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Purpose: Intensity-modulated proton therapy (IMPT) is highly sensitive to uncertainties in beam
range and patient setup. Conventionally, these uncertainties are dealt using geometrically expanded
planning target volume (PTV). In this paper, the authors evaluated a robust optimization method
that deals with the uncertainties directly during the spot weight optimization to ensure clinical target
volume (CTV) coverage without using PTV. The authors compared the two methods for a population
of head and neck (H&N) cancer patients.
Methods: Two sets of IMPT plans were generated for 14 H&N cases, one being PTV-based conven-
tionally optimized and the other CTV-based robustly optimized. For the PTV-based conventionally
optimized plans, the uncertainties are accounted for by expanding CTV to PTV via margins and
delivering the prescribed dose to PTV. For the CTV-based robustly optimized plans, spot weight opti-
mization was guided to reduce the discrepancy in doses under extreme setup and range uncertainties
directly, while delivering the prescribed dose to CTV rather than PTV. For each of these plans, the
authors calculated dose distributions under various uncertainty settings. The root-mean-square dose
(RMSD) for each voxel was computed and the area under the RMSD-volume histogram curves (AUC)
was used to relatively compare plan robustness. Data derived from the dose volume histogram in the
worst-case and nominal doses were used to evaluate the plan optimality. Then the plan evaluation
metrics were averaged over the 14 cases and were compared with two-sided paired t tests.
Results: CTV-based robust optimization led to more robust (i.e., smaller AUCs) plans for both targets
and organs. Under the worst-case scenario and the nominal scenario, CTV-based robustly optimized
plans showed better target coverage (i.e., greater D95%), improved dose homogeneity (i.e., smaller
D5% − D95%), and lower or equivalent dose to organs at risk.
Conclusions: CTV-based robust optimization provided significantly more robust dose distributions
to targets and organs than PTV-based conventional optimization in H&N using IMPT. Eliminating the
use of PTV and planning directly based on CTV provided better or equivalent normal tissue sparing.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4801899]
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I. INTRODUCTION

In principle, intensity-modulated proton therapy (IMPT) can
provide highly conformal tumor target coverage while spar-
ing adjacent healthy organs.1, 2 IMPT offers both the high-
dose conformality of intensity-modulated radiation therapy

and the lower integral dose of protons (low dose bath effect).
IMPT is considered particularly promising for cancers of the
head and neck (H&N) because of the number and proxim-
ity of critical structures encountered. However, the character-
istics of protons (e.g, tissue density dependent finite range)
make IMPT highly vulnerable to uncertainties.3–8 These
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uncertainties arise from interfractional variations such as
tumor shrinkage, patient weight, and patient set up. Further-
more, there are uncertainties in proton range due to uncertain-
ties in computed tomography (CT) numbers and their conver-
sion to stopping power ratios.

The major purpose of this work is to compare the effec-
tiveness of the different methods to account for uncertainties
in the IMPT treatment planning through a patient population
study in the H&N site. Previously, researchers have shown
that the conventional planning target volume (PTV) concept
to provide robust target coverage is not adequate for proton
therapy.9 For passive scattering proton therapy, patient setup
uncertainties, range uncertainties, and misalignment of tissue
heterogeneity are dealt by modifying beam-specific hardware
such as apertures and compensators. However, scanning beam
proton therapy does not require such beam-specific hardware,
therefore lacks the method of appropriately accounting for
the uncertainties in order to provide adequate target coverage.
Recently, Park et al.10 have demonstrated that beam specific
planning target volume (bsPTV) could take into account of
both setup and range uncertainties for scanning beam plans
generated with single field optimization.10 However, bsPTV
is not applicable to the multifield optimized IMPT plans. In
the absence of a suitable alternative, the current practice for
managing patient setup uncertainties in IMPT is similar to that
for photons:4, 11 a PTV is generated by geometrically expand-
ing a clinical target volume (CTV) with fixed and predefined
margins based on the past patient population setup uncer-
tainty model. Individual spots are placed inside the PTV plus
a penumbra margin and their weights are optimized to deliver
uniform dose across the PTV volume under the nominal sce-
nario. The resulting dose distributions are generally not robust
in the face of uncertainties (i.e., the delivered dose distribu-
tions may differ from what was planned) because cold and hot
spots can occur within the CTV as a result of changes in tis-
sue density along the beam line due to setup and range uncer-
tainties, which may have unforeseen clinical consequences.
Furthermore, due to the fact that PTV is always larger than
CTV, this leads to unnecessary irradiation of normal tissues
surrounding the CTV and may result in increasing dose to
critical structures.

