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Gingival overgrowth is a side effect of certain medications. The most fibrotic drug-induced lesions develop in response to therapy
with phenytoin, the least fibrotic lesions are caused by cyclosporin A, and the intermediate fibrosis occurs in nifedipine-induced
gingival overgrowth. Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because
of a persistent tissue repair program. During connective tissue repair, activated gingival fibroblasts synthesize and remodel newly
created extracellular matrix. Proteins such as transforming growth factor (TGF), endothelin-1 (ET-1), angiotensin II (Ang II),
connective tissue growth factor (CCN2/CTGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF) appear
to act in a network that contributes to the development of gingival fibrosis. Since inflammation is the prerequisite for gingival
overgrowth, mast cells and its protease enzymes also play a vital role in the pathogenesis of gingival fibrosis. Drugs targeting these
proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the
contribution of TGF-𝛽, CTGF, IGF, PDGF, ET-1, Ang II, and mast cell chymase and tryptase enzymes to fibroblast activation
in gingival fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of drug-induced gingival
overgrowth.

1. Introduction

Drug-induced gingival overgrowth is an adverse drug reac-
tion mainly described with three types of commonly pre-
scribed drugs, namely, calcium channel blockers (nifedipine,
diltiazem, and verapamil) [1–4], antiepileptic drugs (pheny-
toin) [5] and, immunosuppressants (cyclosporine) [6]. Drug-
induced gingival overgrowth usually occurs within the first 3
months of starting the medication and begins as an enlarge-
ment of the interdental papilla [3]. As mentioned elsewhere,
not all the patients taking these drugs develop drug-induced
gingival overgrowth. While the incidence of this side effect
can be as high as 65% in epileptics, 70% in transplant patients,
and 30% in hypertension subjects, variation exists in the
reported prevalence and severity of the clinical problem [7–
10]. The degrees of inflammation, fibrosis, and cellularity

depend on the duration, dose, and identity of the drug
and on the quality of oral hygiene. Evidence suggests that
genetic factors also might have a significant role in the
pathogenesis of drug-induced gingival overgrowth and in
the patient’s susceptibility to this unwanted effect. A genetic
predisposition could influence a variety of factors in the
drug-plaque-induced inflammation. These include gingival
fibroblast functional heterogeneity, collagenolytic activity,
drug metabolism, and collagen synthesis [7, 11]. The effective
management of these patients clearly requires the active
involvement of both dental andmedical professionals tomin-
imize the possibility of complications.The rationally designed
antifibrotic therapies are likely to be invaluable in curbing
this problem largely because the underlying basis of fibrosis
is unclear. However, numerous studies conducted over three
decades have suggested that chronic inappropriate increases
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in levels of local and circulating chemical mediators such as
angiotensin II (Ang II) and endothelin-1 (ET-1) and fibro-
genic cytokines/proteins such as transforming growth factor
(TGF), connective tissue growth factor (CTGF), insulin-like
growth factor (IGF), platelet-derived growth factor (PDGF),
and mast cell chymase and tryptase enzymes are likely to
be key driving forces culminating in gingival overgrowth
(Figure 1). Collectively, these hormones and cytokines result
in the activation of gingival fibroblasts cells within connective
tissue. Although gingival fibroblasts are induced in response
to normal tissue injury, these cells disappear, thereafter,
probably by apoptosis. InDIGO, however, gingival fibroblasts
persist, resulting in the excessive production and remodeling
of extracellular matrix (ECM). Some studies demonstrated
that drugs such as cyclosporine A are able to inhibit produc-
tion of ECM by gingival fibroblast and cell proliferation in
vitro [12]. In contrast, others showed that the accumulation
of proteins in ECM, particularly collagen, may occur due to
an imbalance between the synthesis and the degradation of
ECM, being the possible cause of the drug-induced gingival
overgrowth [13]. These results suggested the imbalance in
the ECM synthesis and degradation that leads to drug-
induced gingival overgrowth. The mechanisms that trigger
drug-induced gingival overgrowth have not been completely
understood, and, although the literature data are extensive,
they are quite contradictory. Recent evidence has suggested
that differentiation of resident fibroblasts occurs in response
to above-mentionedmediators, which are all likely to play key
roles in this process. In this review, we focused on growth
factors such as, TGF-𝛽, CTGF, IGF, and PDGF; mast cell
enzymes chymase and tryptase; circulating mediators Ang
II and ET-1, and discussed their roles in the pathogenesis of
drug-induced gingival overgrowth.

