was set to 1/3 min. The
featureXML files were exported from Proteios and aligned by using
the MapAlignerPoseClustering module followed by the Fea-
tureLinkerUnlabeled module, both run with default settings to pro-
duce a consensusXML file. Finally, the TextExporter module was run
with the “consensus feature” option to convert the consensusXML
into a text file that was used for further analysis.
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Fic. 4. The reported precision and recall values for the Proteios alignment algorithm. The red line represents the median and the edges
of the box the first and third quartile, respectively, for all the pairwise alignments in the data sets. Outliers are marked with “+ ” and deviate
from the quartiles more than 1.5 times the interquartile range. Estimated values are calculated before alignment, and evaluated values are
calculated afterward. Global evaluation values are reported as a red line. A, TimePoint data set (B) Clone data set. All metrics show high values.
The general agreement between the pairwise and global values show that the alignment worked well even on batch scale for the parameters
set during the pairwise matching. The agreement between the identity-based and occurrence-based values gives an indication of the alignment
working equally well for features without identities, which is the majority, as for features with identity information. Furthermore, the generally
lower values and larger interquartile range for the TimePoint data set implies a data set with larger file differences.

To compute a corresponding global identity-based recall and pre-
cision for the two software solutions, the features that were identified
in all files before alignment were extracted from the Proteios feature
table. The feature information (m/z, charge and filename) for this set
was mapped back into the resulting msinspect and OpenMS files and
the corresponding cluster ids (row number for the OpenMS file) were
extracted. The cluster IDs were stored in a matrix where every column
represents a sample and every row a cluster. The number of true
positives for each row was computed as the most frequently occur-
ring cluster ID (one for each file). The rest were considered false
negatives, because they were not aligned into the selected cluster.
The most frequent cluster ID was used to represent the best cluster
and false positives were subsequently extracted for every ID, com-
puted as the number of features in the cluster that were not consid-
ered a true positive.

RESULTS AND DISCUSSION

As quality control is an important issue for label-free LC-MS
analysis, we implemented a complete label-free workflow with
built-in quality control metrics in the form of precision and
recall, which give an estimate of the sensitivity (recall) and
false discovery rate (FDR, precision = 1 - FDR) for the align-
ment process. The quality of the results can thus be estimated
using the metrics, which are computed as described in Fig. 2

for the aligned file pairs as well as globally for the entire file
batch. Two forms of precision and recall are computed during
several stages of the Proteios alignment, identity-based and
occurrence-based, as summarized in Fig. 4. To illustrate the
feasibility of the workflow we evaluated it with two data sets
consisting of mixtures of biological samples in different pro-
portions, as proposed previously (5), using features detected
by two software solutions, msinspect and OpenMS. For Fig.
4, msinspect features were used.

As seen in Fig. 4, the precision and recall values are high, as
well as showing a high level of agreement between the pair-
wise and global values, indicating that the parameters set
during the alignment resulted in the expected behavior, i.e., a
high quality alignment. In general, the plot shows the global
precision being slightly lower than the pairwise one and the
opposite trend is seen for the global recall. This is expected
and is because of the repeated matching of every file per-
formed in the algorithm; there are as many possibilities for the
feature to be aligned into the correct cluster as the number of
times a file is aligned. However, the more times a file is
aligned, the higher the probability of introducing false posi-
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Fic. 5. The deviations in identity-based recall and precision when using manually set parameters compared with adaptive for the
TimePoint (A) and Clone (B) data set, respectively. As seen, the adaptive tolerance maximizes both metrics simultaneously.

tives into the cluster. As previously mentioned and illustrated
in supplemental Fig. S2, too many alignments of each file
would only decrease precision at a very slight benefit for
recall. Only a small decrease in the global precision compared
with the pairwise ones was found, indicating that the files
have not been overly aligned. It can also be noted that the
TimePoint data set shows less agreement between the global
and pairwise values as well as a larger spread in the estimated
values, indicating a data set with larger differences and so
more difficult to align. Furthermore, there is a high level of
agreement between the occurrence-based and identity-
based values. A good correspondence between these metrics
implies that the feature matching is the same whether identity
information is taken into account or not. Because most fea-
tures have no sequence information, high agreement indi-
cates that the alignment works as well for such features as for
those with identity.