Different approaches of robust optimization have been
reported.7, 8, 12–19 We have developed one such method that ac-
counts for uncertainties during plan optimization via “worst-
case” robust optimization.17 The concept of representing plan
robustness in terms of “worst-case” dose distribution was in-
troduced by Lomax et al.20 and the first robust optimiza-
tion scheme using the “worst-case” concept was reported by
Pflugfelder et al.6 In our previous study, we showed that ro-
bust optimization can render IMPT plans less sensitive to un-
certainties and by eliminating the needs to irradiate PTV, we
were able to achieve better sparing of normal tissues than
conventional plans optimized on the basis of margins.16, 17

The robust optimization method takes into account setup and
range uncertainty directly during the spot-weight optimiza-
tion, therefore it does not require extra volume to be irradi-
ated. In other words, with robust-optimization technique, a
robust plan is generated using CTV as a primary target to be

irradiated and no longer requires geometrically expanded
PTV. Although the robust optimization algorithm does not
work directly to reduce doses to normal tissues under the
nominal scenario, the fact that it does not require irradiat-
ing the large volume defined by the PTV actually improves
plan quality under the nominal scenario when compared to
the conventional, PTV-based, optimization method.

The significance and effectiveness of robust optimization
may be treatment site-dependent. Since robust optimization
is computationally expensive, it is worthwhile to investigate
its value for individual sites and determine the subset of pa-
tient and tumor characteristics where it might be of benefit.
We sought here to evaluate the effectiveness of the worst-case
robust optimization method for H&N cancer comparing its re-
sults for 14 cases with optimization done via the conventional
“PTV-based” approach.

II. METHODS AND MATERIALS

II.A. Patient data and beam configurations

We retrospectively evaluated plans from 14 H&N patients
that are randomly selected from the first 46 H&N cancer pa-
tients treated using IMPT in our clinic (Table I in the supple-
mentary material27). The treated disease subsites were five in
nasopharynx, six in oropharynx, two in paranasal sinus, and
one with an unknown primary with metastatic disease to the
right neck. All plans were designed using three beam angles
that are the same as the clinical plans and were chosen by ex-
perienced dosimetrists/clinical physicists at our clinics. The
basic principles for beam angle selection are: (1) avoiding
two beams too close; (2) avoiding directing the beam to the
abutting critical organs; (3) avoiding the beam angles with
much inhomogeneities along the beam path. However, we
do not have the plan robustness taken into account when the
beam angles are chosen. For each patient, two methods of op-
timization (“worst-case” robust optimization and PTV-based
optimization) were used to account for uncertainties in setup
(±3 mm) and beam range (±3.5%), which are the current
standard of practice for proton therapy at our institution. The
dose grid resolution for all cases was 2.5 mm. CTVs were de-
lineated by physicians, with CTV1 defined as gross disease
plus a 1-cm margin, CTV2 encompassing the high-risk nodal
volume adjacent to gross disease in the neck, and CTV3 en-
compassing an additional margin beyond CTV2 for patients
with pharyngeal tumors and uninvolved nodes in the neck
considered to be at risk of harboring subclinical disease. We
created the PTV1, 2, and 3 by uniform expansion of CTV1,
2, and 3 by 3 mm. The simultaneous integrated boost (SIB)
technique was used to treat these patients.

The beamlet spot arrangements were identical for both
PTV-based and robust optimization. A margin for penumbra
was added to allow lateral dose fall-off (Table II of the supple-
mentary material27). While the CTV to PTV margin is meant
to account for setup uncertainties, an additional margin for
penumbra is required to ensure that the PTV is covered with
the prescribed dose (or to some acceptable level, e.g., 95%
of the prescribed dose). The prescription doses for PTVs are
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the same as the ones for the corresponding CTVs as indicated
in Table I of the supplementary material.27 Institutional dose-
volume constraints for H&N cancer radiation were used. They
are as follows: the maximum dose to the brainstem is limited
to ≤54 Gy(RBE); the spinal cord to ≤45 Gy(RBE); and the
brain to ≤50 Gy(RBE). The mean dose to the parotids is lim-
ited to ≤26 Gy(RBE) and oral cavity to ≤35 Gy(RBE).

