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Abstract

Methods for single marker association analysis are presented for binary and quantitative traits. For
a binary trait, we focus on the analysis of retrospective case—control data using Pearson's chi-
squared test, the trend test, and a robust test. For a continuous trait, typical methods are based on a
linear regression model or the analysis of variance. We illustrate how these tests can be applied
using a public available R package “Rassoc” and some existing R functions. Guidelines for
choosing these test statistics are provided.
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1. Introduction

Statistical procedures for testing whether there is an association between a phenotype and a
single nucleotide polymorphism (SNP) are described and illustrated. Usually, the phenotype
of interest is either a binary or quantitative one. For a binary trait, we focus on a
retrospective case—control study, in which cases and controls are randomly drawn from case
and control populations, respectively. For a continuous trait, the data are obtained from a
random sample of the general population. Although a large number of SNPs is available for
testing association, single marker analysis is often employed. The significance level to test a
single hypothesis is 0.05. When multiple SNPs are tested, the Bonferroni correction can be
applied.

Denote the genotypes of an SNP as Gy, G4, and Gy. For case—control data, denote the
penetrances as fp, f1, and f, with respect to the three genotypes, respectively. Under the null
hypothesis Hg, we have fg = f; = f, = Pr(case). A genetic model is recessive if f; = fy,
additive if f; = (fg + f2)/2, or dominant if f; = f5. For a single SNP, the observed case—control
data consist of genotype counts (rg, r1, r2) among r cases and (S, S1, ) among s controls.
Denote nj=rj+5 (j =0, 1,2) and n=r + s. The Cochran-Armitage trend test (referred to as
the trend test) is one of the two most commonly used statistics for the analysis of case—
control data. It can be written as (1, 2)
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where (Xg, X1, X2) = (0, X, 1), X is determined by the genetic model and ¢ = r/n. Under Hy,
given x, Tq(x) asymptotically follows a standard normal distribution N(0,1). When the
genetic model is recessive and the risk allele is known, T1(0) is used. When the genetic
model is dominant and the risk allele is known, T1(1) is used. When we only know that the
genetic model is recessive (or dominant) but not the risk allele, T1(0) (or T1(1)) cannot be
used alone. When the genetic model is additive regardless of the risk allele, T1(1/2) is used.
Pearson's chi-squared test (referred to as Pearson's test) is another commonly used test. It
can be written as

Under Hy, T, asymptotically follows a chi-squared distribution with two degrees of freedom
(df), denoted as 2. The robust test, MAX3, is given by

MAX3=max (|71 (0) |, |71 (1/2) |, T2 (1) |) ,

where T1(0), T1(1/2), and T1(1) are the trend tests given by Eq. 1 with different x values.
Under Hy, the asymptotic distribution of MAX3 is far more complex than those of T1(x) and
T,. A procedure for determining its asymptotic null distribution and P-value is discussed in
Note 2. For other robust tests, see Note 3.

The power of each statistical test depends on the underlying genetic model. It will be seen
that MAX3 is more robust than any single trend test or Pearson's chi-squared test when the
genetic model is unknown, thus, it should be used in practice. Since MAX3 does not follow
any chi-squared distribution, we discuss how to find its P-value using the R package Rassoc
(3). This package is available from the Comprehensive R Archive Network at “http://
CRAN.R-project.org/package=Rassoc.”

For a continuous trait Y, a typical model is Y=£+9+ € where s is a fixed overall mean of
the trait under Hg, g is the random genetic effect due to G, and € is a random error. The
genetic value of g is —awhen G = Gy, d when G = G, and awhen G = Gy,. Under Hg, we
have a=d = 0. A genetic model is recessive, additive, or dominantifd=a,d=0, ord = a,
respectively. The observed data consist of pairs (Y;;, G;)fori=1,...,nmandj=0,1,2,
where Y;; is the trait value of the ith individual with genotype Gj. Denote n=ng + ny + n,.

For the analysis of a quantitative trait, linear regression and the analysis of variance
(ANOVA) are routinely used. Let (X, X1, X2) = (0, X, 1) be the values for the genotypes (Gg,
Gy, Gy), where x =0, 1/2, or 1 for the recessive, additive, or dominant models, respectively.

Using the data (Y;;, G;) ,i=1,...,njand j =0, 1, 2, the F-test derived from a linear

regression model is given by
(n—2) {%:%: (xj— E) (Yij— Y>2}
oL
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where © :ijonjxj/ "and Y :ijo iilYij/ " Given x, F(x) has an asymptotic F-
distribution with (1,n - 2) df under Hy.