2. Growth Factors

2.1. Transforming Growth Factor-𝛽. TGF-𝛽 expression is
elevated in response to injury [14]. There is an extensive
literature that discusses the basics of TGF-𝛽 signaling and
its relationship to fibrosis [15–17]. Briefly, there are 3 TGF-
𝛽 isoforms, namely, TGF-𝛽 1, TGF-𝛽 2, and TGF-𝛽 3.
These are initially present within a complex containing latent
TGF-𝛽-binding proteins that are proteolytically removed to
release active TGF-𝛽. Substantial evidence supports a central
role for TGF-𝛽 in fibroblast activation. When applied to
fibroblasts, TGF-𝛽 directly induces ECM gene expression
and promotes ECM deposition by simultaneously suppress-
ing matrix metalloproteinase gene expression and inducing
tissue inhibitors of matrix metalloproteinase gene expression
[18–20]. It is well established that the immunosuppressive
drug, cyclosporine, upregulates TGF-𝛽 1 synthesis, a fact
that might explain the fibrogenic effect of this drug in a
variety of cells and tissues [21–26]. Significantly, in vivo
studies in animal models have shown that cyclosporine
increases kidney TGF-𝛽 1 levels [27]. Evidence from the
study of isolated gingival fibroblasts in culture demonstrates
that these cells exhibit a proliferative response to TGF-𝛽
1 [25–29]. Furthermore, hyper-responsiveness of gingival
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Figure 1: Schematic diagram of interplay among profibrotic medi-
ators. These proteins promote fibroblast activation and gingival
fibrosis. Ang II: angiotensin II; CTGF: connective tissue growth
factor; ET: endothelin; IGF: insulin-like growth factor; PDGF:
platelet-derived growth factor; TGF: transforming growth factor;
ECM: extracellular matrix.

fibroblasts to autocrine effects of TGF-𝛽 1, coupled with
increased levels of synthesis in these cells, may be important
pathogenic elements in hereditary gingival fibromatosis, a
condition that has histopathological features in common
with drug-induced gingival overgrowth [30–32]. TGF-𝛽 1
has an important profibrogenic role, not only by inhibiting
the synthesis of metalloproteinases but also by stimulating
synthesis of collagen [33]. In fibroblasts TGF-𝛽 generally
is signaled through TGF-𝛽 type I receptor (Activin-Linked
kinase 5) [16]. Activin-Linked kinase 5 (ALK5) inhibitors
have been considered as potential antifibrotic compounds,
although these small molecules have not yet been thoroughly
investigated in gingival fibroblasts. These results suggest that
blocking ALK5 may be useful in blocking the profibrotic
effects of TGF-𝛽 in gingival fibroblasts. In gingival fibroblasts
cells, ALK5 inhibition reduces profibrotic effect of TGF-𝛽
[34]. In addition to ALK5 inhibitors, anti-TGF-𝛽 antibodies
have also been under consideration as potential antifibrotic
agents [16]. All these findings suggest that broad targeting of
TGF-𝛽 ligand might not be a viable antifibrotic strategy, but
ALK5 inhibition may be a useful approach.

