
Biosynthesis of the Urease
Metallocenter*
Published, JBC Papers in Press, March 28, 2013, DOI 10.1074/jbc.R112.446526

Mark A. Farrugia‡, Lee Macomber§, and Robert P. Hausinger‡§1

From the Departments of ‡Biochemistry and Molecular Biology and
§Microbiology and Molecular Genetics, Michigan State University,
East Lansing, Michigan 48824

Metalloenzymes often require elaborate metallocenter
assembly systems to create functional active sites. Themedically
important dinuclear nickel enzyme urease provides an excellent
model for studying metallocenter assembly. Nickel is inserted
into the urease active site in a GTP-dependent process with the
assistance of UreD/UreH, UreE, UreF, and UreG. These acces-
sory proteins orchestrate apoprotein activation by delivering
the appropriate metal, facilitating protein conformational
changes, and possibly providing a requisite post-translational
modification. The activation mechanism and roles of each
accessory protein in urease maturation are the subject of ongo-
ing studies, with the latest findings presented in thisminireview.

Metallocenters serve essential biological functions such as
transferring electrons, stabilizing biomolecules, binding sub-
strates, and catalyzing desirable reactions. Synthesis of these
sites must be tightly controlled because simple competition
betweenmetalsmay lead tomisincorporationwith loss of func-
tion and because excess cytoplasmic concentrations of free
metal ions can have toxic cellular effects. In many cases, cells
have evolved elaborate metallocenter assembly systems that
sequestermetal cofactors from the cellularmilieu, thus offering
protection fromadventitious reactionswhile ensuring the fidel-
ity of metal insertion. In addition to maintaining metal home-
ostasis, these assembly systems facilitate protein conforma-
tional changes and active site modifications that are required
for full enzymatic activity. Several metalloproteins have been
investigated as models to understand the mechanisms and
dynamics of active site assembly and the complex orchestra-
tions of their metallocenter assembly systems. In this minire-
view, we discuss recent findings related to maturation of the
nickel-containing enzyme urease.

Introduction to Ureases

Urease is of great medical, agricultural, and historical signif-
icance. The gastric pathogenHelicobacter pylori uses urease for
localized neutralization of pH, allowing it to flourish in the
stomach (1), whereas the uropathogen Proteus mirabilis uses it
to colonize and form stones in the urinary tract (2). In agricul-
ture, urea is both a plantmetabolite and a fertilizer degraded by
plant ureases (3); however, urea is also metabolized by soil bac-

teria, which can lead to unproductive volatilization of ammonia
andharmful soil alkylation (4). Also of interest, urease from jack
bean (Canavalia ensiformis) seeds was the first enzyme to be
crystallized (5) and the first protein shown to contain nickel (6).
Finally, as described in subsequent sections, urease is a signifi-
cantmodel enzyme that has advanced our understanding of the
mechanisms of metallocenter assembly.
This enzyme catalyzes the hydrolysis of urea to ammonia and

carbamic acid, which subsequently decomposes to another
molecule of ammonia and bicarbonate (7–9): H2N-C(O)-NH2

� H2O 3 NH3 � H2N-COOH and H2N-COOH � H2O 3
NH3 � H2CO3.
Regardless of the source of the enzyme, the overall protein

structures exhibit extensive similarities. Most bacterial ureases
have three subunits in a (UreABC)3 configuration (Fig. 1A), as
exemplified by proteins from Klebsiella aerogenes (10, 11) and
Sporosarcina (formerly Bacillus) pasteurii (12). InHelicobacter
species, a fusion of two genes (corresponding to K. aerogenes
ureA and ureB) results in only two subunits, yielding a
((UreAB)3)4 structure (Fig. 1B) (13). In fungi and plants, all ure-
ase domains are encoded by a single gene such as JBURE-I for
jack bean, with the trimeric protein forming back-to-back
dimers, ((�)3)2 (Fig. 1C) (14). The metallocenter structures of
these proteins are identical (Fig. 1D), with two Ni2� ions
bridged by a carbamylated Lys residue and water; one metal
additionally coordinates two His residues and a terminal water
molecule, and the second Ni2� ion also coordinates two His
residues, one Asp residue, and water. Aspects of the enzyme
mechanism remain controversial (7, 9, 15–17), but most pro-
posals suggest that the urea carbonyl oxygen displaces the ter-
minal water from the Ni2� ion shown on the left (Fig. 1D), with
another Ni2�-bound water molecule acting as a nucleophile to
achieve catalysis. Although much is known about the enzyme
active site, themechanism of nickel insertion into the protein is
still poorly understood.

