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The 2009 swine-origin HIN1 influenza, though antigenically novel to the population at the time, was
antigenically similar to the 1918 HIN1 pandemic influenza, and consequently was considered to be
“archived” in the swine species before reemerging in humans. Given that the H3N2 is another subtype that
currently circulates in the human population and is high on WHO pandemic preparedness list, we assessed
the likelihood of reemergence of H3N2 from a non-human host. Using HA sequence features relevant to
immune recognition, receptor binding and transmission we have identified several recent H3 strains in
avian and swine that present hallmarks of a reemerging virus. IgG polyclonal raised in rabbit with recent
seasonal vaccine H3 fail to recognize these swine H3 strains suggesting that existing vaccines may not be
effective in protecting against these strains. Vaccine strategies can mitigate risks associated with a potential
H3N2 pandemic in humans.

nfluenza A viruses pose a major public health problem, causing seasonal epidemics and occasional—but

devastating—global pandemics' which negatively impact the global economy. Until recently, influenza pan-

demics were thought to be associated with the introduction of new HA subtypes into the human population®.
Indeed, two of the twentieth century pandemics - the 1957-58 H2N2 Asian Flu and the 1967-68 H3N2 Hong
Kong Flu - introduced new HA subtypes into the human population*. The surface glycoprotein HA of the
influenza A virus is the main target of the immune system and mutations on the globular head region (residues
50-230 of HA1, H3 HA numbering used) of this protein determine antigenic novelty, species adaptation, and
transmission®.

Birds are natural reservoirs for influenza A viruses and avian-adapted viruses either directly crossover to
humans (through direct contact) or do so with the help of intermediate swine species. Influenza A viruses rapidly
evolve (through antigenic drift) in humans as a consequence of both the complex response of human immune
system and rapid geographical movement of human population. In contrast to their rapid antigenic evolution in
human hosts, the antigenic evolution of influenza A viruses in avian and swine occurs at a much slower rate’'°. As
a consequence of these factors, the human immunity to past pandemic strains fades over time, thus enabling
antigenically “intact” viruses in avian and swine species to reemerge and begin a new infection cycle in humans.
For example, although H2N2 subtype does not currently circulate in the human population, viruses carrying HA
that are antigenically similar to the 1957-58 pandemic H2N2 virus continue to circulate in avian species''. Among
the subtypes that continue to circulate in humans (HIN1 and H3N2), the 2009 HIN1 outbreak offers a practical
example of how HA from a swine strain that is antigenically similar to 1918 pandemic HIN1 HA can be
reintroduced into the human population'>. The question remains of whether this trend is observed in H3N2,
given that there has been a high rate of antigenic drift in human H3 subtype'*""* since the emergence of 1968
pandemic H3N2. Critically, average hospitalizations and mortality rates were found higher for seasons domi-
nated by A/H3N2 viruses compared to seasons dominated by influenza B or A/HIN1'*"",

The H3N2 pandemic began in 1968 and was caused by a human-adapted H2N2 virus that obtained avian H3
and PBI genes through reassortment’. The HA of both 1957 and 1968 pandemic strains are of avian origin. Unlike
H2N2, the H3N2 subtype is still in circulation, however the high rate of antigenic drift of human H3 coupled with
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the long interval since the previous pandemic may mean that the
human herd would have ‘forgotten’ the antigenic structure of the
1968 pandemic strain and therefore the reemergence of a similar
strain circulating in the avian or swine reservoir could have poten-
tially damaging consequences. Identifying such strains is of para-
mount value for pandemic surveillance and preparedness.

To address this question in this study we measure the ‘antigenic
intactness’ of HA from avian or swine species in reference to HA
from the corresponding pandemic subtypes. The antigenic identity
(AI) of an avian or a swine HA is defined by the percentage fraction of
amino acids in the immunodominant antigenic sites that are con-
served in the corresponding pandemic HA (H1, H2 and H3 subtype).
The Al value varies between 0 and 100. Values closer to 100 indicate a
high antigenic identity with the pandemic HA.