Alignment Evaluation—To investigate the effect of using
parameter settings estimated from the data at hand as well as
retention time correction aided by identity matches, the Pro-
teios alignment was run with manually set tolerances, both
when matching features and when extracting the feature set
on which to base the retention time correction function. The
identity-based global metrics from Fig. 4 are used for com-
parison in subsequent figures.

Parameter Estimation—The average mass and time toler-
ances used for alignment were 0.007 Da and 0.47 min, re-
spectively, for the TimePoint data set and 0.008 Da and 0.39
min for the Clone set. Nevertheless, every file pair required its
own specific settings. The mass-to-charge window spanned
from 0.004 to 0.011 Da for the TimePoint data set and from

0.004 to 0.012 Da for the Clone data set. The retention time
windows for the data sets were 0.15 to 0.76 min and 0.30 to
0.67 min, respectively. This shows that one tolerance is not
sufficient to align sets of files and the tolerances set are even
more critical if a file is aligned only once. This is of course also
true for the use of a reference file, where every file will be
aligned once to the reference.

The results of manually set tolerances can be seen in Fig. 5.
Two sets of tolerances were chosen; one strict with a mass-
to-charge and time tolerance of 0.005 Da and 0.1 min, re-
spectively, and a wide tolerance with a mass-to-charge tol-
erance of 0.02 Da and time tolerance of 2 min. In general a
strict tolerance will decrease the recall, but increase precision
and the opposite will occur for a wide tolerance. As can be
assumed, judging from the relatively wider adaptive tolerance
span for the TimePoint data set, the strict tolerance affected
the recall of this data set considerably more than Clone. The
wide manually set tolerance increased the recall slightly but
decreased the precision considerably compared with the
adaptive tolerance for both data sets. To manually set a wide
tolerance to make sure that as many features as possible are
aligned may seem as an appropriate approach, but the inclusion
of many false positives in the feature clusters can create large
deviations in the feature quantities as these are summed up for
the resulting peptide abundance. This in turn will lead to errors
in protein quantification and unreliable results further down the
workflow. To assess this, we also evaluated the effect of the
parameter settings at the protein level (supplemental Fig. S3),
and it was confirmed that considerable quantitative differences
could be detected for the proteins in the data sets.
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Fic. 6. The estimated spline function between two technical replicates from the Clone data set is shown as a red dashed line where
the blue markers correspond to time differences before alignment for the feature set used for interpolation. The retention time window
for the identity-aided regression function is marked with a black dashed line. The right hand side figures show the time differences after
applying the function to the feature set used for parameter estimation and the set time tolerance is seen in gray. The larger retention time
differences seen for the tolerance-based approach (C, D), led to a larger estimated time tolerance compared with the identity-aided one (A, B).
A shift in the total retention time span can also be seen in the x axis of the plots.

Identity-aided Alignment—The effect of not using identifi-
cations as landmarks for the retention time correction function
was investigated by aligning the data sets using the 10%
most abundant features from every file. These features were
initially matched with a mass-to-charge tolerance of 0.01 Da
and retention time tolerance of 5 min to extract landmark
pairs. Because no interpolation function has been estimated
at this point, the time tolerance needs to be set wide enough
not to miss any possible retention time drifts. Only unique
pairs, i.e., those features that matched to a single other fea-
ture within the tolerance limits were selected. The similarity
score was computed as the ratio of the number of matching
features to the total number of the 10% set.