2.2. Insulin-Like Growth Factor. Insulin-like-growth-factor
(IGFs-) I and II are well known to play essential roles
in significant biological activities such as proliferation, dif-
ferentiation, apoptosis, and adaptation in various kinds of
tissues [35]. The actions of IGFs are mainly mediated via IGF
receptor 1 (IGFR-1) and aremodulated by six binding proteins
(IGFBPs), designated as IGFBP-1 to IGFBP-6 [35, 36]. Unlike
most of the other binding proteins, which act as competitive
inhibitors of IGF-I receptor, IGFBP-5 acts to enhance IGF-
I actions. IGF-I increases the synthesis of both IGFBP-5
and collagen [37]. Moreover, IGF-I’s biological activity on
fibroblasts includes stimulation of collagen production and
downregulation of collagenase production, suggesting that
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IGF-I may be an important mediator in the development of
gingival fibrosis through IGFBP-5 [38]. The greater expres-
sion of IGFBP-5 in periodontal ligament fibroblast (PDLF)
together with IGF-I induced reduction of apoptosis in PDLF
suggests a potential role of IGFBP-5 in the upregulation of
IGF-I pathway [38]. Furthermore, augmented expressions
of IGFBP-5 were identified in cyclosporine-induced gingi-
val overgrowth and associated with increased collagen and
fibrosis [39]. It also demonstrated that, in rat gingival cells,
the cyclosporine triggers IGF-I induced proliferation and
extracellular matrix synthesis [40]. IGF-I receptor inhibitors
have been considered as potential target, and IGF-I receptor
antagonist (A12) administration decreased lung fibrosis in
bleomycin-treated mice [41]. IGF-I receptor antagonist has
been identified as possible new therapeutic approaches in
kidney, lung, and cardiac fibrosis, but it has not yet been
investigated thoroughly in gingival fibrosis.

2.3. Platelet-Derived Growth Factor. PDGF comprises a fam-
ily of homo- or heterodimeric growth factors including
PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-
DD. There are 2 different PDGF receptors, 𝛼 and 𝛽 [42].
PDGF causes neutrophils, macrophages, fibroblasts, and
smooth muscle cells proliferation and migration [43, 44].
PDGF-B expression has been shown to occur early in gin-
gival wound healing [45] and is increased in cyclosporine
treatment [46].The PDGF-BB isoform is also known to cause
proliferation of periodontal fibroblasts and modulate their
production of extracellular matrix components [47]. It has
been demonstrated thatmany cell typeswithin the overgrown
gingival tissues express PDGF-A, PDGF-B, and both PDGF-
receptors and are in agreementwith the fact that PDGF is pro-
duced by a variety of cell types [48, 49]. Both phenytoin and
cyclosporine cause increased production of PDGF AB/BB by
macrophages in vitro [48, 50]. Furthermore, limited analysis
of both control and cyclosporine-induced overgrowth tissues
by immunohistochemistry and in situ hybridisation revealed
that PDGF-B expression was restricted to some of the CD51-
positive macrophages within the papillary lamina propria
[49, 51]. Taken together these findings support a role for
PDGF in the pathogenesis of gingival overgrowth. It has also
been shown that injection of anti-PDGF-B antibodies reduces
liver fibrosis [52], kidney fibrosis [53], and atrial fibrosis
[54]. Although there was no specific published data available
on gingival fibrosis, there is substantial evidence strongly
suggesting that PGDF may be a good target for antifibrotic
therapy in drug-induced gingival overgrowth.

2.4. Connective Tissue Growth Factor. CTGF or CCN2, is a 38
kDa secreted protein belonging to the CCN family of growth
factors [55, 56]. CCN2/CTGF has been shown to promote
the synthesis of various constituents of the extracellular
matrix [56, 57], and its overexpression is associated with
the onset and progression of fibrosis in human gingiva [58,
59]. CCN2 promotes cell adhesion and enhances adhesive
signaling in response to extracellular ligands. CCN2 is an
excellent surrogatemarker for activated fibroblasts in fibrosis;
for example, in the process of gingival overgrowth, connective

