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To study the differences in functional brain networks between eyes-closed (EC) and eyes-open (EO) at resting state, electro-
encephalographic (EEG) activity was recorded in 21 normal adults during EC and EO states. The synchronization likelihood (SL)
was applied to measure correlations between all pairwise EEG channels, and then the SL matrices were converted to graphs by
thresholding. Graphs were measured by topological parameters in theta (4–7Hz), alpha (8–13Hz), and beta (14–30Hz) bands.
By changing from EC to EO states, mean cluster coefficients decreased in both theta and alpha bands, but mean shortest path
lengths became shorter only in the alpha band. In addition, local efficiencies decreased in both theta and alpha bands, while global
efficiencies in the alpha band increased inversely. Opening the eyes decreased both nodes and connections in frontal area in the
theta band, and also decreased those in bilateral posterior areas in the alpha band.These results suggested that a combination of the
SL and graph theorymethodsmay be a useful tool for distinguishing states of EC and EO.The differences in functional connectivity
between EC and EO states may reflect the difference of information communication in human brain.

1. Introduction
The human brain is one of the most complex systems and
many neurophysiological mechanisms are still unclear. Since
Hans Berger first recorded EEG signals and then published
the first paper about scalp EEG, EEG was widely applied to
the research of the human brain [1]. Brain functions, such
as attention, learning, emotion, and working memory, can
be reflected by EEG dynamics [2, 3]. To further explore
the human brain, brain connectivity has become a popular
research field over the past 10 years. Interactions among
different regions of the human brain were defined as brain
connectivity, mainly including effective connectivity, func-
tional connectivity, and anatomical connectivity [4, 5]. The
aim of this paper is to find out the differences in functional
brain networks between EC and EO at resting state.

Many previous studies showed that the brain was in a
“default mode” without any external task at eyes-closed rest-
ing state and the power of the theta significantly decreased
in frontal area from EC to EO states which were based upon
EEG and functional magnetic resonance imaging (fMRI)
studies [3, 6–8]. Meanwhile, the recent EEG studies also

showed that the power of the alpha band was distributed
in bilateral posterior area with significant reduction when
subjects had their eyes open [6, 9, 10]. However, in the past
dozens of years, EEG and fMRI studies of the differences
between EC and EO states were mainly based on the power
spectrum [6, 7], and few studies showed the difference in
functional brain networks between EC and EO states.

Some different measurements could be applied to esti-
mate the functional connectivity between all pairwise chan-
nels, mostly including linear temporal correlation, phase syn-
chronization, and generalized synchronization [11–13]. How-
ever, linear temporal correlation is insensitive to asymmetric
or nonlinear interdependencies and cannot be well used to
analyze nonstationary signal (e.g., EEG signal) [11, 12]. The
phase synchronization is usually applied in evoked EEG
analysis based on single-trial [13]. Recently, according to
the theory of generalized synchronization, several algorithms
such as mutual false nearest neighbors (MFNNs), nearest
neighbors, and mutual nearest neighbors have been intro-
duced to detect this type of interdependencies in experi-
mental time series and overcome some of the limitations of
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the above methods [14, 15]. However, these algorithms have
bias when relating to the degrees of freedomof the interacting
subsystems. In order to deal with nonstationary dynamics
and avoid this bias, Stam and Dijk proposed synchronization
likelihood (SL) to measure statistical dependencies in a
dynamical system [11, 14]. As the SL was suitable to analyze
nonstationary signal by calculating in a time-dependent way,
it has been proved to be very useful to study interactions
among neurons andmeasure brain functional connectivity in
multivariate data [11, 14, 15]. In addition, the SLwas often used
for studying neurological disorder during a workingmemory
task or a no-task state [13–15]. Moreover, some important
applications of the SL were about epilepsy and gamma band
synchronization in magneto encephalography (MEG) data
[11]. Meanwhile, the measurement of SL was also helpful
to study task-dependent changes in healthy people during
eyes-closed or eyes-open state in EEG data [11]. However,
previous studies concentrated on the comparison of the
synchronization between EC and EO states only in the alpha,
they did not further analyze the difference in functional brain
networks which were constructed by the SL. In this paper, the
SL was to measure correlations of EC and EO states between
all pairwise EEG channels.

Graph theory is popularly applied to study property of
brain networks and compare the differences among complex
networks [16, 17]. Usually, the brain was expressed as a
network graph which consisted of nodes and edges [5, 16]. In
our EEG analysis, the nodes typically correspond to separate
channels and the edges exist when the value of synchroniza-
tion exceeded corresponding threshold among all pairwise
EEG channels. A network graph was usually characterized
by some topological parameters, such as the clustering
coefficient, the shortest path length, the global efficiency, and
the local efficiency [17–19]. Meanwhile, ever since Watts and
Strogatz found that small-world networks had the feature of
a high-clustering coefficient and a short path length [19, 20],
many networks in reality have been proved to have small-
world features, including the human brain. Barahona and
Pecora also pointed out that the synchronous neural activ-
ities among different brain regions conform to small-world
network architecture [21]. Our results further supported that
functional brain networks have small-world features at EC
and EO states.