II.B. Optimization algorithms

We used a “worst-case” robust optimization method de-
scribed in a previous publication,17 in which the objective
function value for a given iteration is computed using the
“worst-case” dose distribution.5 The interfractional patient
setup uncertainties are considered to be random, and are
incorporated by shifting the isocenter of the patient in the
antero-posterior (A-P), superior-inferior (S-I), and lateral (R-
L) directions by the same margin as is used for defining the
PTV, yielding six dose distributions and the corresponding
“influence matrices” (i.e., beamlet dose distributions per unit
intensity). Range uncertainties for one single patient are sys-
tematic and propagate through the whole course of the treat-
ment. But they are random for a patient population. They are
incorporated by scaling the stopping power ratios by −3.5%
and 3.5% to generate two additional dose distributions and
influence matrices corresponding to maximum and minimum
proton ranges, respectively. The worst-case dose distribution
is then represented by the minimum of the nine doses in each
voxel in the CTV and the maximum of the nine doses in each
voxel outside the CTV.5

For robust optimization, we used a standard quadratic ob-
jective function

F (ωj ) =
∑

i∈CTV

pCTV,min(Di,min − D0,CTV)2

+
∑

i∈CTV

pCTV,max(Di,max − D0,CTV)2

+
∑

i∈OARs

pOARsH (Di,max − D0,OARs)

× (Di,max − D0,OARs)
2, (1)

where p denotes the penalty weight of the corresponding term
and D0 denotes the prescribed dose for the corresponding or-
gan. The underlined term is the modification that minimizes
hot spots. The Heaviside function, H(〈Di〉 − D0), is defined
conventionally (i.e., its value is unity if 〈Di〉 > D0 but zero if
〈Di〉 ≤ D0). Dose-based, dose volume based,21 and equivalent
uniform dose based objectives22 are implemented. The terms
Di,min = min

m
{Dm

i } and Di,max = max
m

{Dm
i } in Eq. (1), respec-

tively, indicate the minimum and maximum dose among the
m possible doses Dm

i in voxel i (m = 9 here), which are calcu-
lated using Dm

i = ∑
j

IMm
i,jω

2
j in each iteration. The mth IMs

IMm
i,j , incorporating range and setup uncertainties, were pre-

calculated using an inhouse dose calculation engine for pro-
ton pencil beams of a finite size23 and stored in local memory
for efficient optimization. Our robust optimization approach

inherits the simplicity of worst-case robust optimization and
does not require a detailed model for uncertainties.

The optimization was performed using the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
method24 included in the optimization software OPT++
(Ref. 25) parallelized with beamlet domain decomposition.
In order to reduce long computation time and demanding
memory required for robust optimization, we implemented
our method in parallelization via memory distribution on a
multiprocessor system.

II.C. Quantifying plan robustness

It should be stressed that the nominal dose distributions
(i.e., without the consideration of uncertainties) do not repre-
sent the dose distributions actually realized in the face of un-
certainties. Therefore, when comparing plan qualities under
the influence of uncertainties, it is necessary to incorporate
the effect of uncertainties on the planned dose distribution.
In theory, one can look at all possible uncertainty situations.
However, it would require significant computation time and
data processing effort to evaluate plans under all realizable
perturbed doses from the uncertainties.

In order to simplify method of comparing the robustness of
the PTV-based conventionally optimized plan and the CTV-
based robustly optimized plan, we used a root-mean-square
dose (RMSD) per voxel as a measure of robustness of dose
in the voxel. This approach is different from the dose vol-
ume histograms (DVHs) derived from the worst-case dose
distribution20 and the DVH family bandwidth method18 and
is independent of the method used for robust optimization. In
order to account for the impact of the combined uncertain-
ties, we calculated the RMSD of the 21 doses for each voxel,
i.e., for each of nominal, minimum, and maximum proton
range, the isocenter of the patient is at the nominal position
and rigidly shifted in the A-P, S-I, and R-L directions, respec-
tively, yielding 21 dose distributions (7 per proton range). We
calculated RMSD-volume histograms [RVH, analogous to the
error-bar volume histograms (EVHs) proposed by Albertini
et al.11]. Each pair of RVH plots of a given structure, one for
PTV-based conventionally optimized and one for CTV-based
robustly optimized plan, give relative assessment of a plan’s
robustness. The area under the RVH curve (AUC) gives a nu-
merical index summarizing plan robustness similar to the way
that equivalent uniform dose summarizes a DVH: the smaller
AUC value indicates the better plan robustness.

