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The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing
disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems
abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially
differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and
effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large
amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and
differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of
effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques,
coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC
pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also
aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of
small molecule inhibitors/activators in hESC biology and their potential uses in the future.
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Introduction

While mouse embryonic stem cells (mESCs) use leukaemia
inhibitory factor (LIF), which activates the JAK/signal trans-
ducer and activator of transcription (JAK/STAT) pathway
(Niwa et al., 1998; Matsuda et al., 1999), and bone morpho-
genetic proteins (BMPs), which induce inhibitor of differen-
tiation (Id) proteins via the SMAD pathway (Ying et al., 2003),
to maintain their pluripotent nature, human embryonic stem
cells (hESCs) cannot be cultivated under these conditions
(Humphrey et al., 2004). Long-term culture of hESCs is sup-
ported by high levels of basic fibroblast growth factor (bFGF/
FGF2) (Xu et al., 2005) and TGF-b/activin/nodal proteins
(James et al., 2005; Vallier et al., 2005). The observed differ-
ences may arise due to their differing developmental origin,
with hESCs representing an earlier developmental stage more
akin to stem cells derived from post-implantation mice
embryos (EpiSCs) (Brons et al., 2007; Tesar et al., 2007). There-
fore, if the signals mediating pluripotency/self-renewal of
hESCs and mESCs are dissimilar, the signals mediating differ-
entiation of these cells may also differ. It has been noted that
mESC and hESC do react differently in response to the same
cellular signal, such as the addition of BMP4 to hESCs, which
leads to rapid differentiation (Bernardo et al., 2011) while

mediating self-renewal in mESCs (Qi et al., 2004), and FGF/
ERK signalling, which promotes self-renewal in hESCs and
differentiation in mESCs (Kunath et al., 2007). Additionally,
studies suggest that hESCs exist in a state of balance and
require exquisite control, with minute perturbations in the
signalling pathways having huge affect, and further, that
interplay between signalling pathways is vitally important.

This review will therefore attempt to bring together the
current knowledge of the use of small molecule activators/
inhibitors in the maintenance of the pluripotent state (sum-
marized in Table 1) and differentiation of hESCs (summarized
in Table 2).

Pharmacological control
of pluripotency

Maintenance of hESC self-renewal
and pluripotency
High content screens of small molecules linked to various
pluripotent endpoint assays have been undertaken in an
attempt to find compounds that will allow for the continued
stable growth of hESCs, thereby allowing for a homogeneous

Table 1
Small molecule activators/inhibitors known to modulate the pluripotent state of hESCs

Drug Target Reference

Antimycin A Mitochondrial respiratory chain (Varum et al., 2009)

BIO GSK3b (Bone et al., 2009; James et al., 2005; Sato et al., 2004)

Butyryl CoA Energy release/storage (Ware et al., 2009)

CHIR99021 GSK3b (Tsutsui et al., 2011)

DETA-NO NO donor (Tejedo et al., 2010)

Dorsomorphin ALK2, 3 and 6 (Gonzalez et al., 2011)

EHNA ? (Burton et al., 2010a,b)

FBP ? (Desbordes et al., 2008)

GTFX ? (Desbordes et al., 2008)

HDACs (NaB, TSA, VPA, SAHA) Histone proteins (Ware et al., 2009)

Okadaic acid PP2A (Yoon et al., 2010)

PD98059 MAP2K1/MEK1 (Armstrong et al., 2006; Li et al., 2007; Tsutsui et al., 2011),

SNM Prostaglandin, leukotriene and
NO synthesis

(Desbordes et al., 2008)

THEA ? (Desbordes et al., 2008)

U0126 MAP2K1/MEK1 (Armstrong et al., 2006; Li et al., 2007)
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Table 2
Small molecule activators/inhibitors known to modulate the differentiation of hESCs

Drug Target Pathway
Differentiated Cell
Fate Reference

1-EBIO Ca2+ Activated K+

Channels
Cardiac and cardiac

pacemaker-like cells
(Müller et al., 2011)

1m GSK3b WNT Primitive streak,
mesoderm, definitive
endoderm

(Bone et al., 2011)

5-Azacytidine/5-aza-2’-
deoxycytidine

DNMT’s Cardiomyocyte (Wang et al., 2010; Xu et al.,
2002; Yoon et al., 2006)

ALK5-I/II Inhibitor +
DAPT

ALK5 + g-secretase TGFb + NOTCH Pancreatic endocrine cells (Rezania et al., 2011)

ATRA RARs/RXRs Mainly neurogenesis (Desbordes et al., 2008)

BIO + SB431542 GSK3b + ALK4,5 & 7 WNT + TGFb Neural crest (Menendez et al., 2011)

BMS-189453 + NOGGIN RARs/RXRs Cardiomyocytes (Zhang et al., 2011)

CHIR99021 +
DORSOMORPHIN +
RA + SB431542

GSK3b + ALK2, 3 and
6+ ALK4,5 & 7

WNT + TGFb hiPSCs into definitive
endoderm then
pancreatic cells

(Kunisada et al., 2011)

CHIR99021 + SB431542
+ Compound E

GSK3b + ALK4,5 & 7 +
g-secretase

WNT + TGFb + NOTCH Cardiomyocytes (Kattman et al., 2011)

Chlorate Downregulation of
Sulfonation

WNT, TGFb, and
FGF/ERK

Mature neurons (Sasaki et al., 2010)

Cobalt chloride HIF-1a stabilization Cardiomyocyte
differentiation to
functionally mature
cardiomyocytes

(Ng et al., 2011)

Corticosteroids Trophoblast and
mesodermal

(Barbaric et al., 2010)

CSA Calcineurin NFAT Cardiomyocyte
differentiation from
ESC-derived
mesodermal cells in
visceral endodermal
stromal cell co-culture

(Mummery et al., 2003)

Decreased hypertrophy of
ESC-derived
cardiomyocytes

(Lim et al., 2000)

Cyclopamine SMO Hh Astrocytes (Lee et al., 2006)

Cymarin RARs/RXRs Mesodermal/endodermal (Desbordes et al., 2008)

Dorsomorphin ALK2, 3 and 6 TGFb Neurogenesis (Kim et al., 2010; Wada
et al., 2009; Zhou et al.,
2010)

Dorsomorphin +
SB431542

ALK2, 3 and 6 +
ALK4,5 & 7

TGFb Pancreatic Cells
Neurogenesis

(Nostro et al., 2011)

(Kim et al., 2010; Morizane
et al., 2011)

IDE1 and 2 TGFb Definitive endoderm (Borowiak et al., 2009)

ILV +
KAAD-Cyclopamine

PKCs + SMO Hh Pancreatic Progenitors (Chen et al., 2009; D’Amour
et al., 2006; Kroon et al.,
2008; Thatava et al.,
2011).

IWP-4, IWR-1 WNT Cardiomyocytes (Hudson et al., 2011)

IWR-1 WNT Cardiomyocytes (Ren et al., 2011)

IWR-1, IWP-3 WNT Cardiomyocytes (Willems et al., 2011)

LY294002 PI3K PI3K/AKT/mTOR Endodermal (Touboul et al., 2010)
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Table 2
Continued

Drug Target Pathway
Differentiated Cell
Fate Reference

NaB Histone Proteins Hepatocytes differentiation
Endodermal and
trophectodermal

(Hay et al., 2008)
(Maimets et al., 2008)

Nutlin TP53 Primitive endoderm and
trophectoderm
differentiation

(Maimets et al., 2008)

PD98059 MAP2K1/MEK1 MEK/ERK Haematopoietic and
functional endothelial
and smooth muscle
cells

(Park et al., 2010)

Purmorphamine SMO Hh Ventral spinal progenitors
and motor neurons

(Li et al., 2008)

RA Functional Insulin
Producing Cells

(Jiang et al., 2007)

Rapamycin mTOR PI3K/AKT/mTOR Mesodermal and
endodermal

(Zhou et al., 2009)

Osteogenesis (Lee et al., 2010)

Red Ginseng Cardiac-progenitor like
cells from hESC-derived
EBs.