In this paper, in order to compare functional brain
networks of EC and EO states, two sessions were designed
as an experiment, including three minutes of eyes-closed
resting state and threeminutes of eyes-open resting state with
binocular fixating a center green across [6, 7]. The EEG data
was filtered into the following three separate frequency bands:
theta (4–7Hz), alpha (8–13Hz), and beta (14–30Hz) bands,
and the same analysis process was used in each frequency
band. The SL matrices were calculated and then converted
to graphs. Topological parameters as well as the difference
connections (nodes) betweenECandEO stateswere analyzed
[16, 17]. The difference nodes of networks were examined
by the crosstab test and the chi-square test in the entire
thresholds. Besides, difference connections were obtained by
the chi-square test for each threshold.The abovemethods and
techniques were used to address the following hypotheses.

(a) The topological parameters should have significant
changes from EC to EO states in the theta band, since the
power of the theta band in the frontal area decreased from
EC to EO state [6, 8, 9]. (b) The change of graph measures
should be more obvious and the local brain connections
should reduce in bilateral posterior area in the alpha band
from EC to EO states, in consideration of the human alpha
rhythms which are dominant in most of normal adults and
exhibited bilateral distribution over the posterior areas in
EC state [9, 22]. Combination of the SL and graph theory
methods in the present study would be a very useful tool
for exploring underlying mechanism of the brain and for
diagnosing neurologic disorder in the future.

2. Methods

2.1. Participants and Experiment. Twenty-one healthy right-
handed subjects (ten females and eleven males) between 20
and 23 years old (Meanage = 21.6 years, SD = 0.8) from the
university community participated in the present study. All
participants were free of personal or family history of neuro-
logical disorder or serious mental illness and had no history
of substance abuse or head injury. In addition, they were not
taking any psychoactive medications. All participants had no
visual or auditory impairments. Written informed consent
was given by all participants before the EEG experiment, and
they were compensated for their participation.

The experiment included two processes: eyes-closed and
eyes-open at resting state [6, 7]. During the experiment, sub-
jects were comfortably seated in a dimly lit, sound attenuated,
and electrically shielded environment. First, each subject
kept eyes-closed state for three minutes without thinking of
anything while in a fully relaxed state. Second, the subjects
needed to keep their eyes-open for another 3 minutes while
focusing on a green cross in the middle of screen without any
instruction and staying in a fully relaxed state.

2.2. EEG Data Acquisitions and Preprocessing. EEG data
were recorded from 128 channels by using a modified 10–20
montage system (EGI system) in all subjects. The reference
electrode was the Cz (129th) electrode, and electrooculogram
(EOG) was recorded simultaneously from electrodes placed
above and below the left eye. EEG data were sampled at
500Hz and the electrode impedance was kept lower than
5 kΩ. EEG data during three minutes eyes-closed state and
three minutes eyes-open state were collected for further
analysis. All the EEG data were referenced to an averaged
reference by offline way.

Bad electrodes were replaced with the interpolated val-
ues from the neighboring electrodes. After rejecting EOG
contamination and nonspecific artifacts, 5000 time points
(ten seconds EEG data) were selected from the original
time series of each subject. The ten seconds EEG data were
filtered into the following three distinct frequency bands
by a band-pass filter: theta (4–7Hz), alpha (8–13Hz), and
beta (14–30Hz) bands. In addition, the filtered EEG data
were processed by the current source density (CSD) toolbox
of Matlab v7.1 (Mathworks, Inc., Sherborn, MA) which was
supplied by Kayser and Tenke which implements a spherical
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spline algorithm of Perrin et al. to estimate scalp current
density (SCD) [23, 24].

2.3. Functional Brain Network Construction

2.3.1. Synchronization Likelihood (SL). For two dynamical
systems𝑋 and𝑌, when𝑌 is determined by a function𝐹which
is driven by 𝑋, which is called generalized synchronization
between system 𝑋 and 𝑌. Stam and Van Dijk proposed a
measurement of synchronization likelihood (SL) to estimate
generalized synchronization between two ormore simultane-
ously recorded time series [11, 14]. Because the SL is sensitive
to linear and nonlinear mutual dependencies, it can be well
applied to measure the correlations between any two EEG
channels [14, 15].