We should emphasize that an important characteristic of
the methods for robustness quantification used in this study do
not need a detailed model for the considered uncertainties5, 6

and they serve the purpose of relative comparison between
two treatment plans with different optimization techniques.

II.D. Evaluating target dose coverage, homogeneity,
and normal tissue sparing

To evaluate or compare the optimality of IMPT plans
created by PTV-based optimization or CTV-based robust
optimization, we used the conventional method of DVH
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analysis. In this method, for each of nominal, minimum, and
maximum proton range, the isocenter of the patient is at the
nominal position and is rigidly shifted in the A-P, S-I, and R-L
directions, respectively, yielding 21 dose distributions (7 per
proton range). Two DVHs are generated for targets: one by
choosing the minimum of the nine doses in each voxel in the
targets and the other by choosing the maximum of those nine
doses. The DVH corresponding to minimum voxel doses rep-
resents the worst-case scenario for target coverage. We used
the lowest dose covering 95% of the volume in this DVH,
i.e., D95% to assess target coverage. Similarly, we used D5% of
the maximum dose DVH as a measure of the worst-case hot
spot of the target. Thus, the worst-case target inhomogene-
ity is represented by D5% − D95%. The corresponding D95%

and D5% minus D95% doses in the nominal scenario (without
any uncertainties considered) are also derived. Those values
of each case are then normalized to the corresponding pre-
scription doses (Table I of the supplementary material27).

The DVHs for organs at risk (OARs) based on the worst-
case dose distributions (by choosing the maximum of the 21
doses in each voxel outside the targets) and based on the nom-
inal dose distribution were also generated. OAR sparing was
evaluated in terms of: D1cc (the highest dose that covered 1 cc
of the structure volume) for spinal cord and brainstem, Dmean

(the mean dose) to the oral cavity and parotids, and D1% (the
dose that covered 1% of the structure volume) for other or-
gans. Those values of each case are then normalized to the
corresponding prescription doses (Table I of the supplemen-
tary material27).

II.E. Statistical analysis

The means of the AUCs, D5% and D95% of targets, and eval-
uation metrics of sparing of OARs of the 14 H&N cases from
the robustly optimized plans and the PTV-based plans were
calculated and compared statistically by the paired t-tests (or
by the Wilcoxon test if outliers existed) using SPSS 19.0 soft-
ware (International Business Machines, Armonk, New York).
A derived value of p < 0.05 was considered statistically sig-
nificant.

III. RESULTS

III.A. Comparison of plan robustness

Plans for a representative H&N case generated with con-
ventional PTV-based optimization and robust optimization
(Fig. 1) illustrate the reduction in the impact of range and
setup uncertainties on dose distribution in the robustly opti-
mized plan.

Comparison of plan robustness for the same H&N case
using RVHs also illustrates improved robustness in the face
of uncertainties for the robustly optimized plan (Fig. 2). In
Fig. 2, the solid lines are for CTV1, CTV2, CTV3, Brain
Stem, and Right Parotid, respectively from left to right. AUCs
in the dose distribution for the targets and critical normal tis-
sues in the robustly optimized plans (solid lines) are smaller
than those in the PTV-based optimized plan [dashed lines;

FIG. 1. Dose distributions in the transverse plane for a representative pa-
tient illustrate the insensitivity of the robustly optimized plan (right panels)
to range and set up uncertainties compared with the conventional PTV-based
optimized plan (left panels). Top panels (a) and (b) show dose distributions in
nominal position; whereas the middle panels (c) and (d) show corresponding
data with 3.5% larger range and the bottom panels (e) and (f) are for 3.5%
larger range and 3 mm superior shift. CTV1: left top big filled area; CTV2:
two left small filled area abutting CTV1; CTV3: right small filled area dis-
connected from CTV1. Isodose lines in the PTV-based plan are perturbed to
a significantly greater degree than in robustly optimized plan. For instance,
CTV1 is not adequately covered with the prescribed dose of 66 Gy(RBE) in
panel (c) and CTV3 is not covered with 54 Gy(RBE) in panels (c) and (e).