Results
We first applied the AI metric to human-adapted HIN1 and avian
H2 subtypes for two reasons. In the former case, we tested the ability
of Al values to discriminate the 1918 and 2009 pandemic HAs from
the seasonal strains. In the latter case, we validated AT’s potential to
highlight the conservation of antigenic sites in avian H2''. For HIN1,
the HA of the human-adapted strains were compared to 1918 pan-
demic HIN1 HA (A/South Carolina/1/18) and the characterized H1
antigenic sites Sa, Sb, Ca, Cb'** were used to calculate AI (Methods).
The Al values clearly discriminate the reemerging swine-origin HA
02009 HIN1 pandemic from the seasonal H1 based on the antigenic
identity to the 1918 pandemic HIN1 HA (Fig. 1a). The reemerging
swine-origin HA of the 2009 HIN1 pandemic and those that circu-
lated during the 1918-40 period are characterized by Al values
> 70% and markedly differ from the strains that circulated during
1940-2008 (varies from 48% to 77% with an average of 55%). Two
‘classical’ swine viruses (data points marked by black arrows), A/New
Jersey/76 (HIN1) and A/Wisconsin/4754/1994 (HIN1), isolated
between 1940-2008, also have high AI value and are genetically
distinct when compared to the main cluster of human influenza
viruses circulating in that period. Both viruses are known to have
caused human infections following pig-human interspecies trans-
mission. The A/New Jersey/76 influenza virus is reported to have
caused respiratory illness in 13 soldiers with 1 death at Fort Dix, New
Jersey*'. The A/Wisconsin/4754/1994 virus was recovered from a 39
year-old man who came in close contact with experimentally infected
pigs®. For the H2 subtype, the HA of the avian H2 strains were
compared to the 1957-58 pandemic H2N2 HA (A/Albany/6/
58(H2N2)) and the antigenic sites I-A, I-B, I-C, I-D, II-A and II-
B> characterized by hybridoma antibodies generated in BALB/c
mice were used to calculate Al. Consistent with the findings of a
previous report'!, the Al values indicate that the antigenic sites of
the 1957-58 pandemic H2N2 HA are conserved in circulating avian
H2 influenza viruses (Fig. 1b). In fact, the antigenic sites of the
majority of avian H2 viruses in circulation are 100% identical to
the 1957-58 pandemic H2N2 HA (Fig. 1b). The conservation of
antigenic sites in swine H2 influenza could not be assessed using this
method due to lack of sequence information (H2N2 viruses do not
circulate in swine; indeed, infection of swine with H2 viruses is rarely
recorded). Similar to H1 subtype, the evolution of human H2 is
characterized by steady antigenic drift leaning away from the pan-
demic strain. Although the majority of the viral strains that circulated
during the immediate post-pandemic period 1957-68 have Al values
> 70%, viral strains with AT ~ 60% appeared after 1967 (Fig. 1b). Itis
reasonable to expect that the AI values would have decreased further
had H2 continued to circulate in human population as a seasonal
virus after 1968. The above analyses using H1 and H2 subtypes
suggest that viruses carrying pandemic HA-like genes can be distin-
guished from seasonal viruses using a cutoff value AI ~ 70%.

In the case of H3, the 5 antigenic sites (A-E)**** were used to
calculate AI in reference to the prototypic pandemic strain of 1968

(A/Aichi/2/1968 (H3N2)). Unless stated otherwise henceforth an Al
value for a given H3 HA sequence refers to its antigenic identity with
the 1968 pandemic H3 HA. A total of 1,103 H3 avian and swine
sequences were downloaded from the NCBI Influenza Database*
and analyzed. Of these 1,103 sequences, 756 were of avian origin
and 347 were of swine origin. The avian sequences comprised nine
different subtypes (H3N1-9), and the swine sequences comprised
four different subtypes (H3N1, H3N2, H3N3 and H3N8). The avian
and swine H3 amino acid sequences were compared against A/Aichi/
2/1968 and Al values were computed for all the sequences (Fig. 1c).
In addition, a total of 3,632 human-adapted H3N2 HA sequences
were downloaded from the NCBI database and compared against
1968 pandemic H3 HA to enable a cross-species comparison of the
antigenic drift (Fig. 1c). The Al values and phylogeny analysis indi-
cate that, in comparison with recent human H3, avian and swine H3
are genetically and antigenically closer to the 1968 pandemic HA.
Thus, we confirmed that avian and swine H3 are indeed antigenically
intact (Figs. 1c & S1).

In addition to the amino acids that constitute the antigenic sites,
the attachment of complex glycans at specific glycosylation sites
(Asn-X-Ser/Asn-X-Thr, where X is not a Proline) is also often part
of the antigenic surface. An increase or decrease in the number of
N-glycosylation sites therefore critically governs the antigenic prop-
erties of HA”. The 1968 pandemic H3 HA carries only two glycosy-
lation sites on the globular head region (at 81 & 165), whereas HA
from seasonal strains carries an average of six sites (at 63, 122, 126,
133, 144, 165)*. To incorporate glycosylation in the calculation of
antigenic identity, the globular head region of the avian and swine
HA sequences were examined for the conservation of 1968 pandemic
H3-like glycosylation pattern (Methods). Among the 1,103 avian
and swine H3 HA sequences, 359 carried additional glycosylation
sites or positional shifts and therefore were removed from further
consideration. The remaining 744 HA sequences (~ 67%) were
found to possess the 1968 pandemic HA-like glycosylation pattern.
Out of the 744 HA sequences, strains corresponding to 449
sequences (all avian) were isolated after 2000—many as recently as
2010—and their AI value exceed 70%.