Prototypical Urease Activation Pathway

The biosynthesis of the urease dinuclear nickel metallo-
center generally requires the participation of several accessory
proteins (7, 9). For example, the canonical urease system of
K. aerogenes (involving ureDABCEFG expression in Esche-
richia coli) utilizes UreD, UreE, UreF, and UreG to facilitate
activation of the UreABC apoprotein (Table 1) (18, 19). Many
other ureolytic bacteria contain these four auxiliary genes
flanking the enzyme subunit genes (7–9, 20), although the gene
order often changes, and ureD is renamed ureH inHelicobacter
spp. (21). Homologs of ureD/ureH, ureF, and ureG exist in ure-
ase-containing eukaryotes (3, 22, 23); however, the eukaryotic
accessory genes are not adjacent to the urease structural genes,
and sequences related to ureE have not been identified. Below,
we describe the four prototypical urease accessory proteins,
their complexes with each other and with urease, and their
proposed roles in urease activation.
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UreD/UreH: Scaffold for Recruitment of Other Accessory Pro-
teins and Facilitator of Activation—Characterization of UreD/
UreH is most advanced for the K. aerogenes and H. pylori pro-
teins, which exhibit only 25% identity. Heterologous expression
of ureD or ureH in E. coli yields insoluble products (24, 25);
however, these problems were circumvented by different
approaches. For the K. aerogenes protein, a maltose-binding
protein (MBP)2 fusion variant of UreD is soluble and function-
ally replaces the native protein (26). In the case of H. pylori
ureH, solubilization is achieved by coexpression with ureF,
which provides a UreH:UreF complex (25). The structure of
this complex (ProteinData Bank code 3SF5) and that of aUreH:
UreF:UreG complex3 reveal a novel �-helical fold for UreH,

with 17 �-strands and two �-helices (Fig. 2), that resembles
SufD (code 1VH4), amember of a scaffold protein complex that
functions in iron-sulfur cluster biosynthesis (27). Whereas no

2 The abbreviation used is: MBP, maltose-binding protein.
3 K.-B. Wong, personal communication.

FIGURE 1. Urease structures. A, three-subunit bacterial ureases (UreA, red; UreB, blue; UreC, green; with two more copies, yellow) assemble into a trimer of
trimers (Protein Data Bank code 1FWJ). B, two-subunit Helicobacter ureases (a fusion of the two small domains, blue; large subunit, green; with two more copies,
yellow) form a trimer of dimers, which interacts with three more trimers (gray surface view) to form a dodecamer of dimers (code 1E9Z). C, single-subunit urease
of fungi and plants (a fusion of all three domains, green; with two more copies, yellow) forms a trimer that stacks back-to-back with a second trimer (gray surface
view) (code 3LA4). D, dinuclear Ni2� metallocenter of urease (Ni2�, magenta; solvent, red).

FIGURE 2. Structure of UreH:UreF:UreG. Shown are two views of the (UreH:
UreF:UreG)2 complex from H. pylori (UreH, UreF, and UreG in shades of yellow,
gray, and magenta, respectively). A GDP molecule (cyan) is located in each UreG.