FIG. 2. RVHs derived from a robustly optimized plan (solid lines) and from
a PTV-based optimized plan (dashed lines) for patient 10. All curves are nor-
malized to the total volume of the corresponding organs. Areas under the
RVH curves of the robustly optimized plan are smaller than those of the PTV-
based optimized plan. The solid lines are for CTV1, CTV2, CTV3, Brain
Stem, and Right Parotid, respectively from left to right.
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FIG. 3. Areas under the RVH curves for various structures (averaged over
14 H&N cancer cases) derived from the robustly optimized plans (left bar
for each structure) and the PTV-based optimized plans (right bar for each
structure) indicate the improved robustness of the robustly optimized plans.
Data for targets (GTV; CTV) are to the left of the dashed line, and data for
normal tissues are to the right. Numbers at the top of the columns are P
values.

CTV1 (red) 10.8 vs 15.4; CTV2 (cyan) 11.4 vs 16.7; CTV3
(black) 12.8 vs 18.2; brainstem (green) 16.3 vs 16.5; right
parotid (magenta) 15.5 vs 22.5]. The corresponding calcula-
tions of AUCs averaged over 14 cases (Fig. 3) is another in-
dicator that robust optimization is less affected by uncertain-
ties for both targets and organs than PTV-based optimization.
(Numerical values are given in Table III in the supplementary
material.27) Differences for all endpoints except for the spinal
cord are statistically significant.

III.B. Comparison of plan target dose coverage, target
dose homogeneity, and normal tissue sparing in both
the worst-case scenario and the nominal scenario

As seen in Figs. 4(a) and 4(b), in the worst-case scenario
robust optimization led to statistically significant improve-
ment in dose coverage of the targets than did PTV-based
plans (average over the 14 cases) [D95 gross target volume,
GTV 94.6% vs 91.9% (p < 0.01); CTV1 89.6% vs 87.6% (p
< 0.01); CTV2 80.4% vs 78.7% (p = 0.053); CTV3 70.5%
vs 66.5% (p < 0.01)] and more homogeneous dose distribu-
tions [D5 − D95 GTV 10.3% vs 15.5% (p < 0.01), CTV1
17.4% vs 23.0% (p = 0.056); CTV2 22.0% vs 25.8% (p
= 0.035); CTV3 25.5% vs 32.5% (p = 0.032)]. In the nominal
scenario (without any uncertainties considered), robust opti-
mization led to similar target dose coverage and homogeneity
as PTV-based optimization (average over the 14 cases) [D95

GTV 98.5% vs 98.1% (p = 0.081); CTV1 96.1% vs 96.7%
(p = 0.017); CTV2 88.5% vs 88.6% (p = 0.72); CTV3
80.5% vs 79.9% (p = 0.033); D5 − D95 GTV 4.1% vs 4.6%
(p = 0.16); CTV1 8.1% vs 8.0% (p = 0.683); CTV2 11.0%
vs 10.9% (p = 0.78); CTV3 11.3% vs 10.7% (p = 0.33)]
[Figs. 4(c) and 4(d)].

FIG. 4. (a) and (b) D95% doses and D5% averaged over 14 H&N cases il-
lustrate the improved target coverage and superior dose homogeneity of the
robust optimization process (left bar for each structure) to the PTV-based op-
timization (right bar for each structure) in the worst-case scenario. (c) and (d)
D95% doses and D5% averaged over 14 H&N cases illustrate the comparable
target coverage and similar dose homogeneity of the robust optimization pro-
cess (left bar for each structure) to the PTV-based optimization (right bar for
each structure) in the nominal scenario. Numbers at the top of the columns
are P values. The values of each case are normalized to the corresponding
prescription doses before averaging [see Table I of the supplementary mate-
rial (Ref. 27)].

Finally, the robustly optimized plans also reduced the
dose to the OARs compared with the PTV-based conven-
tional plans in the worst-case scenario [Fig. 5 (top) and
Table IV of the supplementary material27] and in the nominal
scenario [Fig. 5 (bottom) and Table V of the supplementary
material27], with differences in most endpoints being statisti-
cally significant (averaged over the 14 cases).