Extrapolating from H1 and H2 pandemic scenarios, the above
strains are likely to pose a threat should they acquire the mutations
necessary to crossover into human population. Of note, a novel
H3N8 avian influenza virus acquired the ability to infect harbor seals
in New England recently”. The AI of the seal H3N8 HA is 78%,
which is the habitual AI range of avian H3 influenza viruses. Given
the high AI value, the history of the spread of avian influenza to
humans and the fact that seal H3N8 has already acquired potential
to bind sialic acid receptors that are commonly found in the mam-
malian respiratory tract®, seal H3N8 virus could jump, directly or via
reassortment, to humans with pandemic consequences. More
recently, the CDC reported the outbreak of a triple reassortant
H3N2 swine-origin influenza virus (SOIV) and released a set of
sequences at Global Initiative on Sharing All Influenza Data
(GISAID) following this event. The HA of a prototype outbreak
strain, A/Minnesota/11/2010 (referred as Minn10), shares very high
homology (approx. 98%) with the HA of swine A/swine/Minnesota/
7931/2007(H3N2) (SwMinn10), and has good binding and transmis-
sion properties®. Although the Al value of SWMinn10 (approx. 39%)
is comparable to that of a typical seasonal H3 HA, they share very low
antigenic identity between them (only 15 out of the 27 [approx. 55%]
antigenic positions are conserved). More importantly, the glycosyla-
tion pattern appears to be very different between SwMinnl0 and
seasonal H3 HA. The SwMinn10 HA contains only three glycosyla-
tion sites in the globular head region, compared to 6 for the seasonal
HA. The swine predecessor was not part of the 581 sequences iden-
tified by the analysis. This is due to its low Al value and the extra
(third) glycosylation site in the head region. Although Minn10 can-
not be regarded as a strain resembling the 1968 pandemic strain, the
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Figure 1| Trends in antigenic evolution over time. Antigenic identity of HA from human, avian and swine species relative to pandemics that of
note: (a) 1918-19 HINT, (b) 1957-58 H2N2, (c) 1968—69 H3N2 plotted against time of isolation (x-axis). To generate the plots, 2,927 human, 166 avian,
950 swine HAs of H1 subtype; 117 human and 163 avian HAs of H2 subtype; 3,632 human, 756 avian and 347 swine HAs of H3 subtype were used. The two
black arrows in Fig. 1a correspond to A/New Jersey/76 (HIN1) and A/Wisconsin/4754/1994 (HIN1), both of which caused human infections following
pig-human interspecies transmission and have high AI values similar to the 2009 pandemic HINT1 strains. Dotted trendlines are added to graphically
display the antigenic drift in avian vs. human H2 (Fig. 1b). The slope of the avian H2 trendline is 0.0845, whereas the slope of the human H2 trendline is
—1.866. The dotted horizontal line indicates cutoff Al values (70% (H1); 70% (H2); 70% & 49% (H3)).The data points were jittered slightly on y-axis to

avoid large overlaps (Al ~ Al + ¢, where —1< & <1).

outbreak caused by this virus supports our theory that avian and
swine strains that are divergent enough from the seasonal HA, both
antigenically and with respect to their glycosylation pattern, need to
be considered as potential threats. Consequently, based on the above
observations, we relaxed the criteria used to identify potential pan-
demic strains and considered those HAs isolated after 2000, having

matching glycosylation pattern as pandemic H3 and whose AI was
equal to or greater than 49%, the maximum Al value of recent sea-
sonal H3 (2000 or after) (Fig. 1c). This yielded 581 sequences (549
avian, 32 swine).

If a virus carrying a HA similar to any one of the 581 sequences
acquires the potential to crossover into humans, it would likely have a
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Table 1 | Hi-based antigenic relatedness (upper right) and Al values (lower left) in pairwise comparisons among 7 influenza H3N2 viruses
isolated from 2008 to 2010 (R = 0.603314, p-value = 0.002)

CA/09 SDb/03 Perth/09 KS/09 PA/10 WI/10  MN/10
A/California/07/2009 (HIN1pdm09) 7071 078 039 1.1 055 055
A/South Dakota/03/2008 (Human HIN1-SOIV) 81.48 0.55 1.1 1.56 0.39 0.39
A/Perth/16/2009 (Seasonal H3N2) 22.22 22.22 0.78 50 1.1 1.1
A/Kansas/13/2009 (Human H3N2-SOIV) 22.22 22.22 66.67 17.68 6.25 3.13
A/Pennsylvania/14/2010 (Human H3N2-SOIV) 18.52 18.52 66.67 88.89 35.36 35.36
A/Wisconsin/12/2010 (Human H3N2-50IV) 22.22 22.22 66.67 88.89 92.59 35.36
A/Minnesota/11/2010 (Human H3N2-SOIV) 22.22 22.22 66.67 88.89 92.59 100