Computing the SL of simultaneously recorded time series
𝑋 and 𝑌, the first step is to reconstruct the series embedded
vectors 𝑋

𝑖
and 𝑌

𝑖
by the method of time-delay embedding

[11, 14, 15]:
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where 𝜃 is the Heaviside step function (𝜃(𝑥) = 1 for 𝑥 > 0

and 𝜃(𝑥) = 0 for 𝑥 ≤ 0), and the | ⋅ | is the Euclidean distance
between𝑋

𝑖
and𝑋

𝑗
.𝑤
1
is a window to correct autocorrelation

effects by the Theiler and should be more than the order
number of the autocorrelation time, 𝑤

2
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improve the time resolution of the synchronization measure,
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The values of SL range from 𝑝ref to 1. In case of maximal
synchronization, the SL of the time 𝑖 is 1. If the two systems

are completely independent systems, the value of SL is 𝑝ref
[11, 15].

Finally, the SL between the time series 𝑋 and 𝑌can be
obtained by averaging over the time index 𝑖. Otherwise, the
definition of SL is closely related with the concept of mutual
informationwhich is based on the correlation integral [11, 15].
The SL is sensitive to linear and nonlinear systems; so it
has been applied to explore human multichannel EEG and
MEG data, including neurological disorders (e.g., Epilepsy,
Alzheimer’s disease) [14, 15] and advanced brain functions
(e.g., attention, perception).

According to the fixed parameter selection rules in the
definition of SL and previous experience of the applications
in EEG literatures [11, 14], the following fixed embedding
parameters were selected to estimate SL value in this study:
lag (𝑙) is 10; embedding dimension (𝑚) is 10; two windows:
𝑤
1
is 100 and 𝑤

2
is 400; and 𝑝ref was set equal to 0.05.

For each subject, an SL value was obtained for one pair
of channels in each frequency band. After computing SL
values of all pairwise combinations of channels, all SL values
constituted a square𝑀 ×𝑀 synchronism matrix of size 128
(128 is the number of EEG channels), where each element
𝑀
𝑖,𝑗

is the value of the SL between channel 𝑖 and 𝑗. Finally,
the number of SL matrixes is 126 (21 × 3 × 2, 21 subjects, 3
frequency bands, and 2 conditions).

2.3.2. Threshold Selection. The threshold selection was based
on the cost of functional brain network [16, 25], which was
defined as the ratio of the number of above-threshold edges
to the total number of all edges in a network. For example,
when the threshold was at a cost of 20%, it means that
only 20% of the top SL values were considered as effective
connections and the other 80% SL values were considered as
invalid connections.

In this study, each networkwas examined in the full range
of costs from 8% to 20% (step is 1%). The 8% was based
on keeping small-world feature of functional brain network,
while the network connection was too dense to further
analyze network topology when the cost exceeded 20% [20,
25]. After applying each threshold (13 thresholds), the SL
matrices were converted to undirected connected graphs.
An edge was set when the SL value exceeded corresponding
threshold in Figure 1. Finally, the number of all graphs is 1638
(21 × 3 × 2 × 13, 21 subjects, 3 frequency bands, 2 conditions,
and 13 thresholds).

2.4. Graph Theory Analysis

2.4.1. Network Measures. After the SL matrices were con-
verted to graphs consisting of nodes and undirected edges
between nodes in Figure 1 [5, 26], several regular graph-
theoretic parameters were selected to analyze functional
brain networks of EC and EO states, including the average
degree 𝐾

𝑚
, the clustering coefficient 𝐶, the mean shortest

path length 𝐿, the global efficiency 𝐸global, and the average
local efficiency 𝐸local [17–19, 25]. Mathematical details of
these parameters can be found in the appendix of this paper.

The average degree, clustering coefficient, and mean path
length are basic and core measures of graphs. The average
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Figure 1: The schematic diagram that an SL matrix was converted to an undirected and unweighted graph by applying a threshold. (a) is
an SL matrix and (b) is an undirected and unweighted graph. In case of an unweighted and undirected graph, the black solid dots represent
nodes and would be connected by edges when SL exceeded the corresponding threshold. Topological features of graphs can be quantitatively
described by a wide variety of measures. For node D, which links three edges, the degree is three, and all the networks’ nodes form a degree
distribution. For node A, with neighbors B and C, the clustering coefficient is one. The shortest path between node A and node D consists of
three edges, and the shortest path length is three. Otherwise, if one node cannot reach another node, the distance is considered as infinite.

degree could reflect the mean density of connections among
nodes in a graph. Due to the threshold selection based on
the costs of networks, the difference of the degree between
EC and EO states is not significant. The clustering coefficient
is often used for measuring local structure and has been
regarded as an index of resilience to random error in a graph
[17, 18]. The mean path length is a global characteristic and
can reflect the integration as well as the level of information
communication in a graph [18, 19]. In addition, the global
and local efficiency can reflect the level of global and local
information transfer of a graph and are directly and effectively
applied to evaluate the performance of a network [19, 25].