(Kim et al., 2011)

Rosiglitazone PPARg Adipocytic Differentiation (Xiong et al., 2005)

Sarmentogenin Mesodermal/Endodermal (Desbordes et al., 2008)

SB203580 p38 MAPK MAPK Cardiomyogenesis (Gaur et al., 2010; Kempf
et al., 2011)

SB431542 ALK4,5 & 7 TGFb Primitive NPCs (Li et al., 2011)

Myocyte progenitors (Mahmood et al., 2010)

hESC-derived hemogenic
epithelial cells into HPCs

(Wang et al., 2011)

Cardiomyocytes (Graichen et al., 2008; Xu
et al., 2008),

Endothelial cells (James et al., 2010).

hESC-derived endoderm
cells into hepatic
progenitors

(Touboul et al., 2010)

SB431542 + CKI-7 ALK4,5 & 7 + Casein
Kinase

TGFb + LEFTYA Retinal (Osakada et al., 2009)

SB431542 + NOGGIN ALK4,5 & 7 + BMP TGFb Neurogenesis (Chambers et al., 2009)

Anterior Foregut
Endoderm

(Green et al., 2011)

Endocrine differentiation
from hESC-derived
pancreatic progenitors

(Nostro et al., 2011)

SB431542 +
Purmorphamine

ALK4,5 & 7 + SHH TGFb + SHH Motor Neuron Precursors (Patani et al., 2009)

SP60125 JNK/AP-1 Non-canonical WNT Haematopoiesis (Rai et al., 2011)

Stauroprimide Primes for multilineage
differentiation

(Zhu et al., 2009)

Synthetic RA
Analogues

RARs/RXRs Mainly Neurogenesis (Christie et al., 2008)
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and plentiful source of cells for lineage-specific differentia-
tion. Commonly used media and growth substrates are gen-
erally not well defined and may be contaminated by
pathogens or xenogens (Martin et al., 2005). For this reason,
many laboratories have attempted to develop fully defined
conditions for hESC growth and in doing so have identified
many cytokines and growth factors, such as WNT proteins,
fibroblast growth factor (FGF), heparin, TGF-b, insulin-like
growth factor II (IGF-II), activin A, platelet derived growth
factor (PDGF) and neurotrophins (Dravid et al., 2005; Pebay
et al., 2005; Vallier et al., 2005; Pyle et al., 2006; Xiao et al.,
2006; Bendall et al., 2007; Furue et al., 2008; Montes et al.,
2009) and growth surfaces (Klim et al., 2010; Mei et al., 2010;
Melkoumian et al., 2010; Rodin et al., 2010; Villa-Diaz et al.,
2010; Irwin et al., 2011; Lee et al., 2011; Nandivada et al.,
2011; Saha et al., 2011), which allow for clonal feeder-free
growth and subsequent differentiation. One such commercial
success is the mTeSR® defined media from StemCell Tech-
nologies, which allow for both hESC and human-induced
pluripotent stem cell (hiPSC) growth on Matrigel extracellu-
lar matrix with no additional growth factors (Thomson et al.,
1998; Ludwig et al., 2006; Takahashi et al., 2007). However,
the use of large amounts of highly purified growth factors and
specified media for hESC growth can be very expensive, and
so small molecule inhibitors/activators may be able useful for
replacing these growth factors at a lower cost. To this end, a
recent article has suggested that PD98059 (MAPK kinase 1,
MAP2K1/MEK1 inhibitor), CHIR99021 [glycogen synthase
kinase 3 (GSK3b) inhibitor] and Y27632 [Rho-associated
protein kinase (ROCK) inhibitor] encompass a small molecule
inhibitor cocktail that can support long-term maintenance of
hESCs and allows for serial single cell passaging, following a
feedback system control methodology that allowed the assay
of numerous compounds at different concentrations (Tsutsui
et al., 2011). However, it was noted that, with increases in the
level of CHIR99021, differentiation occurred, demonstrating
the fine balance that exists between proliferation and
differentiation.

A comprehensive study from The International Stem Cell
Initiative Consortium reviewed the requirements for hESC
growth through a multi-laboratory comparison of the diverse
methodologies utilised (Akopian et al., 2010). However,
analysis found that of the culture systems analysed through
all laboratories, only three systems supported maintenance of
tested hESC lines for 10 passages; those being cultivation of
cells in the presence of Knockout SerumTM Replacement
(KOSR; Invitrogen) supplemented with FGF2 in the presence
of a mouse embryonic fibroblast (MEFs) feeder cell layer,
which was the positive control for these studies, and the two
commercially available defined hESC culture media prepara-
tions: mTeSR®1 and StemPro® (Invitrogen).

Excitingly, a recent study has demonstrated the deriva-
tion and growth of hESCs that are potentially pure enough to
be used in therapies and have deposited these in the UK Stem
Cell banks, which will be available to laboratories across
Europe (Ilic et al., 2011). Protocols were developed for the
successful derivation of two normal and three specific
mutation-carrying (Huntington’s disease and myotonic dys-
trophy 1) genomically stable hESC lines, and their adaptation
to feeder-free culture, all under completely xeno-free condi-
tions, using human fetal fibroblast extracellular matrix as a

growth substrate and TeSR™2, an improved version of
mTeSR®1, as a growth medium.

WNT pathway modulation and pluripotency
The WNT signalling pathway has been shown to be vitally
important to hESC self-renewal through the use of the inhibi-
tor BIO (6-bromoindirubin-3′oxime), which is derived from
the mollusc compound Tyrian purple (Meijer et al., 2003).
BIO is a potent, reversible, ATP-competitive inhibitor of the
serine-threonine kinase GSK3b, which, when inhibited acti-
vates WNT/b-catenin signalling, allowing the maintenance of
the undifferentiated phenotype in both hESCs and mESCs
(Sato et al., 2004; James et al., 2005). The AXIN/GSK3b/APC
complex normally promotes the proteolytic degradation of
b-catenin, and so if this ‘b-catenin destruction complex’ is
inhibited, b-catenin can accumulate, stabilize and enter the
nucleus and then interact with the TCF/LEF family transcrip-
tion factors, which promote specific gene expression. Recent
studies linking WNT signalling and pluripotency have shown
that the human NANOG gene is regulated through a TCF/LEF
element within an enhancer (Kim et al., 2011a), while a
pluripotency-associated micro-RNA (miRNA) cluster (miR-
371–373) (Wang et al., 2008; Judson et al., 2009) was found to
be positively regulated by WNT/b-catenin signalling activity
in several human cancer cell lines (Zhou et al., 2011). Lithium
chloride (LiCl)-mediated inhibition of GSK3 and b-catenin
ubiquitination (Klein and Melton, 1996) stimulated WNT/b-
catenin activity and subsequently stimulated the expression
of the miRNA cluster through direct binding of b-catenin/
LEF1 to the miRNA promoter. Targets of the miRNAs included
DKK1, a WNT/b-catenin signalling inhibitor, therefore pro-
viding a regulatory feedback loop. However, the results from
one study suggest that the effect of GSK3b inhibition may be
culture specific (Bone et al., 2009). When cultured on inacti-
vated MEFs, BIO aided the maintenance of pluripotency; but
this effect was lost upon growth on Matrigel with mTeSR®
medium.

The importance of the WNT pathway in hESC pluripo-
tency has also been shown in related studies. Firstly, treat-
ment of hESC with okadaic acid, a potent inhibitor of protein
serine/threonine phosphatase 2A (PP2A) (Garcia et al., 2003),
promoted hESC self-renewal through the inactivation of
GSK3b (Yoon et al., 2010). Secondly, lower oxygen levels have
been shown to enhance b-catenin activity in mESCs (Mazum-
dar et al., 2010), leading to the enhancement of pluripotency.
Low oxygen tension in hESC culture is known to better main-
tain the undifferentiated state (Ezashi et al., 2005; Westfall
et al., 2008; Chen et al., 2010b; Lim et al., 2011), probably
through the functions of hypoxia inducible factors (HIFs)
(Forristal et al., 2010) but may affect the WNT signalling
pathway. When mammalian cells are cultured under low
oxygen tension, ATP production via oxidative phosphoryla-
tion in the mitochondria is decreased and glycolytic func-
tions increase in order to meet energy demands. Further,
antimycin A, a secondary metabolite from Streptomyces bac-
teria, has been shown to enhance hESC pluripotency through
inhibition of the mitochondrial respiratory chain, which
results in reduced mitochondrial oxidative phosphorylation
and increased reactive oxygen species (ROS) signalling
(Varum et al., 2009).
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TGF-b pathway modulation and pluripotency
The TGF-b signalling pathway is involved in many cellular
processes, including the promotion of differentiation and
the TGF-b superfamily of ligands include BMPs, activin,
nodal and TGF-bs. Binding of a ligand to its cell membrane
receptor mediates the phosphorylation of specific SMAD
proteins that can then enter the nucleus to mediate target
gene expression.