major impact on both immune recognition and vaccine efficacy. The
efficacy of the influenza vaccine in humans is thought to correlate
well with the ‘antigenic relatedness’ metric (reciprocal of antigenic
distance) obtained from ferret antisera hemagglutinin inhibition
(HI) assays®** between the vaccine strain and the circulating epi-
demic strains®>**. We tested the degree of correlation between the Al
values and the HI-derived antigenic relatedness to: (1) assess the
potential of Al in predicting vaccine-induced cross-reactive antibody
responses; and (2) to evaluate the cross-protective capacity of the
current vaccine strain, A/Victoria/361/2011 (H3N2), against poten-
tial threats. For this exercise, we analyzed three sets of ferret serum HI
cross-reactivity data where amino acid sequences of the HA1 poly-
peptide were present. The first set contained 7 viral strains (21 pair-
wise comparisons) isolated from 2008 to 2010*. The second set
contained 9 viral strains (36 pairwise comparisons) isolated from
1970 to 1979%. The third set contained 6 viral strains (15 pairwise
comparisons) isolated from 1994 to 1999*”. Antigenic relatedness
between two viral strains based on ferret anti-serum was determined
using the method described by Lee et al.**. Briefly, the antigenic
relatedness between two viral strains is directly proportional to the
ratio of the product of the heterologous titers against each other to
the product of the homologous titers. In total, 72 pairwise compar-
isons among 22 viruses were available for analysis. Among the 72
pairwise comparisons, 5 (7%) have an antigenic relatedness > 70%
(i.e., similar antigenicity), and 67 (93%) have an antigenic relatedness
< 70% (i.e., antigenic variant). Results indicate that the AI values
have significant correlation with the HI-based antigenic relatedness
metric (Tables 1-3), indicating that Al values could be applied to
predict vaccine-induced cross-reactive antibody responses and thus
selection of vaccine strains. Particularly, antigenically related viral
strains (> 70%) have AI > 80%, hence we employed an 80% cutoff to
determine protection, or lack thereof, between a vaccine strain and a
challenge viral strain. The current H3N2 vaccine strain A/Victoria/
361/2011 has AI values of 92% with the seasonal viral strain A/
Brisbane/10/2007, 29% with the A/Aichi/2/68, 56% with a typical
H3N2 SOIV and 44% with a representative swine H3 strain from
the group of swine viral strains having AI > 49%. These data indicate
that the current vaccine strain is unlikely to offer cross-protection
against the circulating swine or SOIV viruses whatsoever. Supporting

this, IgG polyclonal raised in rabbit with seasonal vaccine H3 strain
(A/Brisbane/10/2007(H3N2)) preferentially bind to current seasonal
H3 but have weaker affinity to a representative swine H3 (Fig. 2).
More signiﬁcanﬂy, out of the 581 HA sequences, six swine HAs
already contain the prototypic mutations (L226, S228) necessary
for HA human adaptation®, and are thus capable of entering the
human population either directly or via reassortment (Table 4,
Fig. 3a)**. We recombinantly expressed HA derived from two swine
isolates, A/swine/Chonburi/05CB2/2005 (H3N2) and A/swine/
Nakhon pathom/NIAH586-2/2005 (H3N2), which have high AI
value (Table 4) and characterized their relative binding affinities to
representative avian and human receptors on a glycan array platform
(Methods, Fig. 4). Both swine HAs showed high affinity binding to
both human and avian receptors. The high affinity human receptor-
binding of these swine HAs appears to be in the same range as that of
other seasonal H3 HAs characterized previously’>*, and are thus
capable of entering the human population either directly or via reas-
sortment. The antigenic relationship of these HAs (AI value and
glycosylation pattern) to the pandemic 1968 H3N2 HA strongly
suggests that the six isolates belong to swine virus lineage and not
examples of transient reverse zoonoses. Phylogenetic analysis of the
32 swine isolates revealed that majority of them fall under European
and Asian swine lineages.

The analyses presented here portend a vaccine strategy to prevent
a future H3 pandemic. Among the WHO recommended vaccine
strains of influenza A/H3N2 virus, A/Hong Kong/1/1968(H3N2)
will be effective (Al > 80%) against 505 of 581 strains (~ 87%)
identified by this study, and thus could be used for the development
of pandemic influenza vaccine. Surprisingly, H3N2 vaccine strains
that were subsequently used are not capable of being as effective.
These data suggest that a cocktail of A/Hong Kong/1/1968(H3N2)
and an avian and swine strain each that represent the circulating
influenza in birds and pigs can form the components of the pandemic
influenza vaccine.