F(z)=
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2The asymptotic null distribution and P-value of MAX3.
Three approaches to compute the P-value of MAXS are presented in ref. 3. Let pxy be the asymptotic null correlation of T1(x) and
Ta(y), where x,y =0, 1/2, 1, and let pj be the population frequency of genotype Gj (j = 0, 1, 2). Then

(zyp1+p2) — (zp1+p2) (YP1+D2)
{(r2p1+pz) - (rp1+pz)2}1/2{(y2p1+pz) - (yp1+p2)2}

Pxy=— 172"

Denote 0= (Po% - /301,0%1> / (1 - P%l) and ¥1= (P%1 - POlPo%) / (1 - P(Z)l). In the following, pxy, @p, and 1 are
estimated under Hg by replacing pj with pi= niin (i =1.2).

The asymptotic distribution of MAX3 under Hg is far more complex than those of the trend test and Pearson's test. An expression for
the asymptotic null distribution of MAX3, P(t) = Pr(MAX3 < 1), is given by
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where ¢ and @ are the density and distribution functions of N (0,1) (3). Using Eq. 4, the asymptotic P-value of MAX3 is given by 1 —
P(max3), where max3 is the observed MAX3. This approach is denoted as “asy” in the second R function in Rassoc.

Alternatively, simulations can be used to approximate the null distribution of MAX3. Given the observed data (rg, r1, r2) and (sg, s1,
), in the jth simulation (j = 1,. . ., m), we generate (roj, r1j, r2j) from the multinomial distribution Mul(r; pg, p1, p2) and (0j, Sij,
spj) from the same distribution except that r is replaced by s, where pj =nj/n(i=0,1,2). For each j, we compute MAX3 denoted as
MAX3j. Then MAX31, . . ., MAX3m form an empirical null distribution of MAX3 when mis large enough. For single marker
analysis, we use m= 100,000 to determine the null distribution. A larger m may be used, if the P-value of MAX3 is smaller than 107°.
This parametric bootstrap procedure is denoted as “boot” in the second R function in Rassoc.

A more efficient simulation approach, denoted as “bvn” in the second R function in Rassoc, is to directly generate T1(0) and T1(1) in
the jth simulation from a bivariate normal distribution with zero means and unit variances with correlation pg1. Then compute T1(1/2)
= @0T1(0) + w1 T1(1) and MAX3 denoted as MAX3j. Hence, MAX31,. . ., MAX3m form an empirical null distribution of MAX3.
We recommend using the method “asy” to compute the P-value of MAX3, especially for small P-values, which require a large
number of replicates m. For example, in the illustration in Subheading 2.2, to obtain an accurate estimate of a P-value as small as 1e—
8, we need at least 10 million replicates, which is computationally intensive. Using a smaller m, say, m= 100,000 the estimated P-
value would be 0, which may be reported as “0” or as “ < 2.2e-16" by R. In the following example, we used the “boot” procedure with
100,000 replicates. The output shows the P-value is less than 2.2 x 1016,

ofta

> MAX3(a, “boot”, 100000);

The MAX3 test using the asy method
data: a

statistic = 5.7587 p-value = <2.2e-16

One can also use an approximation of the tail probability of MAX3 to approximate the P-value of MAX3 (8), which has a closed
form. This approximate P-value, however, is not reported by the R package Rassoc.

30ther Robust Tests for Binary Traits.

Nearly all robust methods have been developed for case-control studies. In addition to MAX3 (2), other robust tests are also
developed for case—control association studies. A review of different robust tests for association studies can be found in ref. 9, 10.
Although different robust tests have been developed, they have similar performance under the alternative hypothesis. In ref. 9, a
function “casecontrol” in R is provided, which also outputs the three trend tests: Pearson's test, MAX3, and other robust tests. The P-
values of the trend tests and Pearson's test are based on the asymptotic distributions, while the P-value for MAX3 is based on the
bootstrap simulation. Discussion of applying single-marker analysis with robust tests in genome-wide association studies can be found
inref. 11.

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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which under Hy, has an asymptotic F-distribution with (2,n — 3) df. We illustrate how to use
these F-tests using some existing R functions later.

The allele-based analysis, valid under Hardy—Weinberg equilibrium (HWE), has similar
performance to the genotype-based analysis under the additive model. Therefore, we focus
on the genotype-based analysis, which does not require HWE. In Note 4, we present some
power comparisons of different F-tests for quantitative traits.