TABLE 1
Selected proteins needed for urease activation

K. aerogenesa H. pylori Plants Function

UreA Enzyme subunit
UreB UreAb Enzyme subunit
UreC UreBc Ureased Enzyme subunit
UreD UreH UreD Scaffold protein
UreE UreE —e Metallochaperone
UreF UreF UreF Potential fidelity enhancer
UreG UreG UreG GTPase

a A similar set of proteins is present in many other bacteria, including S. pasteurii.
b Equivalent to a fusion of UreA and UreB of K. aerogenes.
c Equivalent to UreC of K. aerogenes.
d Equivalent to a fusion of UreA, UreB, and UreC of K. aerogenes.
e —, no UreE ortholog has been detected in plants.
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obviousmetal-binding sites are apparent inUreH, 2.7Ni2� ions
bind per UreD protomer (26).
Several studies have demonstrated that UreD/UreH binds to

urease. Enhanced expression of K. aerogenes ureD in the pres-
ence of the cognate structural proteins results in a UreABC:
UreD complex that contains zero to three molecules of UreD/
(UreABC)3 according to two-dimensional (native and de-
naturing) gel electrophoresis (24). Although a crystal structure
is not available, a model of this species has been created (Fig. 3)
based on several lines of evidence (28). For example, small angle
x-ray scattering studies of this complex yielded data that are
best modeled with UreD binding to the vertices of the triangu-
lar urease (29). Chemical cross-linking of this species con-
firmed that UreD binds to the UreB and UreC subunits (30).
MBP-UreD associates in vivo with UreABC (26) but not with
UreAC (i.e. urease missing UreB) (40). Similarly, yeast two-hy-
brid studies of H. pylori proteins identified interactions
between UreH and UreA (31, 32). Of great functional signifi-
cance, in vitro studies with purified K. aerogenes components
showed that UreD enhances the extent of activation of urease
apoprotein. For example, whereas �15% of the urease apopro-
tein generates functional sites when incubated with 100 �M

NiCl2 and 100 mM bicarbonate (needed to carbamylate the Lys
metal ligand) (33), �30% is made functional when using the
UreABC:UreD species (34). Along with results from additional
studies (see below), these findings led to the current hypothet-
ical role of UreD/UreH as both a scaffold for recruiting other
accessory proteins and a direct facilitator of nickel insertion
into the active site.
UreF: Checkpoint for Metallocenter Fidelity—UreF proteins

also are best characterized for K. aerogenes and H. pylori. Het-
erologous expression of K. aerogenes ureF yields insoluble
product (35); however, MBP-UreF (36) and UreE-UreF (37)
fusion proteins are soluble, with the latter protein shown to
function in cellular activation of urease. The native form of
H. pylori UreF is soluble and exhibits an equilibrium between
the monomeric and dimeric species (25). The protein crystal-
lizes as an all-�-helical dimer (Protein Data Bank code 3CXN),
but it lacks theC-terminal 21 residues due to proteolysis, and its
N-terminal 24 residues are disordered (38). The intact struc-
ture of UreF (Fig. 2) is available from the UreH:UreF complex

(code 3SF5) and the UreH:UreF:UreG complex,3 in which a
UreF dimer (with boundUreGwhenpresent) bridges twoUreH
protomers (25). These structures confirm the proposed inter-
actions between UreF and UreH that were based on yeast two-
hybrid and tandem affinity purification studies (31, 32, 39).
UreH stabilizes the N-terminal helix of UreF and exposes a
conserved Tyr residue at position 48. This residue and the
highly conserved C terminus make up one face of the three-
dimensional UreF dimer (shown to be the UreG-binding site;
see below). The interface between UreF and UreH is poorly
conserved, likely due to the low similarities within theUreF and
UreD/UreH sequences.
The assembly model shows UreF binding to UreABC:UreD