Recent research has attempted to delineate the role of this
complex pathway in hESC self-renewal (Xu et al., 2008a;
Vallier et al., 2009a,b; Brown et al., 2011; Mullen et al., 2011).
Activin/nodal signalling leads to SMAD2/3 activation, which
is required to maintain hESC identity (Beattie et al., 2005;
James et al., 2005; Vallier et al., 2005; Xu et al., 2008a), and
SMAD3 was recently found to co-occupy OCT4 binding sites
across the genome in hESCs and mESCs (Mullen et al., 2011).
Further analysis in mESC demonstrated that SMAD3 also
co-occupied NANOG and Sox2 binding sites, and that OCT4
recruited SMAD3, although there was no evidence of a direct
interaction between the two, suggesting a larger complex
may be present. NANOG was also shown to be regulated
through activin/nodal signalling in hESCs (Xu et al., 2008a;
Vallier et al., 2009a) and hiPSCs (Vallier et al., 2009b) through
direct binding of SMAD2/3 to its promoter (Vallier et al.,
2009a) and also to co-operate with SMAD2/3 in hESCs to
maintain pluripotency (Brown et al., 2011). Additionally,
SMAD2/3-NANOG inhibited ectodermal differentiation
induced by FGF signalling (Xu et al., 2008a; Vallier et al.,
2009a), again highlighting the balance required between sig-
nalling pathways for distinct outcomes. Further studies have
also shown that this pathway is required for early differen-
tiation (Brown et al., 2011; Chng et al., 2011; Teo et al., 2011).
Activin/nodal-mediated SMAD2/3 activation was observed in
definitive endoderm cells, through binding of SMAD2/3 at
different genomic sites to SMAD2/3-NANOG, suggesting that
in endodermal differentiation SMAD2/3 interacts with
another partner, such as EOMES (Teo et al., 2011), changing
its occupancy profile and therefore eliciting a completely
different effect (Brown et al., 2011). SMAD-interacting
protein (SIP1) also interacts with SMAD2/3 in hESCs, and its
expression is mediated by activin/nodal-regulated NANOG
expression (Chng et al., 2011). In hESCs, SIP1 expression
limits the capacity of SMAD2/3 to differentiate towards
mesendoderm, while SIP1 expression upon differentiation
allows neuroectodermal differentiation mediated by activin/
nodal signalling (Chng et al., 2011). These new data show
that signalling pathways such as these need to be studied in
detail to allow the discovery of new potential targets for drug
discovery.

One known compound, dorsomorphin (or compound C),
was shown to promote hESC self-renewal and maintain the
self-renewing, pluripotent state (Gonzalez et al., 2011)
through the inhibition of TGF-b/BMP type I activin receptor-
like kinases (ALK2, 3 and 6) (Yu et al., 2008) and thus block-
ing SMAD1/5/8 phosphorylation and blocking extra-
embryonic differentiation, while also acting as a potent,
selective, reversible, and ATP-competitive inhibitor of AMP-
activated protein kinase (AMPK). This suggests that apart
from boosting pluripotency, the inhibition of differentiation
is also an important, and potential drug, target.

MEK/ERK and PI3K/PKB/mTOR pathway
modulation and pluripotency
Both the MEK/ERK and the PI3K/PKB/mammalian target of
rapamycin (mTOR) pathways have been found to be active in
hESCs downstream of FGF signalling and to cooperate in
enhancing pluripotency (D’Amour et al., 2005; Armstrong
et al., 2006; Li et al., 2007; McLean et al., 2007). MEK/ERK
signalling is required for the maintenance of hESC self-
renewal as shown through the use of the MEK inhibitors
PD98059 and U0126 (Armstrong et al., 2006; Li et al., 2007),
in contrast to what is known for mESCs (Burdon et al., 1999).
The pathway regulates survival and proliferation in a diverse
set of cells, and determines their fate(Bottcher and Niehrs,
2005), through the signal transduction of extracellular signal-
ling mediated by cell surface receptors such as the EGF recep-
tor, TRK A/B (common ligands of TRK receptors are
neurotrophins), FGF receptor (FGFR) and PDGFR via the
adaptor protein growth factor receptor-bound protein 2
(GRB2), which activates RAS/RAF, activating MEK and
MAPKs, which ultimately leads to alterations in gene expres-
sion. The PI3K/PKB (PKB) pathway functions through PI3K
catalysing the conversion of PIP2 [phosphatidylinositol (3,4)-
bisphosphate] to PIP3 [phosphatidylinositol (3,4,5)-
trisphosphate], which mediates the phosphorylation and
activation of PKB through PDK-1 (phosphoinositide-
dependent kinase-1) (Alessi et al., 1997; Franke et al., 1997),
which then activates mTOR a serine/threonine protein kinase
that has been shown to support self-renewal and suppress
differentiation in hESCs (Zhu et al., 2011).

Chromatin modulation and pluripotency
hESCs have a distinct ‘open’ chromatin environment associ-
ated with hyper-acetylation of histone proteins and low
levels of DNA methylation, which leads to accessible DNA
permissive for transcription. It is proposed that this is impor-
tant for the attainment/maintenance of the pluripotent phe-
notype and also suggests that chemical modulation of the
chromatin environment could therefore modulate pluripo-
tency. The histone deacetylases (HDACs) sodium butyrate
(NaB), trichostatin A (TSA), valproic acid (VPA) and suberoyl
anilide hydroxamic acid (SAHA), which boost levels of
histone acetylation, all have positive effects on hESC
maintenance/self-renewal. However, NaB and its metabolite
butyryl CoA, essential for immediate energy and energy
storage, has the biggest affect (Ware et al., 2009). Butyrate
inhibits most HDACs except class III HDAC and the class IIb
HDAC-6 and HDAC-10 (Davie, 2003). TSA inhibits class I and
II HDACs but not class III HDACs (Sirtuins) (Vanhaecke et al.,
2004). VPA is an HDAC1 inhibitor, while SAHA inhibits class
I and class II HDACs. Use of these inhibitors should lead to
the enhancement of the open chromatin environment asso-
ciated with pluripotency, and their use has also been demon-
strated to promote hiPSC formation (Huangfu et al., 2008;
Zhu et al., 2010). Other epigenetic modifications have been
identified as potential therapeutic targets (Kelly et al., 2010)
and could have relevance to pluripotency and differentiation
of hESCs. These include inhibition of lysine-specific
demethylase 1 (LSD1) by parnate/tranylcypromine (Li et al.,
2009b), BIX-01294-mediated repression of the G9a/GLP
histone lysine 9 methyltransferases (Chang et al., 2009), inhi-
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bition of DNA methyltransferases (DNMTs) by compounds
such as 5-azacytidine/5-aza-2′-deoxycytidine and disruption/
promotion of non-coding RNA (ncRNA) function, as is dis-
cussed later.

Other modifiers of pluripotency
Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differ-
entiation and maintains the expression of pluripotency
markers in hESCs even when cultured under differentiating
conditions and additionally acts as a strong blocker of
directed neuronal differentiation (Burton et al., 2010a,b).
EHNA has been found to inhibit adenosine deaminase (ADA)
(Carson and Seegmiller, 1976) and the cyclic nucleotide PDE2
(Michie et al., 1996). However, chemically distinct inhibitors
of ADA and PDE2, unlike EHNA, lack the ability to suppress
hESC differentiation, suggesting that the effect of EHNA is
not through the inhibition of either ADA or PDE2. Prelimi-
nary structure–activity relationship analysis found the
differentiation-blocking properties of EHNA to reside in a
pharmacophore comprising a close adenine mimetic. The
effect of EHNA was also shown to be reversible as hESCs
cultured with EHNA could faithfully differentiate to cells
representative of all three germ layers after removal of the
drug. Therefore EHNA or other related simple 9-alkyladenines
may provide a useful replacement for bFGF in large-scale or
current good manufacturing practice (cGMP)-compliant
processes.