2. Methods

2.1. Analysis of Case—Control Data

Denote the genotypes as (Gg, G1, Go) = (AA, AB, BB). If we happen to know the risk allele,
it is always denoted as B. The choice of test statistic depends on which of the following four
situations holds: (1) the genetic model and the risk allele are known, (2) the genetic model is
known but not the risk allele, (3) the risk allele is known but not the genetic model, and (4)
neither the genetic model nor the risk allele is known. Common genetic models include
recessive, additive, and dominant. It is important that one does not determine the genetic
model and/or the risk allele from the same data that will be used in the subsequent
association analysis. Of course, the genetic model and/or the risk allele may be known based
on scientific knowledge or information from previous data. In our view, (3) and (4) are the
most common situations in practice.

2.1.1. Which Test to Use?—Which test to choose depends on each of the four situations

outlined above (see Note 1). Let y3 (1 — «) be the upper 100(1 — a)th percentile of y2 and
Z(1 — a) be the upper 100(1 — «)th percentile of N(0,1).

1. The genetic model and the risk allele are known. T1(X) is optimal and should be
used. Since the risk allele is known, a one-sided Hj is used and z(0.95) = 1.645. For
the recessive (additive, or dominant) model, reject Hg if T1(0) > 2(0.95) (T1(1/2) >
7(0.95), or T1(1) > z(0.95)). In each case, the P-value equals the probability of Z >
T1(X), where Z ~ N(0,1).

2. The genetic model is known but not the risk allele. When the model is additive, use
T1(1/2) and reject Hq if [T1(1/2)| > 2 (0.975) = 1.96. The P-value equals two times

4Comparison of F-Tests for Quantitative Traits.
We conducted a simulation to compare F(x) (x = 0,1/2,1) and F by choosing the frequency of allele B (denoted as p), the sample size
n, the heritability h, and the unit variance for the random error. Given a genetic model x and the values of p and h, we computed a and
d. The empirical power is reported in Table 2. F(x) is most powerful when x is correctly specified. However, when x is misspecified,
F(1/2) is most robust among the three F(X) statistics. On the other hand, F is slightly less powerful than F(1/2) under the additive or
dominant models, but it protects against substantial power loss under the recessive model.

Choosing among the trend tests, Pearson's test, and MAX3.
In practice, neither the genetic model nor the risk allele is known. The trend test T1(1/2) and Pearson's test T2 are not robust when
they are used alone. A robust test should protect against substantial loss of power when the model is misspecified (5, 6). To examine
which test is most robust across the three genetic models, we conducted a simulation choosing the genotype relative risk (GRR), given
by fo/fg, for a given x so that the optimal trend test for that x had about 80% power. The results are reported in Table 1. The power of
the optimal test given a genetic model is in bold. The minimum power of each test across the three genetic models is presented. In the
table, p = Pr(B). The test with higher minimum power for any of the three possible underlying genetic models is the most robust test.
The results show that the power of T1(1/2) ranges from 30 to 80% for p = 0.1, 50 to 80% for p = 0.3, and 60 to 80% for p = 0.45.
However, MAX3 is most robust as the power of MAX3 always exceeds 70% regardless of the underlying genetic model or the allele
frequency p. The minimum power of T2 across the three genetic models exceeds 70%, although it has slightly lower power than
MAXS3 in the simulation studies. More extensive simulations and results can be found in ref. 7.

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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the probability of Z > |T1(1/2)|. When the model is recessive or dominant, use
MAX3 (see (3) next).

3. The genetic model is unknown (regardless of the risk allele). Use MAX3. Three
approaches are available to calculate the P-value of MAX3 using the R package
Rassoc. But we recommend using the one based on the asymptotic null distribution
of MAX3.

4. The same as (3). Thus, we only discuss (3) in the following.

Note that we do not recommend T,, because it is always less powerful than MAX3 (see Note
1). If T, is used, reject H if 7,>x3 (0.95) =5.9915. The P-value equals the probability of T
> Ty, where T ~ y2.

2.1.2. Examples Using R—The R package Rassoc can be loaded from

> library(Rassoc);

There are two functions CATT (data,x) and M AX3(data, method,m) in the package for
computing the trend tests and MAX3 and their P-values. Pearson's test and its P-value can
be obtained using an existing R function. In both functions, the “data” comprisesa 2 x 3
contingency table, i.e., genotype counts (rq, r1, ro) for cases and (sp, &1, Sp) for controls. In
the first function, “x” is 0, 0.5, or 1 for the recessive, additive, or dominant models,
respectively. In the second function, the “method” refers to the procedure to calculate the P-
value of MAX3. Three methods are available: “boot” for the bootstrap procedure, “bvn” for
the bivariate normal procedure, or “asy” for the asymptotic procedure.