to form UreABC:UreD:UreF (Fig. 3), a complex that can be
directly isolated from cells expressing the corresponding genes
(35). Alternatively, in vitro incubation of UreE-UreF with Ure-
ABC:UreD provides UreABC:UreD:UreE-UreF (37). Native gel
electrophoresis of UreABC:UreD:UreF revealed multiple spe-
cies, and zero to three pairs of UreD:UreF are suggested to bind
per (UreABC)3. Small angle x-ray scattering experiments sug-
gested a close proximity between UreD and UreF, with both
accessory proteins binding in the vicinity of UreB (29). Chem-
ical cross-linking results support this configuration and also
provide evidence for a conformational change in urease within
theUreABC:UreD:UreF complex (30); specifically, UreB is pro-
posed to undergo a hinge-like motion that enhances access to
the nascent active site (40). Following in vitro activation of Ure-
ABC:UreD:UreF, the urease-specific activity is similar to that
obtainedwithUreABC:UreD; however,much lower concentra-
tions of bicarbonate are required, and the process is more
resistant to inhibition by Ni2� (35). UreF serves as the binding
site for the UreG GTPase within the UreABC:UreD:UreF com-
plex (see below). A role as a GTPase-activating protein was
suggested for UreF (41), but the UreH:UreF:UreG structure
(which shows UreF binding UreG opposite the GTP site) (Fig.
2) and experimental evidence derived from mutagenesis and
GTPase activity studies (42) argue against this proposal. For
example, a urease activation complex containing aUreF variant
exhibited enhanced GTPase activity compared with the com-
plex with wild-type accessory protein. UreF thus appears to
gate the GTPase activity of UreG so as to promote efficient

FIGURE 3. Model of K. aerogenes urease activation. The trimer-of-trimers urease apoprotein (UreA, red; UreB, blue; UreC, green) either sequentially binds
UreD (yellow), UreF (gray), and UreG (magenta) or binds the UreDFG complex (only one protomer of each protein is shown, but the isolated complex contains
two protomers of each). Formation of the active enzyme requires CO2 to carbamylate Lys-217 at the native active site, GTP binding to and hydrolysis by UreG,
and nickel delivery by dimeric UreE (cyan). It remains unclear whether the accessory proteins are released as a UreDFG unit or as individual proteins.
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coupling of GTP hydrolysis and metallocenter biosynthesis,
thereby enhancing the fidelity of urease activation.
UreG: GTPase for Urease Activation—In contrast to UreD/

UreH and K. aerogenes UreF, which are insoluble, UreG is sol-
uble and has been characterized from several sources (43–47).
The K. aerogenes protein is a monomer that binds 1 eq of Ni2�

or Zn2� (Kd � 5 �M for either metal) (48). Mycobacterium
tuberculosis (45) and S. pasteurii (44) possess dimeric UreG
proteins, with the latter binding twoZn2� ions (Kd � 40�M) or,
more weakly, larger numbers of Ni2�. The H. pylori protein
dimerizes in the presence of Zn2� (Kd � 0.3 �M, 1/dimer) but
not with Ni2�, which binds more weakly (Kd � 10 �M, 1.8/
monomer) (46). X-ray absorption spectroscopy of the zinc-
bound protein revealed a trigonal bipyramidal site including
two His and two Cys residues, likely positioned at the subunit
interface (49). The soybean (Glycine max) protein also exhibits
a monomer/dimer equilibrium, with the dimer stabilized by
Zn2�, but the binding thermodynamics are quite complex (47).
No crystal structure is available for free UreG, perhaps related
to its intrinsic disorder (50); however, UreG homology models
(44–47) have been created by using HypB (required for nickel
insertion into [Ni-Fe] hydrogenase) (51, 52) fromMethanocal-
dococcus jannaschii (a dimeric GTPase with a dinuclear zinc
site at the subunit interface (53)) as the template, and the struc-
ture of the H. pylori UreH:UreF:UreG complex is known (Fig.
2).3 The latter complex has two protomers of each peptide, with
the two UreG molecules in contact as expected for a protein
able to dimerize. Although UreG is a GTPase, the free protein
exhibits slow (44, 45, 47) or no (43, 46, 48) GTPase activity.
When present in urease activation complexes, GTPase activity
is observed (54), and substitution of a key residue in the GTP-
binding P-loop motif of K. aerogenes or H. pylori UreG abol-
ishes the cell’s ability to make active urease (43, 55).
A UreABC:UreD:UreF:UreG complex (Fig. 3) forms in