To understand the results from Al calculations in the context of
the spatial relationship between glycosylation site and antigenic sites
of H3 HA we constructed structural homology models of HA1 globu-
lar head of ACHI68, BRBNO07 and CHIB05 HAs (see Table 4 for
strain information). These structural models of HA comprised the

Table 2 | HI-based antigenic relatedness (upper right) and Al values (lower left) in pairwise comparisons among 9 influenza H3N2 viruses
isolated from 1970 to 1979 (R = 0.523472, p-value = 0.00057)

HK/71 ENG/72 PC/73 MC/75 VIC/75 TOK/75 ENG/75 BAN/1/79 BAN/2/79
A/Hong Kong/107/71 3.61 5.10 2.55 1.81 2.55 2.08 1.47 0.90
A/England/42/72 66.67 25.00 3.83 6.25 1.56 0.64 1.28 0.55
A/Port Chalmers/1/73 74.07 77.78 12.50 6.25 3.13 3.61 1.81 1.10
A/Mayo Clinic/1/75 59.26 62.96 81.48 10.87 3.13 2.21 1.81 1.10
A/Victoria/3/75 51.85 55.56 77.78 81.48 8.85 3.61 1.28 0.78
A/Tokyo/1/75 74.07 62.96 74.07 7037 66.67 1.28 2.55 1.10
A/England/864/75 51.85 55.56 77.78 85.19 88.89 62.96 14.49 5.10
A/Bangkok/1/79 33.33 48.15 59.26  59.26 62.96 37.04 74.07 10.87
A/Bangkok/2/79 33.33 51.85 5556 5556 51.85 37.04 62.96 88.89
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Table 3 | HI-based antigenic relatedness (upper right) and Al values (lower left) in pairwise comparisons among 6 influenza H3N2 viruses
isolated from 1994 to 1999 (R = 0.61, p-value = 0.007)

JHB/94 Wuh/95 NC/95 Syd/97 Mosc/99 Pan/99
A/Johannesburg/33/94 8.84 8.84 2.21 3.13 3.13
A/Wuhan/359/95 92.59 50.00 3.13 3.13 4.42
A/Nanchang/933/95 92.59 100 3.13 70.71 4.42
A/Sydney/5/97 81.48 88.89 88.89 70.71 70.71
A/Moscow/10/99 81.48 81.48 91.48 92.59 100.00
A/Panama/2007/99 77.78 85.19 85.19 92.59 92.59

basic trimannosyl core of N-linked glycan attached to the glycosyla-
tion sites (Fig. 3b). From the structural comparison it is clear that
antigenic shape of HA which includes antigenic sites A-E and the
glycosylation pattern of HA1 from the swine strain (CHIBO5) closely
resembles that of the 1968 pandemic HA. Conversely, the antigenic
shape of a more recent seasonal strain (BRBNO7) is remarkably
different from that of the pandemic strain.

Discussion

The H3 HA of some of the recent avian strains share approximately
86% overall sequence identity with the HA of the avian progenitor of
the 1968 pandemic virus (A/duck/Ukraine/1/1963), reflecting anti-
genic intactness within birds. Many sequences from swine, some
collected as recently as 2001, were also found to have high homology
with the A/duck/Ukraine/1/1963 HA, indicating avian to swine trans-
fer. For reasons that remain unclear, the more recent swine H3 HAs
(2006 and later) have diverged significantly from the 1968 pandemic
H3N2 HA (Fig. 1c) while in contrast the majority of swine H1 HAs
remained antigenically stable from 1918 to the 1990s. Unlike the 1918
HINT1 virus which crossed to swine soon after and remained in swine,
the human H3N2 viruses have repeatedly crossed from humans to
swine for some time — quite possibly, this could be the reason why
swine H3 viruses appear to manifest the antigenic drift that human
strains underwent during this period. In fact, the Al values of human
H3 in the last decade are comparable to the Al values of some swine
H3 HAs of the same period; interestingly, the recent human and
swine HAs show differential binding to polyclonal antibodies gener-
ated against seasonal vaccine strain (Fig. 2). This apparent discrep-
ancy may be explained in part by the presence of certain key antigenic
"hotspot” locations, where amino acid substitutions can lead to

disproportionately large changes in antigenicity. Our observation is
supported by other studies on H3 antigenic evolution'**'. The fre-
quent interspecies transmission of H3 viruses might also explain why
this subtype is associated with the highest rates of mortality**.

The importance of glycosylation in antigenic site masking leading
to a new pandemic cycle and viral evolution became apparent after
the 2009 pandemic. It was observed that the seasonal HIN1 HA
carries antigenic site-masking glycosylation sites not present in the
2009 pandemic HIN1 HA (and 1918 HIN1 HA) and the exposure of
the unprotected antigenic surface is believed to be the reason under-
pinning the severity of the 2009 HIN1 pandemic. Akin to H1 sub-
type, the additional glycosylation sites on the recent seasonal H3
appear to have a role in antigenic site-masking. For instance, the
glycosylation at position 63 masks antigenic site E, and glycosylation
atsites 122, 133, and 144 protect antigenic A. The shielding nature of
these glycosylation sites is evident from the gradual decline in the
mutation rate of the masked antigenic sites following their appear-
ance (Fig. S2), portending a 2009 H1N1-like H3N2 pandemic. If a
virus carrying a HA similar to the ones identified by this analysis
makes its way into humans, it would need to evolve rapidly in res-
ponse to selective pressures from vaccination and herd immunity.
The ability of H3 subtype to add glycosylation sites will be a key
factor enabling the virus to achieve sustained circulation in the next
cycle. In contrast, a previous study*’ using nucleotide sequence ana-
lysis concluded that H2 has an intrinsically lower capacity to add
glycosylation sites. Taking these factors together, we assert that it is
less likely for an avian or swine H2 virus (antigenically similar to
1957-58 pandemic H2N2) to gain a foothold for sustained circula-
tion in humans when compared to H3 viruses.