By utilising a high-throughput assay, four compounds
were identified, which could promote the short-term self-
renewal of hESCs; theanine (THEA), sinomenine (SNM), gati-
floxacin (GTFX) and flurbiprofen (FBP) (Desbordes et al.,
2008). THEA is a natural compound found in black tea with
proposed roles in neuroprotection (Nathan et al., 2006) and
the immune system (Kamath et al., 2003). Sinomenine (or
cocculine) is a morphine derivative with anti-rheumatic
effects thought to be primarily mediated via the release of
histamine (Yamasaki, 1976); but other effects such as inhibi-
tion of prostaglandin, leukotriene and NO synthesis may also
be involved (Liu et al., 1994). An unrelated study has shown
that exposure of ESCs to low concentrations of diethylenetri-
amine NO (DETA-NO) adduct maintains hESC pluripotency
to a similar extent as bFGF (Tejedo et al., 2010), although no
definitive mechanism was provided. Gatifloxacin is an anti-
biotic of the fourth-generation fluoroquinolone family
(Burka et al., 2005), while flurbiprofen is a member of the
phenylalkanoic acid derivative family of non-steroidal anti-
inflammatory drugs (NSAIDs) used to treat the inflammation
and pain of arthritis. Interestingly, recent research has shown
that the NSAID nabumetone can aid the reprogramming
process in mouse iPSCs and can replace virally expressed
c-Myc and Sox2 (Yang et al., 2011). Nabumetone exerts anti-
inflammatory activity by inhibiting COX2 function through
its metabolite 6-methoxy-2-naphthylacetic acid.

Embryonic stem cell survival
Much work has gone into finding molecules that promote the
survival of hESCs, especially as cell sorting and passaging can
leave cells in a single cell state, which favours apoptosis
(Wong et al., 2004). hESCs are ‘social’ cells and tight junc-
tions hold them together, offering a survival advantage over

dissociated hESCs (Sathananthan et al., 2002). Apoptosis of
dissociated hESCs has been shown to act through ROCK-
dependent hyper-activation of actomyosin caused by the loss
of E-cadherin-dependent intercellular contact (Ohgushi et al.,
2010). Inhibition of ROCK, a downstream effector of Rho
signalling, a master regulator of cytoskeleton remodelling
and contractile force generation (Etienne-Manneville and
Hall, 2002; Riento and Ridley, 2003; Li et al., 2010), leads to
decreased phosphorylation of the myosin light chain and so
inhibiting actin-myosin contractility, greatly aiding hESC
survival (Chen et al., 2010a).

Y-27632 is selective inhibitor of p160 ROCK and promotes
single cell survival and inhibits apoptosis (Watanabe et al.,
2007; Emre et al., 2010). It has been found to support feeder-
free hESC and hiPSC growth (Pakzad et al., 2010), hESC
growth in 3D culture (Chayosumrit et al., 2010), aid cryop-
reservation (Martin-Ibanez et al., 2008; Baharvand et al.,
2010) and is now widely used in hESC growth and manipu-
lation. More survival compounds of greater specificity,
equivalent potency and reduced toxicity relative to Y-27632
were discovered in another study (Andrews et al., 2010). All
pro-survival compounds (18 confirmed hits with four struc-
tural classes being represented by multiple compounds) were
found to target ROCK/PKC-related kinase 2 (PRK2) kinases in
vitro, which are thought to act in concert in cytoskeletal
signalling (Darenfed et al., 2007). An exception is the K+-ATP
channel opener pinacidil (Grover, 1997), which may promote
survival by ‘off-target’ inhibition of ROCK/PRK2 (Andrews
et al., 2010). Two of the compounds discovered inhibited the
receptor tyrosine kinase ephrin type-B receptor 3 (EPHB3)
known to be involved in cell–cell signalling (Pasquale, 2005).
Two other compounds identified are structurally related to
tyrosine kinase inhibitors known to have effects on hESC
differentiation (Anneren et al., 2004; Vallier et al., 2005) and
in this study promoted mesodermal differentiation (Andrews
et al., 2010).

Thiazovivin, a 2,4-disubstituted thiazole, and tyrintegin,
a 2,4-disubstituted pyrimidine, were found to increase sur-
vival of disassociated hESCs by enhancing integrin signalling
(Xu et al., 2010). Thiazovivin was also found to inhibit ROCK
activity and protect hESCs in a manner akin to Y-27632 (Xu
et al., 2010). Another ROCK inhibitor, HA/HA1077, was
found to increase hESC survival alongside several small mol-
ecule inhibitors of PKC, which may modulate hESCs survival
similar to PKC-mediated control of pluripotency in mESCs
(Heo and Han, 2006). In the same study several pathways
were identified that upon inhibition by specific inhibitors
lead to decreased hESC survival; tyrophostin AG-1478 (EGF
receptor signalling), SP600125 (JNK signalling), AG-879 [TrkA
or human epidermal growth factor receptor 2 (hErbB2/neu)
signalling], tyrphostin 9 (PDGF signalling) and Bay11-7082
(NF-kB) signalling), suggesting the importance of these sig-
nalling pathways to hESC self-renewal. Another study con-
firmed that Y-27632, HA1004, HA1077, H-89 (all kinase
inhibitors) and pinacidil promote hESC viability, (Barbaric
et al., 2010b), overall suggesting that the activities of multiple
kinases, such as PRK2, ROCK, MAP kinase interacting serine/
threonine kinase 1 (MNK1) and ribosomal protein S6 kinases
(RSK1 and MSK1), may all be necessary for the survival of
hESCs. A recent report has additionally shown that pinacidil
and Y-27632 aid cryopreservation of hESCs (Barbaric et al.,
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2011). Finally, Y-27632 has also proven to be important
during hESC differentiation. It probably acts to allow
increased survival of hESC-derived progeny, such as cardio-
myocytes (Braam et al., 2010), but it has been observed to
directly enhance differentiation of hESC towards neural-crest
like cells (Hotta et al., 2009). However, it has also been shown
to have a detrimental effect on haematopoietic differentia-
tion of hESCs (Yung et al., 2011).

Factors inducing pluripotency
The generation of hESC-like cells from somatic cells through
the forced expression of important pluripotency-associated
transcription factors such as OCT4, SOX2, KLF4, C-MYC
(Takahashi et al., 2007) or OCT4, SOX2, NANOG and LIN28
(Yu et al., 2007) has invigorated the field of embryonic stem
cell research. iPSC technology promises to give us a source of
patient-specific pluripotent cells, which can be used for cell
replacement therapy through directed differentiation and
also allow disease modelling and patient-specific and disease-
specific drug testing. Work in hiPSCs has also uncovered a
number of small molecule modulators of important signal-
ling pathways that can promote reprogramming to the
pluripotent state or take the place of pluripotency-associated
transcription factors, such as C-MYC or KLF4, by acting alone
or in conjunction with other inhibitors.

These include small molecules which modulate impor-
tant pathways such as the WNT, TGF-b, MEK and FGF path-
ways, such as GSK3b (CHIR99021, LiCl) (Ying et al., 2008; Li
et al., 2009a,b; Yu et al., 2011; Wang et al., 2011b), MEK
(PD0325901) (Ying et al., 2008; Lin et al., 2009; Li et al.,
2009a; Zhu et al., 2010; Yu et al., 2011), FGFR (SU5402,
PD173074) (Ying et al., 2008), TGF-b1 ALKs (SB431542, A83-
01) (Li et al., 2009a; Lin et al., 2009; Yu et al., 2011), the
lysine specific demethylase LSD1 (parnate/tranylcypromine)
(Li et al., 2009b) and HDACs (NaB, VPA, TSA) (Huangfu
et al., 2008; Mali et al., 2010; Zhu et al., 2010). Other small
molecule compounds promote survival (thiazovivin) (Lin
et al., 2009), dampen the senescence response during re-
programming (vitamin C) (Esteban et al., 2010) or activate
pyruvate dehydrogenase kinase 1 (PDK1), facilitating a
conversion from mitochondrial oxidation to glycolysis
(PS48) (Zhu et al., 2010). The functions of such inhibitors in
the attainment of pluripotency should allow us to further
understand the biological pathways that determine the
pluripotent nature of these cells and the ability for multi-
lineage development.