K. aerogenes cultures grown without Ni2� (56). The complex
can also be accessed by mixing UreG with UreABC:UreD:UreF
(54). Furthermore, UreABC:UreD:UreE-UreF:UreG is made in
cells producing the UreE-UreF fusion protein (38). Mutagene-
sis studies identified Asp-80 as a key UreG residue involved in
this interaction (48) and defined several residues along one face
of UreF as the UreG-docking site (42). Using standard activa-
tion conditions, �60% of the nascent active sites in UreABC:
UreD:UreF:UreG become active (54). Significantly, when using
more physiological levels of bicarbonate andNi2�, the resulting
activity is decreased, but activation is greatly facilitated byGTP.
UreG is active as a GTPase when present in this complex.
UreD/UreH:UreF:UreG: Molecular Chaperone Complex for

Urease Activation—As an alternative to sequentially adding
each accessory protein to the urease apoenzyme, the hetero-
trimer may bind as a unit to urease (Fig. 3). A UreD:UreF:UreG
complex forms in vivo when the corresponding K. aerogenes
genes are expressed independently of the structural compo-
nents (43); however, this species is poorly soluble and not well
characterized. This solubility problem is overcome in theMBP-
UreD:UreF:UreG complex, and this species binds to urease but
not to urease lacking UreB (40). MBP-UreD:UreF:UreG con-
tains two copies of eachprotomer according to gel filtration and

mass spectrometric studies.4 The structure of the analogous
UreH:UreF:UreG complex from H. pylori (Fig. 2)3 reveals two
UreG protomers binding to one face of the UreF dimer, with
eachUreG interactingwith bothUreF protomers andwith each
UreH interacting with a single UreF. A GDP is bound opposite
ofUreFwithin eachUreG, confirming that the former protein is
not aGTPase-activating protein. A potentialmetal-binding site
is deeply buried and bridges the twoUreGmolecules, with each
protomer providing His and Cys residues.
UreE: A Nickel Metallochaperone—A hint that UreE might

be involved in nickel delivery to urease is given in the sequence
of theK. aerogenes protein, which reveals 10 His residues in the
C-terminal 15 residues, thus resembling a His-tagged protein
(18). Indeed, the purified protein binds �6 eq of Ni2�/dimer
(57). Not all UreE proteins contain this His-rich extension (58),
and a truncation variant of theK. aerogenes protein lacking this
region (H144* UreE) retains its ability to facilitate urease acti-
vation (59). The crystal structure of copper-boundK. aerogenes
H144* UreE (Protein Data Bank code 1GMW) reveals three
metal-binding sites, including an interfacial site with His-96
fromeach subunit and peripheral sites in each protomer involv-
ing His-110 and His-112 (60). Equilibrium dialysis measure-
ments confirm the binding of Ni2� to multiple distinct sites in
the truncated protein (61). Mutagenesis studies demonstrated
that only the interfacial site is required for UreE function (62).
The full-length zinc-bound S. pasteuriiUreE dimeric structure
(code 1EAR) exhibits close similarity to the K. aerogenes pro-
tein, lacks the C-terminal His-rich region and the two periph-
eral sites, and binds a single Zn2� ion (presumably substituting
for Ni2�) at the interfacial site (63). Structures of several forms
of H. pylori UreE are known, including the nickel-bound spe-
cies (codes 3L9Z and 3TJ8) (64, 65), in which the Ni2� is coor-
dinated at the interfacial site with an additional His residue
provided from the C terminus. These highly soluble proteins
are proposed to bind metal ions in the cytoplasm and specifi-
cally deliver nickel to urease within the complex of other acces-
sory proteins.
UreE formsUreG:UreE andUreABC:UreD:UreF:UreG:UreE

complexes, with the latter species likely to serve as the ultimate
urease activation machinery (Fig. 3). For the H. pylori compo-
nents, two UreG protomers bind the UreE dimer, with the
interaction stabilized by Zn2� but not Ni2� (66). In contrast,
one UreG monomer from K. aerogenes binds to its cognate
UreE dimer, with the interaction stabilized by either Zn2� or
Ni2� (48). Ligand identities in the metal-stabilized UreE:UreG
complexes have not been reported. The transient formation of
a UreABC:UreD:UreF:UreG:UreE complex is suggested by the
generation of fully active urease when UreABC:UreD:UreF:
UreG is incubated with UreE, bicarbonate, Ni2�, andGTP (67).
In addition, UreABC:UreD:UreF:UreG:UreE can be directly
isolated from cells that synthesize aG11PUreB variant (29) or a
Strep tag II variant of UreG when the culture contains Ni2�

(48).
The current working model for urease activation with the

prototypical accessory proteins (Fig. 3) involves the binding of

4 M. A. Farrugia, L. Han, Y. Zhong, J. L. Boer, B. J. Ruotolo, and R. P. Hausinger,
unpublished data.
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UreD, UreF, and UreG to the urease apoprotein, either sequen-
tially or as a molecular chaperone unit, followed by interaction
with the metallochaperone UreE. This activation complex car-
ries out metallocenter assembly by steps that include Lys car-
bamylation, nickel incorporation, and GTP hydrolysis. No evi-
dence indicates that accessory proteins facilitate the interaction
of Lys with carbon dioxide at the nascent active site, but this
possibility is not excluded, and it is reasonable to suspect that
the nearby His residues assist in this reaction. The structure of
UreABC bound to UreD/UreH:UreF:UreG is not defined, but
two distinct models have been proposed. Fig. 3 shows a com-
putational model (28) derived from studies using the K. aero-
genes components. In this case, each vertex of the urease trimer
binds a single molecule of UreD, UreF, and UreG, requiring
dissociation of (UreD:UreF:UreG)2. By contrast, (UreH:UreF:
UreG)2 ofH. pylori (Fig. 2) has been proposed to bind at 2-fold
symmetry sites of its cognate urease dodecamer so that the
accessory protein complex remains intact (25). Such an inter-
action is precluded for the three-subunit bacterial ureases and
the single-subunit eukaryotic ureases (Fig. 1), suggesting possi-
ble species-specific differences in the properties of this acces-
sory protein complex. It remains unclear howUreE binds to the
urease activation complex and how nickel is transferred from
UreE to the active site; one proposal suggests intermediate
binding sites on UreG and UreD (26). The function of GTP
hydrolysis by UreG in this process remains poorly understood.
The net outcome from the activationmachinery is to transform
urease apoprotein into the holoprotein, with dissociation of the
accessory proteins for possible reuse.

Variations in Urease Activation Systems

Additional Accessory Proteins—Additional genes have been
shown to facilitate urease activation in some microorganisms.
For example, located just 5� of the typical urease genes in Yers-
inia pseudotuberculosis is yntABCDE, which encodes an ATP-
binding cassette-typemetal transporter; deletion of these genes
eliminates urease activity and reduces the Ni2� uptake rate
(68). Evidence for a similar Ni2� transporter dedicated to ure-
ase in Actinobacillus pleuropneumoniae comes from recombi-
nant expression of the urease gene cluster with or without its
adjacent cbiKLMQ genes in E. coli (69). In the same manner,
heterologous expression of the Bacillus sp. TB-90 urease gene
cluster and its deletion mutants indicates a nickel-dependent
role for ureH (unrelated to ureH of H. pylori) in urease activa-
tion;Bacillus ureH is suspected to encode aNi2�permease (70).
Many other microorganisms contain Ni2� transporters and
Ni2� permeases (with their levels often controlled by nickel-de-
pendent transcriptional regulators) that enhance urease activ-
ity by providing the essential metal ion (52, 71, 72), but gener-
ally the corresponding genes are distant from the urease genes.
For example, H. pylori uses NixA, AbcABCD, and the outer
membrane transporterHP1512 to take upNi2�, and deletion of
these genes leads to reductions in urease activity (73–76). Of
additional interest, hypA and hypB of this microorganism are
required for urease activity, but the corresponding gene prod-
ucts are not involved in Ni2� uptake (77). A direct competition
is observed between HypA and UreG for binding UreE (78).
HypA and HypB are generally associated with metallocenter

biosynthesis of [Ni-Fe] hydrogenases, but they appear to serve a
dual role here of still undefined function.
Missing Accessory Proteins—Plants appear to lack homologs

to ureE (3), and a large number of ureolytic microorganisms
lack one or more of the standard set of urease genes (9, 79). A
dramatic example of this situation exists in Bacillus subtilis,
where the genome reveals the presence of only the structural
urease genes; nevertheless, the cells synthesize an active nickel
urease, although with poor efficiency (80). In many other cases,
however, the sequenced microorganisms were not examined
for urease activity.
Iron Urease—Helicobacter mustelae, a gastric pathogen of