2.4.2. Difference Nodes and Difference Connections. Many
previous studies have reported that there existed some nodes
with a high degree or high centrality in a graph [26–28]. The
centrality of a graph was used to measure how many of the
shortest paths between all other node pairs in the network
pass through it, and it would have a great influence on
network efficiency [19, 29, 30]. To further study the difference
of network topology between the two states, the crosstab test
was used to detect the difference nodes of EC and EO states
in this study. A node was determined as a difference node of
EC state when the degree of the node in EC state was always
significantly greater than that of EO state at each cost. On the
contrary, when the degree of a node of EO state was always
significantly greater than that of EC state at each cost, the
node was considered as a difference node of EO state.

In order to further compare the difference of network
connections, we constructed the connected graph of two
states and the difference connected graph between the two

states. The connected graph was composed of the edges
which were significant among all subjects by the chi-square
test. Then we can, respectively, obtain a connected graph of
EC state and a connected-graph of EO state at each cost.
However, the difference connected-graph was constructed by
comparing the connected-graphs of EC and EO states, if the
same connection exits between two nodes of EC and EO
states in connected-graphs, the connectionswould be ignored
andwould not be drawn in the difference connected-graph. If
only EC state had an edge in connected graph, the two nodes
would be linked by blue line. Otherwise, the two nodes were
linked by red line. Finally, difference connected-graphs were
acquired in each frequency band for each subject at each cost.

2.5. Statistical Analysis. Paired 𝑡-test was applied to evaluate
the differences in topological parameters and the connectivity
of networks between EC and EO states. The chi-square test
and the crosstab test were used to estimate the significant
difference of nodes and connections between EC and EO
states. 𝑃 < 0.05 was accepted as significant in all tests. All
operations were done in Matrix Laboratory (Matlab v7.1)
(Mathworks, In.c, Sherborn, MA). The statistical procedures
were completed in Statistical Product and Service Solutions
(SPSS v20.0) (SPSS, Chicago, IL, USA).

3. Results

After SL matrices were converted to graphs, there were
network analysis and statistical analysis in each frequency
band for each subject separately. Some significant dif-
ferences of network parameters, difference nodes, and
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Figure 2: (a) mean cluster coefficient 𝐶
𝑠
, (b) mean shortest path length 𝐿

𝑠
, (c) global efficiencies, and (d) local efficiencies for EC and EO

states as a function of costs in the theta frequency band (4–7Hz). Black asterisk indicated that the difference between EC and EO states was
significant (paired 𝑡-test, 𝑃 < 0.05). The 𝐶

𝑠
and local efficiencies of EC state were significantly higher than those of EO state in each cost. 𝐿

𝑠

and global efficiencies did not show significant difference between EC and EO states.

difference connections were found between EC and EO
resting conditions.

3.1. TheTheta Band

3.1.1. Network Parameters. In the theta band (4–7Hz), the
mean cluster coefficient 𝐶

𝑠
of EC and EO states was shown

as a function of costs in Figure 2(a). Within the whole costs
(8%–20%), the 𝐶

𝑠
of EC state was significantly higher than

that of EO state and the difference was consistent. Figure 2(b)
was the mean shortest path length 𝐿

𝑠
, which decreased with

the increase of costs, while the difference of each cost between
EC and EO states was not significant at each cost.

The efficiencies of EC and EO states in the theta band
were shown in Figures 2(c) and 2(d), respectively, including
global efficiencies and local efficiencies. Paired 𝑡-test showed
no difference in global efficiencies between EC and EO states
in the theta band, while the local efficiencies of EC state were
higher than that of EO state at the whole costs.

3.1.2. Difference Nodes and Difference Connections. In order
to further study the difference of network topology between
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Figure 3:Thedistribution of difference nodes betweenEC andEO states in theta, alpha, and beta frequency bands (the crosstab test,𝑃 < 0.05).
The difference node of EC state when the degree of a node in EC state was always significantly greater than that of EO state at each cost. The
difference node of EO state when the degree of a node in EO state was always significantly greater than that of EC state at each cost. The
triangle represented the difference node of EC state, and the rectangle represented difference node of EO state; (a) the standard layout of
brain cap; (b) six difference nodes of EC state mainly located in the frontal area in the theta band (4–7Hz); (c) thirteen difference nodes of EC
state mainly located in the bilateral posterior area in the alpha band (8–13Hz); and (d) three difference nodes of EO located in the occipital
area in the beta band (14–30Hz).

EC and EO states, the crosstab test was used to determine
difference nodes among all subjects in graphs. The node was
determined as a difference node between EC and EO states
when the node always showed significant difference at each
cost.