A comparison of an alignment of a file pair in the Clone data
set using identity-aided and tolerance-aided alignment can be
seen in Fig. 6. The file pair consists of two technical replicates
from the second ratio cohort run on the same day. Neverthe-
less, a retention time difference window between the ex-
tremes of 2 min can be seen in the identity-aided regression
function. Although the width of the window remains close to
constant after alignment, the difference between the bulk of
the points is considerably decreased and most fall within the

estimated time tolerance. The retention time window for the
identity-aided alignment is marked in the corresponding tol-
erance-aided plots and as can be seen, larger deviations were
found using a tolerance-aided alignment. This in turn led to a
larger time tolerance for the tolerance-aided alignment,
whereas the m/z tolerance stayed constant.

Fig. 7 shows the comparison of global precision and recall
for the two alignment strategies. The largest differences for
the two data sets can be seen in precision. This is because of
the before mentioned increased time tolerance for the toler-
ance-aided strategy, which will have a similar effect to the
wide tolerance seen in Fig. 5, albeit to less extent.

It should be noted that the tolerance-aided and identity-
aided approaches cover different intervals of the total reten-
tion time span as is shown in Fig. 6. The width of the span is
however equivalent, ~90 min for both of the strategies. To
cover as large a time span as possible, it could be effective to
combine the methods by using predominately an identity-
aided alignment and add a tolerance-aided one outside of the
retention time interval covered by the identifications. To max-
imize precision, the initial tolerances for the features to be
used can be estimated from the identity-aided matches. In
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Fic. 7. Global identity-based precision and recall for the TimePoint (A) and Clone (B) data set, respectively. There is less difference
in the global precision and recall using a tolerance-aided retention time correction than using manual tolerances for the feature cluster
extraction as seen in Fig. 5. However, a decrease, especially in precision, is seen because of the larger retention time differences leading to
larger time tolerances set for feature cluster extraction for the tolerance-aided run. This can be compared with using only slightly too wide

parameters for the same type of analysis as in Fig. 5.

addition, such a combined approach can be used when there
are few identifications in a file set.

Comparison to msinspect and OpenMS—The Proteios
alignment was run with both msinspect and OpenMS features
and the respective alignments compared using the same fea-
ture sets, i.e., msinspect alignment was compared with Pro-
teios run on msinspect features and OpenMS alignment was
compared with Proteios using OpenMS features. The align-
ments run in both msinspect and OpenMS use a reference-
based approach.

As can be seen in Fig. 8, Proteios in general shows con-
siderably higher precision and recall values for all sets. This
can be because of a number of factors. First, the automati-
cally selected reference files by msinspect and OpenMS were
in the end point ratio cohort for both data sets. This could
introduce an important amount of missed matches into the
analysis using files containing very different samples as seen
in (5). Furthermore, the default settings for the run OpenMS
alignment module applies a linear retention time correction
model, which may fail to correctly compensate for the reten-
tion time differences (36).

Analysis of the feature clusters used to compute precision
and recall from msinspect showed that for the TimePoint data
set an important amount of clusters (51%) contained 11 out of
12 possible files and 96% of those were because of system-
atic missing values in one file in the third ratio cohort. Corre-
sponding analysis of the OpenMS clusters showed a similar
distribution; 40% were missing one file and of those 98%
were because of one specific file. This file alone is therefore
responsible for introducing a considerable amount of errors in
alignment and subsequently much of the decrease in true
positives and associated recall seen in Fig. 8. Evidently,
the computed matching order as well as repeated pairwise
matching of every file in Proteios makes the software more
robust against introduction of such missing values as seen by
the higher recall in the figure. Furthermore, because the
“—optimize” option in msinspect optimizes the number of
clusters containing only one feature from each sample (25), a
low number of false positives were found. Nevertheless, a
handful of clusters containing more than 20 features were
observed and contributed strongly to the comparative reduc-
tion in precision. For the OpenMS alignment, every cluster
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Fic. 8. Identity-based recall and precision computed for both msinspect, OpenMS and Proteios. A, TimePoint data set (B) Clone data
set for msinspect features. C, TimePoint data set and (D) Clone data set for OpenMS features. The general decrease of precision and recall
for the TimePoint data set is most likely because of the timespan in which samples were run as well as one overall deviating file. The figure
shows generally higher recall and precision values for the Proteios alignment, indicating a better quality analysis.