The differences between human and mouse biology may
even affect the effect of reprogramming drugs. At least one
report has suggested that different kinase inhibitors affect
mouse and human reprogramming differently (Hirano et al.,
2011). Mouse iPSCs cultured with MEK (PD0325901) and
GSK3b (CHIR99021) inhibitors plus LIF results in the
enrichment of germ-line competent ESCs, whereas hiPSCs
cultured under the same conditions form bowl-shaped
multi-potent stem cells with gene expression profiles
resembling primitive neural stem cells (NSCs). Although,
again, this difference in requirements of factors for the
attainment of pluripotency is likely to be due to differences
in the developmental time at which hESC and mESC are
derived.

Selecting cell populations
There are several problems with the culture and differentia-
tion of hESCs for subsequent clinical use, other than the
previously mentioned problems with animal products in
culture media. These include the presence of partially differ-
entiated hESCs, which may respond in a different manner to
differentiation signals compared to fully pluripotent hESCs.
This increases the possibility of abnormal hESCs growth and
the persistence of pluripotent cells after differentiation and
upon transplantation with potentially tumourigenic risk.
Therefore, the ability to control these problems would
increase differentiation efficacy and reduce the risk of
tumourigenesis.

High levels of statin drugs can selectively inhibit the
growth of karyotypically abnormal hESCs and cancer cells
eventually leading to cell death (Gauthaman et al., 2007;
2009). Statins are 3-hydroxy 3-methylglutaryl coenzyme A
(HMGCoA) reductase inhibitors, which prevent the conver-
sion of HMG-CoA to mevalonate and the subsequent produc-
tion of downstream products, such as the isoprenoid
precursor geranylgeranyl pyrophosphate (GGPP). An inhibi-
tor of the GGPP transferase (GGTI-298) had the same effect as
the statins on abnormal hESCs and cancer cells, suggesting
that geranylgeranylation is the main mechanism behind
abnormal cell inhibition. The development of drugs such as
these may be very important in the light of recent work
showing widespread genetic abnormalities in ESCs and iPSCs
in culture and also abnormalities that arise during the repro-
gramming process for the attainment of iPSCs (Gore et al.,
2011; Hussein et al., 2011; Laurent et al., 2011; Lister et al.,
2011; Martins-Taylor et al., 2011; Taapken et al., 2011; Ji
et al., 2012).

Cells on the periphery of hESC colonies generally show
some spontaneous differentiation with markers of neuronal
differentiation evident (Ginis et al., 2004; Ward et al., 2006),
with neuronal differentiation being the default differentia-
tion pathway in a large number of hESC lines (Smukler et al.,
2006). Ceramide, a bioactive sphingloid, has been found to
selectively target and eliminate cells expressing neuronal
markers, leaving undifferentiated hESCs unaffected in long
term cultures (Salli et al., 2009). Ceramide itself is an endog-
enous molecule biosynthesized and metabolized by hESCs
(Brimble et al., 2007) and so is an attractive target for use in
long-term stable hESC cultures.

A further study identified factors to which hiPSCs were
more sensitive to than fibroblasts and therefore could be used
as possible anti-teratogenic agents for stem cell therapy by
removing unwanted iPSCs from a differentiated culture
(Conesa et al., 2011). Benzethonium chloride and methyl-
benzethonium chloride, both analogue quaternary ammo-
nium salts used as broad-spectrum antimicrobial agents,
reduced iPSC viability at a lower concentration compared
with two fibroblasts cultures. By similar means, it was found
that the anti-arrhythmic agent amiodarone was selectively
toxic to hESC-derived NSCs but not to differentiated neurons
or glial cells (Han et al., 2009), allowing the depletion of
unwanted contaminating precursor cells from a differentiated
cell product in a heterogeneous culture. Amiodarone is also
known to have some thyroid hormone-like activity, and
binding to the nuclear thyroid receptor might contribute
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to some of its pharmacological actions (Matsubara et al.,
2011).

A further interesting study showed the capability of a
compound to elicit its effect on hESCs after transplantation
(Hara et al., 2010). This study demonstrated that transplan-
tation of hESCs into the mouse retina caused immature ter-
atoma growth with the destruction of the retinal structure.
However, if mice were treated with methotrexate, a folate
antagonist, at the time of hESC transplantation, the vast
majority of the cells demonstrated neural differentiation in
the retina (Hara et al., 2010). This suggests that post hESC
transplantation treatment with small molecule compounds
could aid differentiation, integration and reduce teratogenic
risk.

Pharmacological control
of differentiation

Studies published in 2011 alone have demonstrated the huge
potential of ESC and iPSC-derived cells, through the imple-
mentation of efficient differentiation protocols, to alleviate
symptoms in mouse models of human disease. Such diseases/
disorders include Parkinson’s disease (Chung et al., 2011;
Kriks et al., 2011; Kim et al., 2011b), retinal degeneration
(Tucker et al., 2011), spinal chord injury (Nori et al., 2011),
hypopigmentation disorders (Nissan et al., 2011), Alzheimer’s
disease (Bissonnette et al., 2011) and orthopaedic disease (Bil-
ousova et al., 2011), and efficient protocols for derivation of
specific cell types from hESC and hiPSCs may lead to the use
of such cells to treat human disease. To this end, multiple
small molecule drugs that can modulate the differentiation of
clinical-grade hESCs (Ilic et al., 2011) or hiPSCs have been
discovered and may be used in the future in cGMP-compliant
differentiation protocols to produce transplantable cells.
Refinements in differentiation protocols, such as the applica-
tion of such drugs, reducing cell time in culture and starting
with a good source of hESCs, may all contribute to providing
a source of karyotypically and phenotypically stable cells for
transplantation purposes.

As expected, modulation of signalling pathways impor-
tant to pluripotency leads to the differentiation of ESC down
multiple lineages. In some cases, simply the removal of one
factor will allow differentiation (for example bFGF), but treat-
ment with specific inhibitors/activators also allows us to
‘push’ cells down certain lineages. In many cases, pathways
involved in the maintenance of pluripotency prove also to be
important in differentiation and so suggest that many factors
may have a dose-dependent effect; and further, their roles
may be affected by the stimulation/inhibition of other path-
ways (Vallier et al., 2009b,c).

WNT pathway-mediated hESC differentiation
Modulation of WNT signalling through GSK3b inhibition has
been shown to influence the differentiation of hESCs, mainly
by enhancing mesodermal and cardiac differentiation. One
report suggested that compound 1 m, a potent inhibitor of
GSK3b identified in a large-scale screen of compounds, can
maintain mESC self-renewal (Bone et al., 2009) and promote
differentiation towards primitive streak, mesoderm and

definitive endoderm through elevated NODAL signalling
(Bone et al., 2011). Another large-scale screening assay iden-
tified a small molecule that inhibited transduction of the
canonical WNT response leading to the potent generation of
cardiomyocytes from hESC-derived mesoderm cells (Willems
et al., 2011). Notably, several other WNT inhibitors are very
efficient at inducing cardiogenesis. including a molecule that
prevents WNTs from being secreted by the cell (Willems et al.,
2011). hESCs adapted to single cell passaging in a 2D culture
format that were induced towards cells of the primitive
streak, by using BMP4 and activin A, were potently differen-
tiated towards a cardiogenic fate through the inhibition of
WNT signalling using the small molecules IWP-4 and IWR-1
(Hudson et al., 2011). IWP-4 and IWR-1 act by inhibiting the
palmitylation of WNT proteins by porcupine (PORCN), a
membrane-bound O-acyltransferase, thereby blocking WNT
secretion and activity (Chen et al., 2009a). An additional
study demonstrated that following BMP4-treatment of hESCs
and hiPSCs, IWR-1 significantly improved cardiomyocyte dif-
ferentiation resulting in cells with typical electrophysiologi-
cal functions and pharmacological responsiveness (Ren et al.,
2011). An interesting recent study demonstrated that succes-
sive, mutually exclusive waves of non-canonical and canoni-
cal WNT signalling precede mesoderm differentiation, and
blocking these two waves leads to differential differentiation
(Rai et al., 2011). Blocking initial non-canonical JNK/
activation protein 1 (AP-1) signalling with SP60125 promotes
haematopoiesis, whereas blocking the subsequent canonical
WNT signalling using DKK1 promotes cardiovascular differ-
entiation (Rai et al., 2011).