In the theta band, six significant difference nodes of EC
state were distributed in the frontal area (See Figure 3(b)),

showing that nodes of EC state had bigger degree than that
of EO state. Figure 4 showed difference connected graphs for
difference connections between EC and EO state in range of
all costs, which reveal that EC state had more connections
than EO state in the frontal area at all costs. The distribution
area of difference connections was in accordance with the
area of difference nodes. All results suggested that the local
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an edge in connected graph, the two nodes would be linked by a blue line. Otherwise, the two nodes were linked by a red line. The top left
corner was the standard layout of the brain cap, with the positions of the electrodes indicated by small solid circles and numbered according
to the 10–20 electrode placement system. The figure showed that the connections significantly reduced in the frontal area from EC to EO
states in the theta band.

activity of EC state was stronger than EO state in the frontal
area in the theta band at resting state.

3.2. The Alpha Band

3.2.1. Network Parameters. In the alpha band (8–13Hz), the
mean clustering coefficient 𝐶

𝑠
of EC state was significantly

higher than that of EO state in the whole costs and the
difference became larger as the costs increase in Figure 5(a).
Figure 5(b) illustrates the mean shortest path length 𝐿

𝑠
of EC

and EO states as a function of costs. When the cost exceeded
13%, the 𝐿

𝑠
of EC was significant longer than that of EO state.

Figures 5(c) and 5(d) were the efficiencies of EO and
EC states as a function of costs. Figure 5(c) showed that EC
state had lower global efficiencies than EO state. However,
Figure 5(d) suggested that local efficiencies of EC state were
higher than those of EO state when the cost exceeded 10%.

3.2.2. Difference Nodes and Difference Connections. Thirteen
difference nodes exhibited bilateral distribution mainly over

the posterior area in the alpha band in Figure 3(c). Figure 6
showed EC state had more connections than EO state which
is located in the posterior area. The EC state had more local
connections over the right posterior area when the cost was
low (8% and 11%) and over the right and left posterior areas
when the cost increased (14%, 17%, and 20%).Meanwhile, EC
state had more and more long-range connections between
the left and right posterior areas than that of EO state with
increasing costs, while the difference connections of EO state
scattered distribution throughout the whole brain in all costs.
The above results showed that EC had stronger local activity
in bilateral posterior areas andmore communication between
the left and right posterior areas than that of EO state in the
alpha band at resting state.

3.3. The Beta Band

3.3.1. Network Parameters and Difference Nodes and Connec-
tions. In the beta band (14–30Hz), the results of paired 𝑡-
test showed no significant difference in the four topological
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Figure 5: (a) mean cluster coefficient 𝐶
𝑠
, (b) mean shortest path length 𝐿

𝑠
, (c) global efficiencies, and (d) local efficiencies of EC and EO

states as a function of costs in the alpha band (8–13Hz). Black asterisk indicated that the difference between EC and EO states was significant
at each cost (paired t-test, 𝑃 < 0.05). 𝐶

𝑠
, 𝐿
𝑠
, and local efficiencies of EC state were significantly higher than EO state, but global efficiencies

of EO state were significantly higher than those of EC state.

parameters between EC and EO states in Figure 7. Three
difference nodes of EO state located in the occipital area
in Figure 3(d). The difference connections of EO state are
mainly distributed in the occipital area in Figure 8.

4. Discussion

The main goal of this paper was to address the differences
of functional brain networks between EC and EO states. The
results showed that EC state was characterized by a higher
mean clustering coefficient 𝐶

𝑠
in both theta and alpha bands

as well as a longer mean shortest path length 𝐿
𝑠
only in the

alpha band. Local efficiencies were significantly reduced in
both theta and alpha bands, but global efficiencies increased
in the alpha band from EC to EO states. Moreover, after

opening the eyes, both nodes and connections in the frontal
area significantly decreased in the theta band and those of
bilateral posterior areas also significantly decreased in the
alpha band. But in the beta band, the topology of networks
did not show much difference from EC to EO states.

4.1. Changes in Topological Parameters from EC to EO States in
Theta Band. Chen et al. have reported that the local activity
was suppressed and the power was drastically reduced in the
frontal area from EC to EO state in the theta band [6, 7].
In consistence with these results, we found that the 𝐶

𝑠
and

local efficiencies were significantly decreased from EC to EO
states, and the nodes and connections significantly decreased
from EC to EO states in frontal area in the theta band,
which might be interpreted that visual input would suppress
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Figure 6:The difference connected graphs in the alpha band (8–13Hz) between EC and EO states in five costs.The difference connected graph
was constructed by the method in Figure 4. The blue line represented an edge only in connected graph of EC state, the red line represented
an edge only in connected graph of EO state. The top left corner was the standard layout of the brain cap, with the positions of the electrodes
indicated by small solid circles and numbered according to the 10–20 electrode placement system.The local connections significantly reduced
in bilateral posterior areas from EC to EO states.

the connectivity of default mode network (DMN) after
opening the eyes [3, 6, 9], resulting in a relatively spared
local connectedness of DMN. The frontoparietal DMN has
been suggested to be activated in eyes-closed resting state
and suppressed after opening the eyes [31–33]. Decreased
frontal theta rhythmhas been found following amemory task
[34], suggesting that there is a relationship between frontal
theta and basic cognitive functions [34, 35]. The brain may
prepare for cognitive activities after opening eyes, leading
to a decrease of frontal theta rhythm from EC to EO states.
In other words, the decrease of frontal theta in connectivity
may play an inhibition role for the distraction of visual
information in EO state [8, 13].