The rapid antigenic drift that human H3N2 HA underwent during
the early adaptation period of the virus (1968-76) appears to have
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Chonburi/05CB2/2005, A/swine/Nakhon pathom/NIAH586-2/2005), pandemic H3N2 HA (A/Aichi/2/1968), 1 seasonal H3N2 HA (A/Wisconsin/67/
2005). The seasonal vaccine H3N2 HA (A/Brisbane/10/2007) and a representative H7N7 HA (A/Netherlands/219/2003) were used as positive and

negative controls, respectively.

| 3:1822 | DOI: 10.1038/srep01822



ACHI68
CHBIOS
CHHOO5

78 81 83

53 62
| | i -]l

KICNNPHRILDGIDCTLIDALLGDPHCDVE

DYDVPDYASIRSLVASS T

EICNNPHRVLDGMDCTLIDALLGDPHCDSLONETWDL]

FIERSETSSNCYPYDVPGYASLRSIVASSGT

EIC TLIDALLGDP!

PYDVPGYASLRSIVASSGT

NKPHO5  EIC TLIDALLGDPHCDSLONETWDL PYDVPGYASLRSIVASSGT
NKPHO5' ~ EICNNPHRVLDGMDCTLIDALLGDPHCDSLONETWDLFIERSFASSNCYPYDVPGYASLRSIVASSGT
NKPHO5' ' EIC TLIDALL PYDVPGYASLRSIVASSGT
THATO5 EIC TLIDALLGDPHCDSLONETWDLET 'YPYDVPGYASLRSIVASSGT
BRBNO7  EICDSPHOQI: IDALLGDP YD s:
sz 13|3 1:|17 14? }46 155
ACHI68 LEFITEGFTWIGVTON GPESEETF: ! v IWGIHHP
CHBIO5  LEFIN KSGNTYPMINVTKPNNDNFDKLYVWGTHHP
CHHOO5 ~ LEFT VWGIHHP
NKPHO5  LEFINEL v VWGIHHP
NKPHO5'  LEFT PMI YVWGIHHP
NKPHO5'' LEFT PMI VWGIHHP
THAIO5  LEFINEL VWGIHHP
BRBNO7 L HLKFKY PALNVTMPNNEKFDKLY THGVHHP
185 188 103 201 205 208 217 220
ACHI68 OTELYVOASGRV DOTIIPNE ISIYWITVKPGDVLVINSNGNLIA
CHBIO5 OTRLYAQESGRT TRGLSSRISTYWTIVKS! INSNGNLIA
CHHOO5 OTRLYAQESGKI TV OOTVT: ISIYWIT INSNGNLIA
NKPHOS5 TRLYVQESGKI TV, VT ISIYWTT INSNGNLIA
NKPHOS' OTRLYAQESGKITVS! ISIYWIT INSNGNLIA
NKPHOS ' * ESGKITV; OOTVT: ISIYWIT INSNGNLIA
THATO5 IT VT TRGLSSRISTYWTTVKSGDLLLINSNGNLIA
BRBNO7 OIEPYAQASGRI TVSTKRSQQTVIPNI IPSRISIYWITVKPGDILLINSTGNLIA
275 278

ACHI68  PRGYFKMRTGKSSIMRSDAPTDTCISECITPNGSIP

CHBIOS  PRGYFRLRAGKSSITRSDAPIGTCISECITENGSIP

CHHOO05 PRGYFRLRAGKSSIIRSDAPIGTCISECITPNGSIP

NKPHO5  PRGYFRLRAGKSSITRSDAPIGTCISECITPNGSIP

NKPHOS' PRGYFRLRAGKSSIIRSDAPIGTCISECITPNGSIP

NKPHOS'' PRGYFRLRAGKSSITRSDAPIGTCISECITPNGSIP

THAIO5  PRGYFRLRAGKSSITRSDAPIGTCISECITPNGSIP

BRBNO7 PRGYFKIRSGKSS IMRSDAPTGKCNSECITPNGSIP

Al/swine/Chonburi/05CB2/05
o

A/Aichi/2/68

AlBrisbane/10/07

Figure 3 | Genetic, antigenic and glycosylation-pattern relatedness of 1968 pandemic H3N2 HA to seasonal, swine and avian H3 HA.