Besides its importance in cardiac differentiation, BIO-
mediated antagonism of WNT signalling, in combination
with inhibition of SMAD signalling with SB431542 (discussed
in the next section), can also mediate the specification of
neural crest cells, partly through diverting differentiation
from an neural progenitor cell (NPC) fate (Menendez et al.,
2011).

TGF-b pathway-mediated
hESC differentiation
As mentioned before, SB431542 is a TGF-b1 ALK inhibitor,
which is selective and potent for ALK4/5/7 while not affect-
ing more divergent BMP signalling utilizing ALK1/2/3/6
(Inman et al., 2002; Laping et al., 2002) and has been shown
to aid the attainment of pluripotency in hiPSCs when used in
conjunction with PD0325901, an inhibitor of the MAPK/ERK
pathway (Lin et al., 2009). However, it has also been shown to
participate in the differentiation of hESCs down various
lineages.

SB431542 treatment of hESC increased neuroectoderm
specification in hESC-derived embryoid bodies (EBs) (Smith
et al., 2008); while, similarly, treatment of hESCs with
SB431542 for 8 days in non-adherent culture conditions led
to the efficient and accelerated neural conversion of hESCs
with negligible mesendodermal, epidermal or trophectoder-
mal contribution (Patani et al., 2009). The same group went
on to show that further treatment with FGF2, retinoic acid
(RA) and the sonic hedgehog (SHH) agonist purmorphamine
led to the specification of motor neuron precursors (Patani
et al., 2011). Dual inhibition of SMAD signalling by SB431542
and NOGGIN (a natural BMP antagonist) in undifferentiated
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hESCs on Matrigel-coated dishes in conditioned medium sup-
plemented with the ROCK inhibitor Y-2763 and ascorbic acid
(vitamin C) led to the rapid and complete neural conversion
of around 80% of hESC (Chambers et al., 2009), bypassing
the necessity for EB formation. Dual inhibition appears to
promote efficient differentiation through the inhibition of
self-renewal and the inhibition of certain lineage-specific
differentiation pathways (trophectodermal, mesodermal
and endodermal), thereby ‘pushing’ the cell down another
lineage-specific pathway (ectodermal–neuronal).

Dorsomorphin was found to promote hESC maintenance
and self-renewal through SMAD inhibition (Yu et al., 2008;
Gonzalez et al., 2011) but can also mediate neural differen-
tiation at the expense of mesoderm and endoderm differen-
tiation (Kim et al., 2010). Again, dual inhibition of SMAD
signalling through dorsomorphin and SB431542 treatment
efficiently allowed several hESC and hiPSC lines to differen-
tiate towards the neural lineage (Kim et al., 2010; Morizane
et al., 2011). However, one study has demonstrated that
neural conversion of hESCs and hiPSCs was maximal, with
dorsomorphin alone giving a differentiation rate of 88.7%
and 70.4%, respectively, and the addition of SB431542 did
not increase the differentiation (Zhou et al., 2010). Of further
interest was their finding that dorsomorphin was ineffective
at inducing neural conversion in mESCs, demonstrating that
small molecules may have species-specific effects (Zhou et al.,
2010). Additionally, it was demonstrated that dorsomorphin
is important in the initial differentiation of NSCs/NPCs for
the induction of spinal motor neuron differentiation from
hESCs (Wada et al., 2009).

Combined treatment of hESCs with human LIF (hLIF),
CHIR99021 (GSK3b inhibitor) and SB431542, leads to the
production of a cell population with features of primitive
neuroepithelium (Li et al., 2011). Addition of a further small
molecule inhibitor of g-secretase (compound E) (Seiffert et al.,
2000) led to the production of a primitive NSC population
with remarkably high neurogenic propensity, broad differen-
tiation potential, responsiveness to extrinsic morphogens for
subsequent development into subtype-specific neuronal
identities and the ability to integrate in vivo (Li et al., 2011).
Overall, dorsomorphin and SB431542 seem to mediate neural
differentiation and may act by potentiating the neural differ-
entiation pathway that seems innate in differentiating hESCs.

However, SB431542 has shown some efficacy at promot-
ing differentiation towards other lineages. SB431542 treat-
ment of hESC-derived EBs in serum-free medium markedly
up-regulated paraxial mesodermal markers and led to the
production of myocyte progenitor cells, which could be
further differentiated to mesenchymal progenitors that sub-
sequently develop into osteoblast, chondrocyte and adi-
pocyte lineages both in vitro and in vivo (Mahmood et al.,
2010). SB431542 also promoted the transition of hESC-
derived hemogenic epithelial cells into CD43+ hematopoietic
progenitor cells (HPCs) (Wang et al., 2011a) as well the retinal
differentiation of hESC and hiPSCs in a serum- and feeder-
free floating aggregate culture when combined with a casein
kinase inhibitor (CKI-7), to mimic LEFTYA, and Y-27632
(Osakada et al., 2009).

Furthermore, SB431542 has been shown to aid cardio-
myocyte differentiation from hESCs (Graichen et al., 2008;
Xu et al., 2008b), and in the production of endothelial cells

through an ID1-dependent mechanism (James et al., 2010).
Cardiomyocyte differentiation from hESCs and hiPSCs is also
boosted by the combination of dorsomorphin and SB431542,
which inhibit SMAD signalling (Kattman et al., 2011).
SB431542 promoted the differentiation of hESC-derived
endoderm cells into hepatic progenitors (Touboul et al.,
2010). This effect of SB431542 was also observed in a study
where it was further demonstrated that LY294002-mediated
repression of PI3K (Vlahos et al., 1994) allowed for increased
endoderm differentiation. LY294002 is a morpholine deriva-
tive of quercetin (Maira et al., 2009) and has been shown to
be required for the actions of activin A in specifying definitive
endoderm (McLean et al., 2007). Dual treatment of hESCs
with SB431542 alongside BMP inhibition by NOGGIN has
also been shown to allow for the generation of anterior
foregut endoderm from hESCs and hiPSCs (Green et al., 2011)
and endocrine differentiation from hESC-derived pancreatic
progenitors (Nostro et al., 2011), while also demonstrating a
role of dorsomorphin in pancreatic differentiation from
hESCs. Additionally, the pancreatic endocrine phenotype can
also be promoted by inhibition of the TGF-b signalling
pathway through either ALK5 inhibitor I or ALK5 inhibitor II
combined with a g-secretase inhibitor, which indirectly inhib-
its Notch (DAPT) (Rezania et al., 2011), and also through
combined treatment with activin A and CHIR99021 to induce
efficient differentiation of hiPSCs into definitive endoderm
and then dorsomorphin, RA and SB431542 to efficiently
induce pancreatic differentiation (Kunisada et al., 2011).

Lastly, it has found that the ability of a compound to
boost the TGF-b pathway could aid specific differentiation
(Borowiak et al., 2009). In a study assaying for factors that can
increase endoderm differentiation from hESCs, two structur-
ally similar small molecules, IDE1 and 2, products of de novo
chemical synthesis identified from a library of putative HDAC
inhibitors, were found to induce definitive endoderm from
hESCs, in part via activation of TGF-b signalling, and were
more effective at doing this than either activin A or NODAL,
commonly used protein inducers of endoderm (Borowiak
et al., 2009). The involvement of the TGF-b signalling
pathway in this effect was shown through the elevation of
SMAD2 phosphorylation; however, the specific biochemical
targets of these small molecules are not known.

MEK/ERK and PI3K/PKB/mTOR pathway
modulation and differentiation
Modulation of the MEK/ERK signalling pathway through
inhibition of MEK1/2 with PD98059 alongside the presence
of BMP4 has been shown to be efficient at generating
CD34+progenitor cells from both hESCs and hiPSCs (Park
et al., 2010). Further differentiation of these cells allowed the
production of functional endothelial and smooth muscle
cells, as demonstrated by their contribution to neovasculo-
genesis in a mouse model of ischaemic hind limb injury. The
potential for successful applications such as this have led to a
great deal of interest in the differentiation of endothelial/
vascular cells from hESCs (Kane et al., 2010; 2011) for thera-
peutic use. VEGFs, PDGFs, ROS and TGF-b, WNT and NOTCH
signalling, alongside histone modifications and miRNAs,
have all been shown to play important roles in the differen-
tiation of endothelial and vascular smooth muscle cells pro-
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viding possible druggable targets (Kane et al., 2011), and
providing the information required to delineate feeder-free
and serum-free protocols for efficient differentiation (Kane
et al., 2010).