4.2. Changes in Topological Parameters from EC to EO States
in Alpha Band. The 𝐶

𝑠
, 𝐿
𝑠
, and local efficiencies were

significantly decreased from EC to EO states, suggesting
different processing via oscillations in the two states. Zou
et al. also indicated that the alpha rhythm had the largest
amplitude in relaxed EC or a waken state [36]. These results
were in line with other studies that the activity of the alpha
would be restrained due to extrinsic visual stimulus and
information processing in EO state [7, 8, 10]. In addition,

we found the topological features of nodes and connections
significantly reduced in bilateral posterior area from EC to
EO states which would agree with previous studies that the
alpha power mainly was distributed in bilateral posterior
areas along and significantly reduced from EC to EO states,
described as “alpha desynchronization” [6, 7, 9]. The alpha
desynchronization to visual input has been considered to
facilitate visual perception or information processing [9, 22].
Resting state fMRI data also have proved that the variations of
alpha rhythm were associated with bilateral thalamic nuclei
and visual cortex which modulated some basic cognitive
function. Meanwhile, unlike other parameters, the global
efficiencies were significantly increased inversely from EC
to EO states, which may suggest that interactions among
interconnected regions became more effective when we open
the eyes [9, 37, 38]. Previous studies show that the shorter the
path length, the higher the global efficiencies, which would
be more conducive for promoting information exchanging
and information processing [9, 37, 38].Otherwise, long-range
connections decreased between the left and right posterior
areas from EC to EO states, which suggested that EO state
had less communication between the two hemispheres and
some brain functions may be suppressed.



10 Computational and Mathematical Methods in Medicine

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
ea

n 
clu

ste
r c

oe
ffi

ci
en

t

8 9 10 11 12 13 14 15 16 17 18 19 20
Cost (%)

Mean cluster coefficient of 𝛽 (14–30Hz)

(a)

1

1.5

2

2.5

3

3.5

M
ea

n 
sh

or
te

st 
pa

th

8 9 10 11 12 13 14 15 16 17 18 19 20
Cost (%)

Mean shortest path of 𝛽 (14–30Hz)

(b)

0.3

0.4

0.5

0.6

0.7

G
lo

ba
l e

ffi
ci

en
cy

8 9 10 11 12 13 14 15 16 17 18 19 20

Cost (%)
Open
Close

Global efficiency of 𝛽 (14–30Hz)

(c)

0.3

0.4

0.5

0.6

0.7

Lo
ca

l e
ffi

ci
en

cy

8 9 10 11 12 13 14 15 16 17 18 19 20
Cost (%)

Open
Close

Local efficiency of 𝛽 (14–30Hz)

(d)

Figure 7: (a) mean cluster coefficient 𝐶
𝑠
, (b) mean shortest path length 𝐿

𝑠
, (c) global efficiencies, and (d) local efficiencies for EC and EO

states as a function of costs in the beta band (14–30Hz). Black asterisk indicated that the difference between EC and EO states was significant
(paired 𝑡-test, 𝑃 < 0.05). The 𝐶

𝑠
, 𝐿
𝑠
, global efficiencies, and local efficiencies did not show significant difference between EC and EO states in

all costs.

4.3.The SmallWorldness of Functional Brain Network between
EC and EO States. Previous studies have shown that the brain
network was a small-world network [20, 29, 39]. To further
diagnose small worldness, the 𝐶

𝑠
and the 𝐿

𝑠
served as the

main parameters to compare functional networks of EC and
EO states with the ordered and random networks preserving
the degree sequences of their experimental counterparts in
each frequency band when the cost was 14% in Figure 9.
The results showed that the 𝐶

𝑠
and the 𝐿

𝑠
of EC and EO

stateswere intermediate between order and randomnetworks
and also suggested that the resting state networks had small-
world features. To further analyze the difference of small-
world features between EC and EO states, the 𝐶

𝑠
and the

𝐿
𝑠
were expressed as ratios of the 𝐶

𝑠
and 𝐿

𝑠
of random

graphs in Table 1. The table showed that the small-world
features reduced in the theta band but slightly increased
in the alpha band from EC to EO states. The decrease of

small-world features in the theta band may be due to the
external visual input which induces a decrease of DMN
activity [32, 33]. Besides, the increase of small-world features
in the alpha band may be the alpha desynchronization after
opening the eyes, which facilitates effective information com-
munication [36–38]. Meanwhile, this study also illustrated
small-world features of functional brain networks at resting
state.

