ADDITIONS AND CORRECTIONS

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 288, NO. 19, p. 13640, May 10, 2013 © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

VOLUME 288 (2013) PAGES 1047–1054 DOI 10.1074/jbc.A112.397521

Effect of mutations of arginine 94 on proton pumping, electron transfer, and superoxide anion generation in cytochrome *b* of the bc_1 complex from *Rhodobacter* sphaeroides.

Yuan-Gang Qu, Fei Zhou, Linda Yu, and Chang-An Yu PAGE 1050:

The proton translocation rate of Fig. 3 was monitored at A_{457} (y axis) and not A_{556} as shown in the original figure.

PAGE 1053:

Fig. 7 should be modified as shown below.

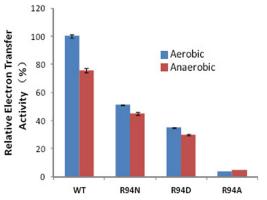


FIGURE 7. Electron transfer activity changes in the wild-type and mutant bc_1 complexes under aerobic or anaerobic conditions. The activity of wild-type bc_1 under the aerobic conditions is referenced as 100%. Data represent an average of three experiments. *Error bars* indicate S.D.

Fig. 8 should be modified as shown below.

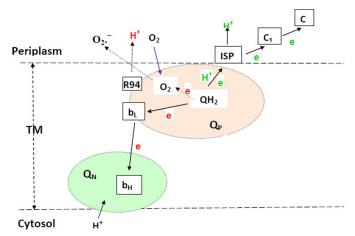


FIGURE 8. Schematic depiction of the transfer of the two electrons and two protons of a ubiquinol at the Q_P pocket when oxidized in the bc_1 complex. The first electron and proton are in *green*, and the second electron and proton are in *red*. The *purple arrow* indicates oxygen molecules that are diffused to the Q_P pocket. *Dashed arrows* indicate plausible electron, proton, and superoxide transfer routes. Q_P and Q_N denote quinol oxidation and the quinone reduction pocket. *QH*₂, ubiquinol; *TM*, transmembrane region; *ISP*, Rieske iron-sulfur protein.

Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts.