tissue growth factor (CTGF/CCN2) is significantly induced
in gingival fibroblasts [58]. Furthermore, CTGF/CCN2 is
expressed in gingival epithelial cells in vivo in fibrotic tissues
but not in normal tissues [59]. CTGF is rapidly and potently
induced by TGF-𝛽 1 in fibroblastic cells from a variety
of different tissues and contributes to the regulation of
extracellular matrix genes [60]. However, on its own, CCN2
is considered to only weakly promote fibrosis; rather, what
CCN2 appears to do is to create an environment favorable for
fibrogenic stimuli to act [61, 62]. Levels of connective tissue
growth factor (CTGF/CCN2) are highest in gingival tissues
from phenytoin-induced lesions, intermediate in nifedipine-
induced lesions, and nearly absent from cyclosporine-A-
induced overgrowth. CTGF/CCN2 levels correlate positively
with fibrosis, consistent with the role of CTGF/CCN2 in
promoting andmaintaining fibrosis [58]. CTGF expression is
related to the degree of fibrosis, as cyclosporine tissues show
little CTGF expression and were demonstrated to be highly
inflamed and not fibrotic.

Drugs targeting the action of CCN2, such as small
interfering RNAs or neutralizing antibodies, are currently
under development [63]. A CCN2 response element exists
in the COL1A2 promoter, and recently it has been shown
that blocking CCN2 action using an anti-CCN2 antibody or
small interfering RNA reduces aspects of bleomycin-induced
lung fibrosis [64]. Overall, strong in vivo evidence directly
supporting the notion of anti-CCN2 therapies in pathologies
of gingival over growth is lacking. However, it is possible
that CCN2 may be a key selective modulator in the gingival
overgrowth, operating downstream and in concert with
TGF-𝛽.

3. Mast Cell Proteases

Mast cells are derived from precursor cells in the bone
marrow and mature under the influence of the c-kit ligand,
stem cell factor with their final phenotype being dependent
on the microenvironment in which they reside. While mast
cells throughout the body are involved in the pathogenesis
of many diseases, the role of gingival mast cells in gingival
overgrowth has been understudied despite circumstantial
evidence indicating their potential involvement. In addition
to the storage of histamines and proteases such as tryptase
and chymase in their secretory granules, gingival mast cells
also produce a wide variety of cytokines, growth factors,
and other biologically active mediators that are capable
of mediating tissue remodeling. Several in vitro studies
have pointed out the potential role of mast cells inducing
gingival fibroblast proliferation and collagen synthesis [65].
A recently published study demonstrated that mast cell
tryptase and chymase enzymes were expressed significantly
higher in DIGO tissues compared to healthy gingiva and
may contribute to alterations in basement membranes [66].
In addition, tryptase can interact with a number of cell
types and has been shown to be mitogenic for fibroblasts
[67] and epithelial cells [68]. The immunohistochemical
expression of mast cell tryptase in inflammatory fibrous
gingival hyperplasia demonstrated the involvement of mast
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cells in the induction of fibrosis by observing increased mast
cell degranulation in fibrous tissues [69]. Mast cell chymase-
positive gingival overgrowth patients showed significantly
increased fibrotic lesions in the gingival tissues compared
with chymase-negative patients [70].

Ang II, which is generated through angiotensin-
converting enzyme (ACE), stimulates growth of the gingival
tissue. However, an alternative generation pathway, chymase,
also exists in the gingiva, and chymase has a higher specificity
for the conversion of Ang I to Ang II. In addition, mast cells
store latent transforming-growth-factor-(TGF-) 𝛽 in an
intracellular granule and secrete TGF-𝛽, which is activated
by chymase [71]. Locally synthesized chymase seems to
promote gingival remodeling via the formation of Ang II
and proliferative properties. Moreover, mast cells are likely
to contribute indirectly to the formation of ET-1 by releasing
chymase, which can generate ET-1, by cleavage of big ET-1
[72]. ET-1 is a powerful vasoconstrictor with mitogenic
activity on gingival fibroblasts and facilitates gingival fibrosis
[73]. Thus, the role of mast cells in the generation of fibrosis
involves the direct effect of mast cell-derived ET-1 and Ang
II, the exacerbation of preexisting inflammatory mediators,
and the release of mast cell enzymes, such as tryptase and
chymase.