(a) Sequence alignment of the expanded globular head region (residues 50-328) of the HAs listed in Table 4. Antigenic sites A, B, C, D, E of H3 HA are
highlighted in green, magenta, cyan, grey and yellow, respectively. In each sequence, the Asn residue associated with the N-linked glycosylation sites
(Asn-X-Ser/Asn-X/Thr) is marked in red. (b) Surface rendered three-dimensional structural models of trimeric HA1 globular head of representative
pandemic (middle), seasonal (right) and swine (left) HAs. The view of trimer is along axis perpendicular to 3-fold symmetry axis to give a complete picture
of the antigenic and glycosylation sites. The homology models of HA1 chain were generated using SWISS-MODEL automated modeling server
(http://swissmodel.expasy.org/) and the trimannosyl N-linked glycosylation at the sites were added in silico using GlyProt server (http://www.glycosciences.de/
modeling/glyprot/php/main.php). The trimeric HA1 was generated by superimposing three copies of homology-modeled glycosylated monomer with
corresponding monomers in the trimer crystal structure (PDB ID: 1HGE). The antigenic sites A—E are marked on the structure. With 1968 pandemic HA
as reference (antigenic sites shown in red), the structural similarity of the antigenic sites in seasonal and swine HAs to the reference HA is shown in
different shades of red (duller shade representing low similarity to brighter shade representing high similarity).

slowed down after 1977 (Fig. 1c). Interestingly, this time period also
coincides with the reemergence of HIN1 in the human population.
The (re-) emerging HIN1 subtype could have imposed strong select-
ive pressures on the H3N2 to stop circulating in humans after 1977.
The evolution of human H3N2 HA after 1977 is characterized by
glycosylation accrual, low-level site-specific antigenic changes, and
variations at other non-immunodominant sites (Fig. 1c). Addi-
tionally, a recent study found that the affinity of human H3 viruses
for human receptors has reduced drastically since 2001*. These
observations suggest that currently circulating viruses are not as dom-
inant as the earlier viruses. Based on this trend, one can argue that
human H3N2 HA presently is “antigenically drained”, which poses a
substantially high barrier to evolution via antigenic drift. However,
the presence of antigenically intact H3 in avian and swine suggests
that, as with 2009 HIN1 pandemic, reassortment can result in ‘reset-
ting and shifting’ the antigenicity back to that of the 1968 pandemic
and hence facilitate sustained evolution of this subtype in humans.
Influenza A viruses of other subtypes (H5, H7, H9) that have
caused sporadic infections in humans over the past decade also pose

equal risk of a pandemic, especially since they represent completely
novel HA subtypes. Although antigenic phenotypes could be pre-
dicted from HA sequences, the genetic signatures in influenza viruses
that lead to a sustained human-to-human transmission cannot be
accurately predicted. Although an antigenically novel HA is neces-
sary, it is not the only determining factor for a pandemic. While gain
of host receptor specificity is a key determinant, changes in influenza
proteins other than HA such as the polymerase (PB2) are typically
involved, making predictions of the timing of future pandemics more
complex. Nevertheless, our study facilitates setting the stage for
future work aimed at designing vaccination studies with animal
models using a cocktail of H3 antigens from strains of current avian
and swine origin along with specific past strains. Such studies would
augment the preparedness in the event of potential re-emergence of
H3N2 pandemic®.

Methods

Calculation of AI values for H1, H2 and H3 subtypes. Al values were calculated
using the characterized antigenic sites of H1, H2 and H3 HA. For H1, 128, 129, 158,
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Figure 4 | Glycan microarray analysis of representative H3 HAs. Dose dependent binding of A/swine/Nakhon pathom/NIAH586-2/2005 (a), and A/
swine/Chonburi/05CB2/2005 (b) HAs to representative avian and human glycan receptors on the glycan array platform is shown. Both these HAs show
high affinity binding to both human receptors (6'SLN-LN) and avian receptors (3'SLN-LN and 3’SLN-LN-LN).

160, 162, 163, 165, 166, 167 (Sa); 156, 159, 192, 193, 196, 198 (Sb); 140, 143, 145,169,  dominant antigenic sites that are conserved in the corresponding pandemic HA for
173,182, 207, 224, 225, 240, 273 (Ca); 78, 79, 81, 82, 83, 122 (Cb) were used. For H2,  each of the H1 (A/South Carolina/1/18), H2 (A/Albany/6/58(H2N2)) and H3 (A/
162,248 (I-A); 137, 187 (I-B); 131, 222, 218 (I-C), 80, 200 (I-D); 40 (II-A), 273 (II-B) Aichi/2/1968 (H3N2)) subtypes.

were used. For H3, 122, 133, 137, 143, 144, 145, 146 (A); 155, 186, 188, 189, 193 (B);

53, 54, 275, 278 (C); 201, 205, 207, 208, 217, 220 (D); 62,78,81,83 (E) were used. In silico identification of glycosylation sites. Glycosylation sites are defined by the
Positions are numbered according to H3 molecule. The antigenic identity (AI) of an  motif N-X-T/S, where X is any amino acid except Proline. A position in a HA amino
avian or a swine HA is defined by the percentage fraction of amino acids in the acid sequence is considered to be glycosylated if it contains the N-X-T/S motif and is
Table 4 | Avian and Swine HAs antigenically similar to 1968 pandemic H3N2 HA. The Al values and glycosylation pattern of A/Aichi/2/
1968(H3N2) and six swine HAs having prototypic mutations (L226, $228) necessary for HA human adaptation are compared alongside. A
representative seasonal vaccine strain (A/Brisbane/10/2007(H3N2) and A/Perth/16/2009(H3N2)) are included to show the variation in
the Al values and glycosylation pattern