IV. DISCUSSION

Proton therapy in general and IMPT in particular, is highly
sensitive to treatment uncertainties. Our results in this paper
show that, for the H&N cases studied, robust optimization
leads to significantly more robust dose distribution for both
targets and OARs than do PTV-based optimization methods
while maintaining and possibly even improving the sparing
of healthy tissues. Our findings agree with others’ published
results.14, 15, 19

For H&N patients, the proximity of critical normal struc-
tures and the high doses necessary to achieve disease con-
trol make the safe delivery of radiotherapy challenging. High
doses of radiation therapy may injure, sometimes irreversibly,
critical normal tissues such as brainstem, spinal cord, oral
cavity, optical chiasm, salivary glands, cochleas, etc., within
and surrounding the target volume, which may lead to both
acute and late side-effects such as loss of auditory, olfactory,
gustatory, and visual senses. While IMPT using conventional
PTV-based approach may produce dose distributions that may
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FIG. 5. Sparing of OARs in the worst-case scenario (top) and in the nom-
inal scenario (bottom) in the robustly optimized plans (left bar for each
structure) and the PTV-based plans (right bar for each structure), aver-
aged over 14 H&N cases. Doses shown are D1cm3 to the spinal cord and
brainstem, Dmean to the oral cavity and parotids, and D1% for other or-
gans. Numbers at the top of the columns are P values. Data indicate
improved sparing with robust optimization. The values of each case are
normalized to the corresponding prescription doses before averaging [see
Table I of the supplementary material (Ref. 27)].

appear to be optimal, what is seen on treatment plans may
be quite different from what the patient actually receives.
The resulting deviations from expected dose distributions may
lead to unexpected local failures and toxicities. Due to intri-
cate heterogeneities involving complex bony structures and
air cavities, small displacements in the position may signifi-
cantly perturb proton dose distributions as illustrated in panels
(d)–(f) of Fig. 6. Field 1 appears to be most sensitive to per-
turbation presumably because it passes through most complex
inhomogeneities. Robust optimization automatically reduces
the contribution from this field. Furthermore, robust optimiza-
tion considerably reduces high dose gradients within each of
the three fields (see discussion below). We have shown that
dose distributions produced by robust optimization represent

FIG. 6. Dose distributions per field in the transverse plane for a representa-
tive patient illustrate the relative insensitivity of the robustly optimized plan
(g)–(l) to setup uncertainties compared with the conventional PTV-based op-
timized plan (a)–(f). Panels (a)–(c) and (g)–(i) show dose distributions in
nominal position; whereas the panels (d)–(f) and (j)–(l) show corresponding
data with 3 mm superior shift. CTV1: left top big filled area; CTV2: two left
small filled area abutting CTV1; CTV3: right filled area disconnected from
CTV1. The shift perturbs the dose distribution in the PTV-based plan signif-
icantly [e.g., 32 and 27 Gy(RBE) isodose lines]. Field 1 appears to be most
sensitive to perturbation presumably because it passes through most complex
inhomogeneities. Robust optimization automatically reduces the contribution
from this field. Furthermore, robust optimization considerably reduces high
dose gradients within each of the three fields.

more closely what is actually delivered in the face of uncer-
tainties as shown in panels (j)–(l) of Fig. 6.

It is well established that, for protons, assignments of mar-
gins for setup uncertainties alone is insufficient because of
the additional uncertainty associated with range of protons
for each beam and due to the significant perturbation of dose
distributions within the structures. In order to fairly evalu-
ate plan qualities of two different plans (e.g., CTV-based ro-
bustly optimized IMPT vs PTV-based conventionally opti-
mized IMPT), the effect of uncertainties on dose distributions
must be addressed. This point has been articulated for almost
three decades;26 but not instituted in routine practice due to
high computational costs. For comparing photon plans among
themselves, this is not a significant issue, especially if com-
peting plans all have appropriate PTV margins. However, be-
cause the concept of conventionally defined PTV is not suffi-
cient for the evaluation of target dose distribution for protons
due to beam-specific range uncertainty, a different method of
plan evaluation is necessary for comparing one proton plan
with another or for comparing a proton plan with a photon
plan.

In our previous work, we had used the worst-case dose
distributions to compare competing plans. An assertion about
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that approach one can make is that, since worst-case method
is also used for robust optimization, comparing PTV-based
plans vs robustly optimized plans using the same underly-
ing methodology would create a bias in favor of the latter.
In this paper, we have used this RVH method as an indepen-
dent way to numerically (via the area under the RVH curves)
assess the plan robustness and whether the plan robustness
is improved. While the proposed RVH method eliminates
bias from the worst-case DVH method and provides a simple
metric to cross-compare the robustness of proton plans, it is
limited to relative comparison because it does not provide
statistically meaningful quantification (e.g., mean or standard
deviation). The worst-case based robust optimization method
assumes that interfractional variations are of rigid body type;
it does not consider deformations and changes in positions of
anatomic structures relative to each other. It further assumes
that each uncertainty can be considered independently of oth-
ers. In reality, multiple uncertainties can occur simultaneously
but they cannot be negative and positive at the same time as is
implicit in the worst-case approach. In theory, one can look at
all possible perturbed situations with significant computation
time. The current approach is more practical. In our robust-
ness evaluation method, we used 21 dose distributions (seven
geometrical positions times three proton ranges), rather than
nine to evaluate plan robustness in the face of combined un-
certainties.