TaBLE |
The first data set used to evaluate the alignment algorithm, consisting of
linear mixes of the Desiree potato clone pre- and three days postinfec-
tion, respectively, with Phytophthora infestans. The technical replicates
are ordered in each ratio cohort on date of acquisition. Two of the
technical replicates in the first ratio cohort and one in the second are run
almost 5 months after the rest

TimePoint
Oh Desiree + 3d
Desiree
Technical Replicate

Ratio 1 Oh 1
2

3

Ratio 2 2/30h + 1/3 1
3d 2

3

Ratio 3 1/3 Oh + 2/3 1
3d 2

3

Ratio 4 3d 1
2

3

contained a maximum of 12 features, resulting in the high
precision seen in the figure. This however, seems to have

TaBLE Il
The second data set used to evaluate the alignment algorithm,
consisting of linear mixes of the Sarpo Mira and SW93-1015 potato
clones 6 hours postinfection with Phytophthora infestans. The tech-
nical replicates are ordered in each ratio cohort on date of acqui-
sition and run within a week’s time

Clone

6 h Sarpo Mira + 6h
SW93-1015
Technical Replicate

Ratio 1 SW93-1015

Ratio 2 2/3 SW-1015 + 1/3
Sarpo Mira

Ratio 3 1/3 SW-1015 + 2/3
Sarpo Mira

Ratio 4 Sarpo Mira

WN 2 WN—=2WN = WN =

come at a cost of recall, even in the comparatively well-
behaved Clone data set.
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Fic. 9. The number of feature clusters in every step of the quantification evaluation; number of clusters used for evaluation (original),

number of clusters passing the CV cutoff (CV cutoff), and the number of clusters where the linear response could not be rejected at
a significance level of 0. 05 (F-test). A, and (C) correspond to the TimePoint data set and (B) and (D) to the Clone data set. Features from
msinspect were used in (A) and (B), whereas OpenMS features were used in (C) and (D). Proteios shows a higher number of clusters for both
software comparisons, which is a result of substantially higher recall for the alignment. Overall, similar ratios of clusters are considered correctly
quantified, which is an indication of the relatively lower difference in precision between the software solutions. The high agreement between
Proteios runs using only the evaluated data set or the complete set of files shows the reproducibility of the analysis, irrespective of how many

files are aligned at once.

Quantification Evaluation—To assess the performance of
the complete data analysis, the quantification evaluation in (5)
was implemented. Two data sets were combined in linear
ratio mixes as seen in Table | and Table Il and the expected
linear response evaluated. This method is used rather than
spiked-in peptides, as using real samples makes it possible to
test the analysis for the density, dynamic range and complex-
ity seen in label-free data. The number of feature clusters with
values in all files in the data set is an indicator of the sensitivity
of the alignment (high recall), and the number of clusters that
show the expected quantitative profile can be used to distin-
guish high quality clusters obtained by the algorithm (high
precision). We evaluated the full Proteios workflow, as well as
mslinspect and OpenMS, using this strategy on both data
sets. Furthermore, to evaluate the scalability of the Proteios
algorithm, and its dependence on the number of files in a data
set, we also analyzed the two datasets at the same time
together with the other 24 files, totaling 48 files.

The two data sets were normalized by a scaling factor cor-
responding to the TIC of features with common identities in all
files before alignment. For the Clone data set, the feature clus-
ters containing features in all 12 files were analyzed. For the
TimePoint data set, the number of feature clusters containing
features in all 12 files was considerably lower for msinspect (156
clusters) and OpenMS (292 clusters) compared with Proteios
(1763 and 969 clusters, with mslnspect and OpenMS features,
respectively). This is a result of the lower recall seen in Fig. 8 and
shows Proteios’ relatively larger capacity for aligning deviating
samples. However, to increase the number of clusters for com-
parative quantification evaluation, the outlier file was disre-
garded and feature clusters containing features in at least 11
files were used for consecutive evaluation of the TimePoint data
set. To evaluate the scaling capabilities, the two file sets were
extracted from the large data set in the same manner.