4.4. The Application of SL and Graph Theoretical Analysis in
Neuroscience. The relationship between brain structure and
function is a popular research area in the modern network
theory, especially in synchronization dynamics and network
topological features [11, 14, 15]. A growing body of evidence
suggests that the brain is a nonlinear dynamic system, and
coupled neurons synchronously produce brain signals [5,
16, 18]. The studies of synchronization dynamics are not
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Figure 8:The difference connected graphs in the beta band (14–30Hz) between EC and EO states in five costs.The difference connected graph
was constructed by the method in Figure 4. The blue line represented an edge only in connected graph of EC state, the red line represented
an edge only in connected graph of EO state. The top left corner was the standard layout of the brain cap, with the positions of the electrodes
indicated by small solid circles and numbered according to the 10–20 electrode placement system. A few difference connections significantly
reduced in the occipital area from EC to EO states.

Table 1: Small-world feature of EC and EO states (mean cluster coefficient 𝐶
𝑠
and mean shortest path length 𝐿

𝑠
were expressed as ratios of

corresponding 𝐶
𝑠
and 𝐿

𝑠
of random network).

Frequency range State 𝛾 = 𝐶exp/𝐶ran 𝜆 = 𝐿exp/𝐿 ran 𝜎 = 𝛾/𝜆

Theta (4–7Hz) EO 1.61 1.06 1.52
EC 1.82 1.07 1.70

Alpha (8–13Hz) EO 2.01 1.09 1.83
EC 1.48 1.18 1.26

Beta (14–30Hz) EO 2.19 1.15 1.91
EC 2.23 1.14 1.95

thorough enough in the human brain and the synchro-
nization analytical approach mainly concentrated on linear
and nonlinear analysis [14, 15]. Nonlinear synchronization
algorithms have been widely applied to analyze the human
brain, especially phase synchronization and synchronization
likelihood. Because of the nonstationary properties of EEG,
many synchronization algorithms are not very suitable to
EEG data [11]. The SL is sensitive to the nonstationary signal;
so it has been applied to humanmultichannel EEG andMEG
data. An important application field of the SL is neuronal
diseases, such as Epilepsy, Alzheimer’s disease [14, 15], and

advanced brain functions, such as attention, perception, and
memory [11, 40]. Using the method of the SL, studies have
found some differences between neurologic patients and nor-
mal subjects. Moreover, other studies further suggested that
synchronism activities of Alzheimer’s and Epilepsy patients
may play an important role in the information integration
among different brain regions in the gamma band [40, 41].
The recent studies suggested that synchronous oscillations
also had a vital role for higher cognitive function [11, 13, 41].

In neuroscience, some studies have shown the human
brain could be modeled as a complex network and had
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Figure 9: The comparisons of mean cluster coefficient 𝐶
𝑠
(the first row) and mean shortest path length 𝐿

𝑠
(the second row) among ordered,

experiment, and random networks when the cost was 14%. Error bars corresponded to standard error of the mean. Black asterisk indicated
that the difference between EC and EO states was significant (paired 𝑡-test, 𝑃 < 0.05). The random and ordered networks were constructed
with preserving the degree sequences of corresponding EC and EO networks.The𝐶

𝑠
of EC and EO states were intermediates between that of

ordered and random networks. However, the 𝐿
𝑠
of EC and EO states were lower than the 𝐿

𝑠
of ordered networks and close to (but not smaller

than) the 𝐿
𝑠
of random networks.

the “small-world features” which are a relatively high clus-
tering coefficient and a short path length at the level of
anatomical connectivity as well as functional connectivity
[4, 13, 28]. Simultaneously, the small-world framework was
deemed to be an ideal situation, which was bound upwith the
most economic wiring cost, the information transmission,
and the best balance between global information integration
and local information processing [13, 17, 18]. Graph theory
has been widely applied to study functional connectivity,
neural anatomical, and connectivity networks models based
upon EEG, MEG, and fMRI for many years [14, 16, 17,
30]. Stephan also indicated that theory graph could be well
applied to analyze anatomical and functional connectivity in
neuroscience [4, 42]. We believe the graph theory will have a
broader application in the other fields.

4.5. The Limitation of Application in Neuroscience. The study
has two main limitations. First, the nodes of network which
were the scalp electrodes are not really anatomical positions.
Because of the low spatial resolution in EEG, the topological

findings must be interpreted with extreme caution. The CSD
was used for compensating spatial resolution of EEGchannels
in this study. Second, while the SL has a wide application in
the electrophysiological data (such as EEG, MEG), it is rarely
used to analyze the neuroimaging data (such as fMRI, PET)
due to the lack of enough time points for the SL calculation.