The chymase and tryptase inhibitors have been con-
sidered as potential antifibrotic compounds although these
inhibitors have not yet been thoroughly investigated in
drug-induced gingival overgrowth. In skin mast cells, the
selective inhibitor of chymase ZIGPFM inhibited histamine
release and proliferation; moreover, with chymostatin, which
is also a potent inhibitor of chymase, inhibition of 70 or
80% of mast cell mediators was achieved [74]. It has been
demonstrated that in cardiac fibrosis the chronic chymase
inhibition prevented cardiac remodeling and fibrosis [75, 76].
The similar degree of inhibition was observed with tryptase
inhibitor APC366 and with certain other inhibitors of tryptic
proteinases [77]. These results suggest that inhibitors of
chymase and tryptase can be potent stabilizers of humanmast
cells and particularly those in relation to overgrown gingival
tissues. It is possible that the development of potent and
selective chymase/tryptase inhibitors will lead to useful new
drugs for the treatment of mast cell-mediated drug-induced
gingival overgrowth.

4. Angiotensin II

Elevated intragingival Ang II production is found in
drug-induced gingival overgrowth [78]. Angiotensin is an
oligopeptide that causes vasoconstriction and increased
blood pressure. Although numerous factors have been impli-
cated in the pathogenesis of drug-induced gingival over-
growth, several lines of evidence strongly suggest the involve-
ment of Ang II in the development of DIGO [78] (Figure 2).
Ohuchi et al. [72] have reported that Ang II generated by
gingival fibroblasts in response to phenytoin and nifedipine
may contribute to the development of drug-induced gingival
overgrowth. Recent studies indicate that Ang II and TGF-
𝛽 1 do not act independently from one another but act

as part of an integrated signaling network that promotes
cardiac remodeling and possibly fibrosis. Ang II upregulates
TGF-𝛽 1 expression through the angiotensin type 1 (AT1)
receptor in gingival fibroblasts [79]. In an important study,
it was shown that Ang II was not able to induce fibrosis
in vivo in the absence of TGF-𝛽 [80]. Providing further
support for this notion, Ang II induces collagen in gingival
fibroblasts through TGF-𝛽 and ERK [81, 82]. Ang II and
TGF-𝛽 1 appear to act in an autocrine loop, as TGF-𝛽
1 can directly stimulate AT1 receptor expression through
ALK5 and Smads 2/3/4, providing a further indication of
crosstalk between the TGF-𝛽 and angiotensin pathways [83].
These results indicate that Ang II and TGF-𝛽 pathways
are likely to cooperate to drive fibrogenic responses in
vivo. Drugs that inhibit the angiotensin pathway, namely,
angiotensin-converting enzyme inhibitors and angiotensin
receptor antagonists, are widely used to treat various fibroses.
Angiotensin receptor inhibitors such as losartan appear to be
effective in reducing gingival fibrosis [78]. Hilgers and Mann
[84] demonstrated that treatment with an ACE inhibitor or
AT1 receptor antagonist abrogates drug-induced hypertro-
phy. Further clinical studies showed that treatment with ACE
inhibitor or AT1 receptor antagonist reduced fibrogenesis
in CsA-treated patients after renal transplantation [85, 86].
Thus, compared to generally antagonizing TGF-𝛽 signaling,
angiotensin-converting enzyme inhibitors and angiotensin
receptor antagonists may be useful approaches to control
gingival overgrowth.