Accession Virus name Abbreviation Al% Glycosylated positions
AAA43239 A/Aichi/2/1968(H3N2) ACHI68 100 81, 165
ABY40417 A/swine/Chonburi/05CB2/2005(H3N2) CHBIO5 56 81,165
ABY40412 A/swine/Chachoengsao/NIAH586,/2005(H3N2) CHHOO05 52 81, 165
ABY40414 A/swine/Nakhon pathom/NIAH586-2/2005(H3N2) NKPHO5 52 81, 165
BAH02120 A/swine/Nakhon pathom/NIAH586-1/2005(H3N2) NKPHO5’ 52 81, 165

ABY40413 A/swine/Nakhon pathom/NIAH586-1/2005(H3N2) NKPHO5" 52 81,165
ACM80372 A/swine/Thailand/S1/2005(H3N2) THAIO5 56 81,165
ABW23353 A/Brisbane/10/2007(H3N2) BRBNO7 37 63,122,126, 133,144,165
ACS71642 A/Perth/16/2009(H3N2) PTHO9 37 63, 122,126,133, 165
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predicted by GlyProt (http://www.glycosciences.de/modeling/glyprot/php/
main.php) - an online tool for in silico glycosylation of proteins.

Cloning, baculovirus synthesis, recombinant expression and purification of
representative H3 Has. Soluble versions (lacking membrane proximal C-terminus
region) of HA from representative H3N2 swine isolates A/swine/Chonburi/05CB2/
2005 and A/swine/Nakhon pathom/NIAH586-2/2005 were recombinantly expressed
(with C-terminal His-tag) as described previously®. These representative H3 HAs
had high Al values and the prototypic Leu226 and Ser228 residues characteristic of
human-adapted H3 HAs. Briefly, recombinant baculoviruses with the HA gene were
used to infect (MOI = 1) suspension cultures of S9 cells (Invitrogen, Carlsbad, CA)
cultured in BD Baculogold Max-XP SFM (BD Biosciences, San Jose, CA). The
infection was monitored and the conditioned media was harvested 3-4 days post-
infection. The soluble HA from the harvested conditioned media was purified using
Nickel affinity chromatography (HisTrap HP columns, GE Healthcare, Piscataway,
NJ). Eluting fractions containing HA were pooled, concentrated and buffer
exchanged into 1X PBS pH 8.0 (Gibco) using 100K MWCO spin columns (Millipore,
Billerica, MA). The purified protein was quantified using BCA method (Pierce).

Glycan array analysis. To investigate the multivalent HA-glycan interactions a
streptavidin plate array comprising of representative biotinylated «2—3 and 02—6
sialylated glycans was used as described previously*. 3'SLN, 3'SLN-LN, 3’SLN-LN-
LN are representative avian receptors. 6'SLN and 6'SLN-LN are representative
human receptors. The biotinylated glycans were obtained from the Consortium of
Functional Glycomics through their resource request program. Streptavidin-coated
High Binding Capacity 384-well plates (Pierce) were loaded to the full capacity of each
well by incubating the well with 50 pl of 2.4 pM of biotinylated glycans overnight at
4°C. Excess glycans were removed through extensive washing with PBS. The trimeric
HA unit comprises of three HA monomers (and hence three RBS, one for each
monomer). The spatial arrangement of the biotinylated glycans in the wells of the
streptavidin plate array favors binding to only one of the three HA monomers in the
trimeric HA unit. Therefore in order to specifically enhance the multivalency in the
HA-glycan interactions, the recombinant HA proteins were pre-complexed with the
primary and secondary antibodies in the molar ratio of 421 (HA: primary:
secondary). The identical arrangement of 4 trimeric HA units in the pre-complex for
all the HAs permit comparison between their glycan binding affinities. A stock
solution containing appropriate amounts of Histidine tagged HA protein, primary
antibody (Mouse anti 6X His tag IgG) and secondary antibody (HRP conjugated goat
anti Mouse IgG (Santacruz Biotechnology) in the ratio 4 : 2 : 1 and incubated on ice for
20 min. Appropriate amounts of pre-complexed stock HA were diluted to 250 pl
with 1% BSA in PBS. 50 pl of this pre-complexed HA was added to each of the glycan-
coated wells and incubated at room temperature for 2 hours followed by the above
wash steps. The binding signal was determined based on HRP activity using Amplex
Red Peroxidase Assay (Invitrogen, CA) according to the manufacturer’s instructions.
The experiments were done in triplicate. Minimal binding signals were observed in
the negative controls including binding of pre-complexed unit to wells without
glycans and binding of the antibodies alone to the wells with glycans.
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