An important characteristic of robust optimization is that
it produces more homogeneous target dose distribution in
the worst-case scenarios while showing similar target homo-
geneity under nominal scenario. The superior homogeneity is
highly valuable feature for the treatment of H&N cancers.1

Improved target dose homogeneity may minimize the toxic-
ity of tissues within the target volume (e.g., base of tongue)
which may compromise organ function such as swallowing.
Improvement in homogeneity with robust optimization is due
to the fact that, if the incorporation of uncertainties reveals
hot or cold spots within the target volume, the objective func-
tion value (i.e., the plan score) is penalized. Additionally, the
improved sparing of the parotid glands, for instance, might
avoid severe xerostomia, which could improve patients’ qual-
ity of life.1

In general, the improvement in robustness is thought to
be at the expense of normal tissue sparing.6–8, 18 We believe
this has been the result of comparing results of CTV-based
robust optimization with CTV-based conventional optimiza-
tion, i.e., without the incorporation of uncertainties in their
CTV-based conventional optimization via a PTV margin. Be-
cause robustly optimized treatment planning strategy allows
us to plan by delivering the prescribed dose directly to CTV
rather than PTV, it can potentially reduce doses to normal tis-
sues even under the nominal scenario compared to the PTV-
based conventional treatment planning strategy that irradiates
the entire PTV. In other words, robust optimization technique
is much more efficient in terms of sparing doses to normal
tissues while providing better plan robustness than the PTV-
based conventional optimization technique.

Two possible mechanisms were reported to improve plan
robustness by robust optimization: (1) a localized single-field

uniform dose distribution (LSFUD) mechanism,16 which usu-
ally happens within the targets to render per beam dose dis-
tribution more homogeneous (Fig. 6); and (2) perturbed dose
distribution, which follows the change in anatomical geom-
etry (Fig. 9 of Liu et al.16). This mechanism usually takes
place at the edge of targets and intends to ensure the target
coverage despite the presence of the uncertainties. The opti-
mizer can find a desired beamlet weight solution from the de-
generate solution space so that the dose distribution follows
the changes in anatomical geometry and is minimally per-
turbed by uncertainties.16, 17 Either or both mechanisms are
found in the H&N cases studied. Thus, robust optimization
resulted in patient-specific, optimizer-determined, and effec-
tively reduced margins compared with a predefined and fixed
margin used in the PTV approach based on a patient popula-
tion model.16, 17

In addition, there are also some advantages of robust opti-
mization in the context of beam delivery over the PTV based
optimization. First of all, fewer spots might be needed from
robust optimization since either some spots in the PTV margin
volume are shut off or their magnitudes are reduced. Addi-
tionally, the robust optimization can potentially improve the
patient specific quality and assurance (QA) outcome. Cur-
rently, in our clinics, both depth dose and 2D planar dose
are measured and verified against treatment planning system
calculated dose. These measurements are highly sensitive to
dose gradient. Because robust optimization tends to penalize
highly heterogeneous per field dose delivery, it can increase
accuracy of our QA measurement.

V. CONCLUSIONS

In conclusion, based on the findings of this study, we be-
lieve that implementing robust optimization into an IMPT
planning for use in clinical practice would significantly im-
prove the quality of IMPT for treating H&N cancers. This
effort is currently underway at MD Anderson.

There is still considerable amount of additional work to
be done for continued improvement and assessment of robust
optimization and robustness evaluation methods. Validity
of alternative approaches needs to be evaluated. Nonrigid
variations in anatomy and intrafractional motion need to
be accounted for. It would also be instructive to use tumor
control probability, normal tissue complication probability,
and equivalent uniform dose models to evaluate the potential
clinical benefits of robust optimization. Recently, we are in
the process of implementing robust optimization clinically.
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