Rapamycin, a bacterial macrolide and a highly specific
inhibitor of mTOR, was found to enhance mesodermal and
endodermal differentiation, impair pluripotency and prevent
cell proliferation of hESCs (Zhou et al., 2009) and, in another
study, to be a potent activator of osteogenic differentiation,
concomitant with its ability to increase SMAD1/5/8 phospho-
rylation and Id1–4 mRNA expression (Lee et al., 2010). After
the induction of both hESCs and EBs for 2–3 weeks with
rapamycin, osteoblastic differentiation was observed, includ-
ing alizarin red S staining for mineralized bone nodule for-
mation (Lee et al., 2010).

Chromatin landscape modulation in
hESC differentiation
As expected, modulation of the chromatin environment
plays a role in hESC differentiation, probably by increasing
the access to lineage specific gene promoters to factors
induced upon the induction of differentiation. NaB can be
used to promote endodermal differentiation by activin A,
allowing subsequent treatment with DMSO to induce hepa-
tocyte differentiation (Hay et al., 2008). NaB has also been
shown to promote the rapid differentiation of hESCs to
primitive endoderm and trophectoderm lineages induced by
nutlin, a small molecule activator of p53 (Maimets et al.,
2008). Cardiomyocyte differentiation has been demonstrated
to be enhanced by 5-azacytidine/5-aza-2′-deoxycytidine (Xu
et al., 2002; Yoon et al., 2006; Wang et al., 2010), a chemical
analogue of cytidine that acts as a false substrate for DNA
methyltransferases, therefore reducing cellular DNA methyla-
tion content. A reduction in DNA methylation, similar to an
increase in histone acetylation, induces the reactivation of
genes associated with the differentiation of hESCs, and
thereby primes them for appropriate signals to allow lineage-
specific differentiation.

MAPK pathway-mediated
hESC differentiation
Inhibition of the MAPK pathway is involved in cardiomyo-
genesis, demonstrated through the use of the p38 MAPK
inhibitor SB203580 (Gaur et al., 2010; Kempf et al., 2011).
Addition of this inhibitor increased the number of spontane-
ously beating human EBs 2.1-fold after 21 days of differen-
tiation (Gaur et al., 2010). It has also been demonstrated that
treatment of hESC-derived EBs with 5 mM SB203580
increased cardiomyogenesis, but at higher concentrations of
SB203580 this effect was completely absent (Kempf et al.,
2011). This again suggests that tight control over signalling
pathways is required for hESC manipulation. Low doses of
nicotine have also been found to improve the survival of
transplanted hESC-derived endothelial cells, and enhance
their angiogenic effects in vivo, through MAPK and PKB sig-
nalling pathways (Yu et al., 2009).

The effects of electrical field stimulation on ROS genera-
tion and cardiogenesis in EBs derived from hESCs have also
been explored and, under optimal conditions, cardiac differ-
entiation induced by EFS was observed to be similar to that

after H2O2 treatment (Serena et al., 2009). Further the growth
of hESCs in ROS-inducing conditions (BSO treatment, which
inhibits intracellular glutathione and enriches ROS levels) has
been shown to induce an up-regulation in mesodermal and
endodermal differentiation and this occurred through MAPK
signalling (Ji et al., 2010). These studies are the first to dem-
onstrate ROS-mediated differentiation in hESCs.

Retinoid-mediated hESC differentiation
RA and All-trans-RA (ATRA, vitamin A) are well known for
their ability to boost neuronal differentiation from pluripo-
tent stem cells (Duester, 2008). However, RA and ATRA are
readily degraded in culture, reducing their long-term useful-
ness. This problem was addressed in a study utilising human
embryonal carcinoma cells (hECCs) and it was demonstrated
that synthetic analogues of RA can be more stable and effec-
tive, while some related analogues can actually mediate dif-
ferentiation towards another lineage (Christie et al., 2008).
This suggests that structure–activity relationship information
for many compounds could further our ability to design more
targeted compounds capable of mediating robust and repro-
ducible tissue differentiation.

Apart from neuronal differentiation, RA treatment of
hESCs, combined with activin A aids subsequent differentia-
tion of functional insulin-producing cells (Jiang et al., 2007).
ATRA has also been identified in a high-throughput screening
of differentiating-inducing compounds, which also found
several potent inhibitors of self-renewal and promoters of
differentiation (Desbordes et al., 2008). Other compounds
discovered to promote mesendodermal and endodermal dif-
ferentiation include cymarin, a cardiac glycoside used to treat
a variety of tumours, and sarmentogenin, which is closely
related to digitoxigenin. Interestingly, the pan-RA receptor
antagonist BMS-189453 can significantly increase the cardiac
differentiation efficiency of hESCs when used in combination
with NOGGIN (Zhang et al., 2011).

Hedgehog-mediated hESC differentiation
The hedgehog (Hh) pathway plays a key role in a wide variety
of developmental processes in the developing embryo
(Ingham and McMahon, 2001). High-content screening
using a chemical library of 5000 compounds to identify small
molecules that can increase the number of pancreatic and
duodenal homeobox 1 (PDX1)-expressing cells derived from
hESCs found one molecule, ILV, which inhibits PKC isozymes
(Irie et al., 2002) that when combined with growth factors,
including KAAD-cyclopamine (Chen et al., 2002), directed
the differentiation of hESCs such that greater than 45% of the
cells become PDX1-expressing pancreatic progenitors (Chen
et al., 2009b). KAAD-cyclopamine, a steroid alkaloid isolated
from the corn lily (Veratrum californicum), has been identified
as a specific inhibitor of Hh signalling through direct binding
to the heptahelical bundle of smoothened (SMO), and ILV
have been further linked to enhanced pancreatic endoderm
differentiation in numerous other studies (D’Amour et al.,
2006; Kroon et al., 2008; Thatava et al., 2011). SMO is a GPCR
protein in the Hh pathway, which can activate the GLI tran-
scription factors that determine the fate of a cell fate (Ruiz i
Altaba, 1999). Inhibition of the SMO pathway could allow for
a more potent effect of ILV in pancreatic differentiation.
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Interestingly, cyclopamine treatment of hESC followed by
culture in specific astrocyte medium induced the production
of cells of the astrocytic lineage (Lee et al., 2006), suggesting
that attenuation of the Hh signalling promotes multi-lineage
differentiation.

Purmorphamine is a small molecule agonist of the SMO
pathway (Sinha and Chen, 2006) that has been shown to
promote the specification of motor neuron precursors (Patani
et al., 2011). Further, it has also been shown to promote the
differentiation of ventral spinal progenitors and motor
neurons from hESCs in the place of SHH (Li et al., 2008),
thereby demonstrating that specific up-regulation and
down-regulation of the Hh pathway can influence hESC
differentiation.

Further regulators of hESC differentiation
Treatment of hiPSCs-derived EBs with 1-EBIO (1-ethyl-2-
benzimidazolinone) for 10 days was found to be sufficient
to mediate differentiation towards cardiac and cardiac
pacemaker-like cells (Müller et al., 2011). 1-EBIO increases the
activity of calcium-activated potassium channels (KCas),
which exhibit small (KCa2.1-2.3) or intermediate (KCa3.1)
unitary conductance for K+ ions. A previously mentioned
compound, pinacidil, was found to aid the survival of hESCs
(Andrews et al., 2010; Barbaric et al., 2010a,b), suggesting that
such ion channel control may be very important for regulat-
ing hESC pluripotency and differentiation.