ferrets, contains two urease gene clusters: ureABIEFGH and
ureA2B2 (81). The former cluster, closely related to that found
in H. pylori, is induced by Ni2� and encodes two structural
genes, a proton-gated urea channel (82), and the four standard
maturation proteins. The latter cluster is inversely regulated by
Ni2� and encodes only the two structural genes (83). Urease
activity is retained in ureB and ureB/ureG mutants, indicating
that ureA2B2 encodes an active urease, and its activation does
not require the standard urease-specific GTPase. This finding
was confirmed and extended by results showing that heterolo-
gous expression of ureA2B2 in E. coli generates active enzyme
(84). Purified UreAB is a conventional nickel urease, whereas
isolated UreA2B2 is an oxygen-labile iron-containing enzyme.
The structure of oxidized UreA2B2, a dodecamer like that
shown in Fig. 1B, reveals a dinuclear active site that is remark-
ably similar to the metallocenter of conventional ureases (84).
This finding is consistent with the high degree of similarity in
their sequences, e.g. UreA is 57% identical to UreA2, and UreB
is 70% identical to UreB2. Two other strains of Helicobacter,
Helicobacter felis and Helicobacter acinonychis, have similar
arrangements of urease genes. The hosts of these pathogens,
both in the Felidae (cat) family, are carnivores like the ferret,
leading to speculation that these bacteria have evolved an iron
urease because of their association withmeat diets that are rich
in iron and depleted in nickel (83). When the three UreA2B2
sequences are aligned and compared with the sequences of
nickel ureases, a prominent cluster of distinct residues are seen
to encircle the channel into the active site (84). These results are
compatible with an interaction between UreA2B2 apoprotein
and an iron delivery protein. One possibility is that activation of
iron urease makes use of a general iron delivery system that is
used for maturation of the many iron proteins in the cell. The
oxidized state of UreA2B2, suggested to be a �-oxo-bridged
Fe(III)-O-Fe(III) species, probably forms naturally within the
microaerophilic microorganism, and the cell likely has a mech-
anism to regenerate the active diferrous species (85). The ability
to form active iron urease in E. coli using only ureA2B2 implies
that urease-specific accessory proteins are not required for Lys
carbamylation.

Future Directions

As should be clear from the preceding discussion, many
questions remain to be answered about how the urease metal-
locenter is synthesized. Significantly, these questions also often
apply to the biosynthesis of other types of metallocenters such
as that found in [Ni-Fe] hydrogenases, which utilize the HypB
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GTPase alongwith SlyD andHypAmetallochaperones for their
activation (51, 52). For example, it is unknown whether metal-
lochaperones such as UreE interact withmembrane-associated
transport proteins to couple metal binding to metal transport.
It is also unclear how UreE, a protein that binds several metal
ions, is able to specifically deliverNi2� to urease and to function
in an in vitro activation system even when a Ni2� chelator with
greater affinity is present (67). The known interactions between
UreE and UreG, along with the nickel-binding capabilities of
some UreG proteins, suggest that nickel may be delivered to
UreG before subsequently making its way to the nascent active
site. Further effort is needed to ascertain the function of the
UreG GTPase activity; it may be associated with a nickel trans-
fer step, a conformational change of a protein, a protein disso-
ciation step, or some other process. The mechanism by which
UreF enhances urease activation fidelity (42) is unknown. UreD
appears to serve as a scaffold for binding other proteins but also
exhibits the direct effect of increasing activation efficiency by
an unknown mechanism. Following activation, it is unclear
whether UreDFG is released as a unit or as the individual pro-
teins. The mechanisms used for activation of nickel urease in
organisms lacking one or more accessory proteins demand fur-
ther clarification. Finally, the discovery of iron urease in
H. mustelae raises questions such as which other organisms
contain this type of enzyme, how the iron is delivered, what
dictates the metal specificity, and could other metals be used in
selected cases.
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