5. Conclusion

In this paper, we mainly discussed the difference of the
functional brain networks between EC and EO states. The
SL was applied to construct functional brain network and
graph theory was applied to analyze the characteristics of
functional connected graphs. The results showed that some
topological parameters between EC and EO states had signif-
icant difference. Meanwhile, we found that the connectivity
of frontal theta and posterior alpha significantly decreased
fromEC to EO states. In conclusion, these results suggest that
the combination of the SL and graph theory would be a very
useful tool to explore underlying mechanisms of brain.
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Appendix

A. Mathematical Detail of Network Measures

A.1. The Degree and Degree Distribution. The number of
existed edges between the adjacent nodes of a node is defined
as the degree 𝐾 of the node. For instance, the degree of node
A is two in Figure 1(b). Many other fundamental parameters
are related with the degree of a graph. The degrees of all
nodes form a degree distribution of a graph and the mean
degree of a graph is to average all nodes degrees [17, 18, 25].
However, because the threshold was based on the cost which
is in accordance with the degree of a graph, the degree of
EC and EO states did not show difference and would not be
discussed in the paper.

A.2. The Clustering Coefficient and Mean Clustering Coeffi-
cient. The clustering coefficient is used to measure clustered
degree among nodes and an index of local structure in a
graph. The clustering coefficient of a node is usually defined
as the proportion of the number of existed edges between
the nearest neighbor of the node and the maximum number
of possible edges. For example, the clustering coefficient of
node C is 1 in Figure 1(b). It ranges between 0 and 1. The
mean clustering coefficient 𝐶 of all nodes was calculated
by averaging the 𝐶

𝑠
of all nodes in a graph. In this study,

we compared the mean 𝐶
𝑠
between EC and EO states. The

formulas of the clustering coefficient 𝐶 and the mean 𝐶,
respectively, are defined as follows [16, 25]:

𝐶
𝑖
=

𝑒
𝑗

𝐶

2

𝑛

=

2𝑒
𝑗

𝑘
𝑗
(𝑘
𝑗
− 1)

, (A.1)

𝐶mean =
1

𝑁

𝑁

∑

𝑗=1

𝐶
𝑗
, (A.2)

where 𝑒
𝑗
is the number of existed edges between adjacent

nodes of node 𝑖 and 𝑘
𝑗
(𝑘
𝑗
− 1) is the maximum possible

number of edges among neighbours in formula (A.1).𝑁 is the
number of nodes in a graph and 𝐶mean is the mean clustering
coefficient in a graph.

A.3.The Shortest Path Length andMean Shortest Path Length.
The shortest path length between two nodes is the minimal
number of edges that must be travelled to go from one node
to the other [17, 18, 25]. For example, the path length between
node A and node D is 2 in Figure 1(b). The average of all the
shortest path lengths between all possible pairs of nodes is
called themean shortest path length𝐿 of a graph.The formula
of 𝐿 in a graph is defined as follows:

𝐿
𝑖,𝑗
=

1

𝑁 (𝑁 − 1)

∑

𝑖,𝑗∈𝑁,𝑖 ̸= 𝑗

𝑑
𝑖,𝑗
, (A.3)

where the distance 𝑑
𝑖,𝑗
between the two nodes 𝑖 and 𝑗 is the

minimal number of edges that has to be travelled to go from
node 𝑖 to node𝑗. 𝐿

𝑖,𝑗
is the average of all nodes’ path length

𝑑
𝑖,𝑗
.

A.4. The Global Efficiency 𝐸global and Local Efficiency 𝐸local.
Latora andMarchiori present the definitions of the global and
local efficiency of a graph. The global efficiency is measured
by the inverse of the harmonic mean of the minimum path
length between each pair of nodes [17–19]. If one node is
separate with the other nodes, the path length is considered
to be infinite and the efficiency is zero. Meanwhile, the global
efficiency can also reflect the level of parallel information
transfer of a network. The equation of global efficiency is
[18, 19]

𝐸global =
1

𝑁 (𝑁 − 1)

∑

𝑖,𝑗∈𝑁,𝑖 ̸= 𝑗

1

𝑑
𝑖,𝑗

. (A.4)

The mean of the efficiencies of all subgraphs 𝐺
𝑖
of

neighbours of each node of the graph is defined as the local
efficiency of a graph [18, 19], and the average local efficiency
𝐸local is given by

𝐸local =
1

𝑁

∑

𝑖∈𝑁

𝐸 (𝐺
𝑖
) , (A.5)

where 𝐸(𝐺
𝑖
) is the efficiency of subgraph 𝐺

𝑖
; the local effi-

ciency is also understood as a measure of the fault tolerance
of the network, indicating how well each subgraph exchanges
information when the index node is eliminated [18, 19].
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