In a screen searching for factors able to boost endoderm
differentiation, the compound stauroprimide was found to
‘prime’ hESCs for differentiation towards multiple lineages
using appropriate lineage-specifying conditions following
treatment (Zhu et al., 2009). Stauprimide is structurally
similar to the natural product staurosporine, and the stau-
rosporine analogue UCN-01, which are widely used as non-
specific kinase inhibitors (Ruegg and Burgess, 1989).
However, stauprimide did not have any obvious effects on
most kinases tested, except for Fms-related tyrosine kinase 3
(FLT3) and MLK1. Further analysis found that stauroprimide
targets nucleoside diphosphate kinase-B (NME2) (Zhu et al.,
2009); and by binding to NME2, stauprimide inhibits NME2
nuclear localization (Zhu et al., 2009), which, in turn,
represses C-MYC expression (Thakur et al., 2009). This sug-
gests that the attenuation of a pluripotency associated tran-
scription factor may allow for the initiation of multi-lineage
differentiation.

Cyclosporin A (CSA) treatment of hiPSCs at the meso-
derm differentiation stage in visceral endodermal stromal
cell co-culture-mediated cardiomyocyte differentiation
(Mummery et al., 2003) led to an increased number of beating
colonies, although direct treatment of the undifferentiated
hiPSCs themselves yielded no effect (Fujiwara et al., 2011).
CSA is an immunosuppressant and a calcineurin inhibitor
that is thought to function through the inhibition of nuclear
factor of activated T cells (NFAT) signalling in T cells
(Crabtree and Olson, 2002). It has also been shown to have
some effects on cardiac myocytes through decreased hyper-
trophy (Lim et al., 2000). CSA-treated human iPSC-derived
cardiomyocytes have the same various cardiac marker expres-
sions, synchronized Ca2+ transients, cardiomyocyte-like
action potentials, pharmacological reactions and ultra-
structural features as usual cardiomyocytes (Fujiwara et al.,

2011). Treatment of hESCs with cobalt chloride boosts the
differentiation of cardiomyocytes to functionally mature car-
diomyocytes by inducing the stabilization of HIF-1a (Ng
et al., 2011), thereby chemically mimicking a reduction in
oxygen concentration.

A previously mentioned study assaying for compounds
that enhance hESC-survival also identified corticosteroid
drugs as being potent enhancers of differentiation (Barbaric
et al., 2010b). Corticosteroids normally exert their effect by
binding to steroid hormone receptors (Lowenberg et al.,
2008); prednisolone, 6-a-methylprednisolone, betametha-
sone and dexamethasone were all found to reduce OCT4
expression in hESCs and increase markers of the trophoblast
and mesodermal lineages, suggesting that these compounds
could be useful tools for lineage priming of hESCs (Barbaric
et al., 2010b).

A study into adipocyte differentiation from hESCs found
that treatment with rosiglitazone, a PPARg agonist and anti-
diabetic drug in the thiazolidinedione class, enhanced the
percentage of adipocytes that differentiated and the
adipocyte-specific hormone leptin (Xiong et al., 2005), in line
with a suggested master regulator role for PPARg in adipogen-
esis (Rosen and Spiegelman, 2000). This establishes a method
for directing adipocyte differentiation from hESCs.

Red ginseng (Panax ginseng) extract has also been shown
to increase the proliferation of undifferentiated hESCs and
enhance the expression of pluripotency-associated markers
(Kim et al., 2011d). However, when it was added during
EB-mediated differentiation, mesendoderm markers were
elevated and after further culture it promoted differentiation
into early stage cardiac progenitor-like cells. Falcarinol, a
17-carbon diyne fatty alcohol isolated from red ginseng, may
have potent anticancer properties (Kobaek-Larsen et al.,
2005); while other acetylenic fatty alcohols in ginseng (pan-
axacol, panaxydol and panaxytriol) have antibiotic proper-
ties.

Chemical down-regulation of sulfation with chlorate has
been found to enhance the neural differentiation of hiPSCs
(Sasaki et al., 2010), possibly by reducing the sulfation of
several sulfur-containing proteins, such as glycoproteins, gly-
colipids and proteoglycans. Differentiation into mature
neurons was upregulated markedly in chlorate-treated EBs,
and work established in mESCs shows that this is possibly due
to reduced levels of heparin sulfate and chondroitin sulfate
causing defects in WNT/b-catenin, BMP/SMAD and FGF/ERK
signalling (Sasaki et al., 2009).

Future targets

Although the benefits of pharmacological manipulation of
human pluripotent stem cells are apparent, there are poten-
tial drawbacks/limitations. The long-term effects of com-
pounds must be investigated, as well as potential for non-
specific actions. Additional in depth studies of embryonic
development are also required in order that biology can guide
drug discovery, allowing us to understand when we use a
compound, the specific amount of a compound required and
the duration of exposure. Furthermore, the cost of drug dis-
covery and development may also become prohibitive for
multiple pathways and multiple targets. However, future
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studies should provide more targets for pharmacological
intervention.

Compound discovery and evolution
The small molecules that have been discovered have often
been found through breakthroughs in the understanding of
the basic biology of hESCs, and so each new level of under-
standing of the pluripotent state and multi-lineage differen-
tiation brings us more potentially druggable targets.
Therefore, further basic research coupled with large-scale
drug screens, with appropriate read-outs, should allow for the
discovery of new, more effective, defined and cost-effective
compounds. As has been shown for RA (Christie et al., 2008),
it may also be possible to evolve compounds creating syn-
thetic analogues of known regulators and this may be an
efficient means of discovering more effective compounds.

Targeting non-coding RNA
Most druggable targets in hESCs are proteins, but RNA can
also adopt complex secondary structures capable of specific
ligand binding (Thomas and Hergenrother, 2008) and there-
fore may be an attractive target for small molecule interven-
tion. ncRNA function has come to be understood as being a
vitally important level of control in hESC self-renewal/
pluripotency and during differentiation. Therefore, the tar-
geting of ncRNA molecules such as long non-coding RNAs
(lncRNAs) (Guttman et al., 2011) and miRNAs (Tiscornia and
Izpisua Belmonte, 2010; Yi and Fuchs, 2011) by specific small
molecule inhibitors or activators could hold much promise
(Watashi et al., 2010; Georgianna and Young, 2011).

Metabolomics
Recent studies have begun to characterize the metabolome of
ESCs with the target of finding specific endogenously occur-
ring small molecules that are the products of biochemical
reactions, revealing connections between different pathways.
This is the reverse mechanism to current drug discovery, and
could lead to the discovery of more specific, more effective
and importantly less toxic inhibitors/activators of certain
pathways. An early proof of concept study (Cezar et al., 2007),
investigated the metabolome of hESCs following treatment
with the HDAC inhibitor VPA and found an up-regulation in
kynurenine, which controls 5-HT levels through tryptophan
availability, glutamate, hydroxyproline and candidate
metabolites of GABA.

One untargeted metabolomics assay has found a unique
metabolic signature in mESCs characterized by metabolites
that are reactive to oxygenation and hydrogenation, making
them chemically useful (Yanes et al., 2010). This study found
a link between the eicosanoid signalling pathway and
pluripotency and several oxidized metabolites and the pro-
motion of neuronal and cardiac differentiation. A previously
mentioned study found that an increase in ROS, which would
lead to an increase in oxidized metabolites, led to cardiac
differentiation (Serena et al., 2009) and mesodermal/
endodermal differentiation (Ji et al., 2010). Oxygen tension
may also affect differentiation (Chen et al., 2010b; Lim et al.,
2011) as, similar to hESC culture, differentiation protocols do
no tend to use physiological levels of oxygen, as is shown in
the production of retinal progenitor cells (Bae et al., 2011),

mesoderm and cardiac cells (Niebruegge et al., 2009),
chondrocytes (Koay and Athanasiou, 2008) and functional
endothelium (Prado-Lopez et al., 2010) from hESCs. Multiple
studies have also been undertaken in self-renewing and dif-
ferentiating hESCs/hiPSCs to identify differentially expressed
proteins, which may then become targets for small molecule-
mediated modulation (Chaerkady et al., 2011; Gerwe et al.,
2011; Novak et al., 2011; Kim et al., 2011c).

Concluding remarks

The impact of small molecule compounds in hESC biology is
hugely important, providing an effective and efficient means
to maintain a pluripotent homogeneous starting cell popula-
tion and promote specific differentiation. Further research
promises to provide even more efficient and effective com-
pounds and novel targets ultimately with the aim of provid-
ing useful therapeutic cells for cell replacement therapy.
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