5. Endothelin-1

Endothelin is a protein secreted from endothelial cells, and it
is a powerful vasoconstrictor with mitogenic or comitogenic
properties, which acts through the stimulation of 2 subtypes
of receptors (ETA and ETB) [87, 88]. ET-1 is first produced
in the form of a 212-aa precursor (prepro-ET-1) and then
cleaved twice to form a biologically active 21-aa peptide, the
last cleavagemediated by ET-converting enzyme [88]. Studies
have shown the expression of ET-1 in inflamed gingival tissues
and threefold increase in drug-induced gingival overgrowth
tissues [72] Teder and Noble, [88] also found that ET-1
was localized in inflamed gingival epithelial cells. Similar
results found that ET-1 was increased in cardiac, renal, and
gingival fibrosis [89–91]. The increased ET-1 can modulate
the synthesis of TGF-𝛽 and TNF-𝛼, which are important
in mediating fibroses. Our previous study demonstrated the
augmented expression of TNF-𝛼 in drug-induced gingival
overgrowth tissues compared to healthy gingival tissues [92].
ET-1 is also profibrotic by stimulating fibroblast replication,
migration, and contraction, increasing fibronectin, collagen
synthesis, and decreasing collagen degradation [93–96]. All
of these processes have been proposed for the pathogenesis of
DIGO (Figure 3). Ohuchi et al. [72] showed that phenytoin-
and nifedipine-induced gingival fibroblasts proliferation was
mediated through the induction of Ang II and ET-1 and
probably mediated through Ang II receptor-1 and ETA
in gingival fibroblasts. Some studies have suggested that
TGF-𝛽 works together with ET-1 to promote myofibroblast
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Figure 2: Potential role of angiotensin II and its receptors expressed
by fibroblast in gingival fibrosis. Ang II: angiotensin II; AT:
angiotensin receptor; ACE: angiotensin-converting enzyme; ECM:
extracellular matrix.

differentiation [97]. TGF-𝛽 induces ET-1 via JNK, and ET-
1 is a downstream mediator of the fibrogenic responses of
TGF-𝛽 in normal fibroblasts [97]. Intriguingly, Ang II also
induces ET-1 via ERK and reactive oxygen species [98].
These results suggest that ET operates downstream of the
TGF-𝛽/Ang II system to drive fibroblast activation and
fibrosis.

ET receptor antagonismmight be considered as an appro-
priate therapy for the fibrosis. Recent data demonstrate the
fundamental role of endothelin in the pathogenesis of fibrosis
and the antifibrotic potential of dual endothelin receptor
antagonists such as bosentan [87]. It is an orally active,
dual endothelin receptor antagonist, which competitively
antagonizes the binding of endothelin to both endothelin
receptors ETA and ETB, and prevents endothelin-induced
fibroblast proliferation and extracellular matrix deposition
and contraction, and reduces fibrosis [87]. Bosentan has
already been approved by the Food andDrug Administration
for the treatment of pulmonary arterial hypertension [99,
100]. Furthermore, macitentan is an orally active, nonpeptide
dual endothelin ETA and ETB receptor antagonists for the
potential treatment of idiopathic pulmonary fibrosis and
pulmonary arterial hypertension [101]. Since it has the ability
to target the tissues and to block both ETA andETB receptors,
macitentan is emerging as a new agent to treat cardiovascular
disorders associated with chronic tissue ET system activation
[101]. It is interesting to note that dual-acting angiotensin II
and ET receptor blockers have been shown to reduce systemic
blood pressure in animalmodels and in hypertensive patients
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Figure 3: Potential role of endothelin-1 and its receptors expressed
by fibroblast in gingival fibrosis. ET-1: endothelin-1; ETA: endothelin
receptor A; ETB: endothelin receptor B; ECM: extracellular matrix.

[102, 103]. Preliminary data in smaller human studies have
shown that these agents are safe and well tolerated [102,
103]. Thus combination ET/Ang II therapies have promise in
controlling gingival overgrowth.

6. Conclusion

Drugs that modulate TGF-𝛽, PDGF, CTGF, IGF, mast cell
chymase/tryptase, Ang II, and ET-1 are being considered
for protective gingival overgrowth effects and can ameliorate
fibrosis. Even though these proteins are likely to cooperate
in driving tissue remodeling and fibrogenic responses in
fibroblasts, each protein also has certain unique features,
providing a rationale that therapies targeting individual
moleculesmight be useful. Current strategies in clinical prac-
tice combine treatments with these inhibitors and receptor
blockers, due to their potential additive beneficial effects.The
data presented here highlight potential interesting candidates
for antifibrotic treatments. Future studies are necessary to
evaluate their potential beneficial effects fully in gingival
overgrowth.
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“The effect of ACE inhibitor and angiotensin II receptor
antagonist therapy on serum uric acid levels and potassium
homeostasis in hypertensive renal transplant recipients treated
with CsA,” Nephrology Dialysis Transplantation, vol. 16, no. 5,
pp. 1034–1037, 2001.
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