As a first point for determining the quantification quality, a
CV (coefficient of variation) cutoff was added to limit the
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variance allowed between technical replicates. This cutoff
was set to 20%, based on the technical variability seen in (37).
The data was subsequently log transformed using the natural
logarithm and a least squares linear regression was per-
formed between the different mixing ratios, to assess if the
expected linear relation between the points was obtained.
Linearity was estimated by the lack-of-fit sum-of-squares F-
test (38). A low p value (<0.05 is used here) will lead to the
rejection of the null hypothesis of a linear model, i.e., there is
a systematic variation in the feature clusters that the linear
model cannot account for. Quantification examples as well as
their corresponding p values can be found in supplemental
Figs. S4-S6. Corresponding R2 (coefficient of determination)
values have also been computed for the examples for com-
parison and are displayed in the plots.

Fig. 9 shows the original number of clusters analyzed com-
pared with the ones passing the CV cutoff and F-test, respec-
tively. In Fig 9A and 9C it is seen that relatively few clusters in
the TimePoint data set compared with the Clone data set
passed the CV cutoff. Inspection of the data set showed that the
first ratio cohort containing two recent and one older file was
typically responsible for not passing the CV cutoff, this could
perhaps be alleviated by a different normalization strategy.

The null hypothesis of linearity was rejected for 20-22% of
the clusters that did pass the CV cutoff at a significance level
of 0.05, irrespective of software run or data set. Only the
mslnspect run of the TimePoint data set had a slightly higher
rejection rate of 25%. Because the alignment precision shown
in Fig. 8 was high and differed relatively little between soft-
ware and a shared feature cohort was used, a large difference
in quantities for the features that are correctly aligned cannot
be expected. The effect of the difference in alignment recall
can however be seen in the lower amount of clusters com-
pared with Proteios for both OpenMS and msinspect.

The high level of agreement between the two Proteios runs
(12 files or 48 files) shows the reproducibility of the analysis
when running larger sample cohorts. A slightly larger amount
of feature clusters originally for the large data set can be
expected as every file is aligned more often, but as can be
seen, the difference disappears as the CV cut off is applied.
This indicates that the number of times a file is aligned in the
smaller data sets is sufficient to produce the same amount of
good quality clusters.

In general, the total number of quantified clusters fulfilling
the linearity and CV criteria is relatively low compared with the
total number of clusters. This however does not mean that all
other clusters are products of errors in alignment, but also
reflect natural variation in the underlying data and artifacts
introduced early in the analysis. Especially peak splitting dur-
ing feature detection could contribute to increased variance
and failure to pass the CV cutoff. There are furthermore diffi-
culties with assessing quantification for low-abundance fea-
tures close to the detection limit, and possibly a less strict CV
cutoff should be used for these clusters. The abundance for

such features may also be missing from the feature detection
stage and affect the basis for quantification evaluation. The
clusters containing as complete a set of features as possible
are therefore the most informative in an evaluation situation
and as seen above, the Proteios alignment algorithm resulted
in a comparatively large as well as reproducible number of
high quality clusters.

In conclusion, we have presented an integrated workflow
for label-free LC-MS which utilizes quality-control to optimize
parameter settings, and also to evaluate the analysis out-
come. No spiked-in or specific sets of samples are necessary
to overview the data analysis as we introduce data set-inde-
pendent quality metrics to monitor the performance of the
system. Using this setup we integrated a novel adaptive align-
ment algorithm into the Proteios Software Environment. The
parameter-free environment guarantees a reproducible anal-
ysis for a sample cohort as well as user-friendliness. Incorpo-
ration of real time quality control in combination with a com-
puted matching order in the alignment algorithm minimizes
possible errors in alignment. This ensures the reliable peptide
and subsequent protein quantification necessary for robust sta-
tistical analysis in differential expression proteomics studies.
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