The first two procedures are simulation-based and the last one is based on the asymptotic
distribution of MAX3 (see Note 2). The “m” in the second function refers to the number of
replicates when “boot” or “bvn” is used. When “asy” is used, “m” can be any positive
integer.

For illustration, we use a SNP (rs420259) reported by the WTCCC (4), which was the only
SNP showing strong association with bipolar disorder in a genome-wide association study
(GWAS) with 500,000 SNPs (the actual number of SNPs tested after quality control steps is
less than 500,000). The genome-wide significance level used by (4) was 5 x 10~/ for strong
association. The genotype counts are (rg, 1, o) = (83, 755, 1020) and (s, S1, S) = (260,
1134, 1537). The data can be entered as follows.

c(83,755,1020);
s = ¢(260,1134,1537);
> a = matrix(rbind(r,s), nrow = 2, byrow = FALSE);

To check that the data are correctly entered, just type a.

> a;
83 755 1020
260 1134 1537

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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We may not have sufficient scientific knowledge to claim a priori which allele (A or B) is
the risk one and what the true genetic model is. For illustration purpose, let us say we know
a priori the true model is dominant and that B is the risk allele. The analysis is carried out
based on the three situations outlined before.

1. If we know the genetic model is dominant and the risk allele is B, apply T1(1) using
the R function CATT as follows.

> CATT(a,1);

The Cochran-Armitage trend test

data: a

statistic = 5.7587 p-valve = 8.478e-09

The output shows that |T;(1)| = 5.7587 and its P-value is 8.478 x 107°. This is a two-sided
test. We use a one-sided test because the risk allele is known. Thus, the actual P-value is
half of the reported one, that is, 4.239 x 102, which is less than the significance level 5 x
10~7. Hence we reject H.

2 If we know the genetic model is dominant but not the risk allele, use MAX3 not
T1(1). Suppose we happen to enter the data as b and apply Ty(1) as before.

> r = ¢(1020,755,82);

> s = ¢(1537,1134,260);

> b = matrix(rbind(r,s), nrow = 2, byrow = FALSE);
> CATT(b,1);

The Cochran-Armitage trend test

data: b

statistic = 1.6618 p-valve = 0.09656

The two-sided P-value is 0.09656, which is not significant. This example shows that
knowing the risk allele is necessary for using T1(0) or T1(1). The use of MAX3 is illustrated
in (3) later. We first show how to use the following R function to obtain Pearson's test T, =
33.165 and its P-value 6.285 x 1078, This P-value is also significant but larger than that of
T1(2) in case (1), because Tq(1) is optimal for the dominant model. If we apply T, to the
dataset b, we would obtain the same results.

> chisg.test(a);

Pearson®s Chi-squared test

data: a

X-squared = 33.165, df = 2, p-value = 6.285e-08

3 If we do not know the genetic model, we apply MAX3 and calculate its P-value
using the “asy” procedure. The reported statistic is MAX3 = 5.7587 with P-
value 2.347 x 1078, Thus, we reject Hy. Note that this P-value is smaller than
that of T, but larger than that of T1(1) in case (1).

> MAX3(a, “asy”, 1);
The MAX3 test using the asy method

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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data: a
statistic = 5.7587 p-value = 2.347e-08

If x=10.5is used in T1(X) regardless of the true genetic model and the risk allele, the
following results show that the P-value of T;(1/2) is not significant.

> CATT(a,0.5);

The Cochran-Armitage trend test

data: a

statistic = 3.6966 p-value = 0.0002185

2.2. Quantitative Trait

2.2.1. Which Test to Use?—For a continuous trait, the four situations outlined before
also apply. Let F, (1 — @) be the upper 100(1 — a)th percentile of an F-distribution with
(u,v) df.

1. When the genetic model and the risk allele are known, the statistic F(X) given in
Eq. 2 is used. Since the risk allele is known, a one-sided Hy is used. For the
recessive (additive, dominant) model, reject Hy if F(0) > F1 ,_2(0.95) (F(1/2) >
F1n-2(0.95), F(1) > F1 - 2(0.95)), where F(0) (F(1/2), F(1)) is the observed
statistic. In each case, the P-value equals half of the probability of f ,_» > F(X),
where f; ,, _, follows an F-distribution with (1,n - 2) df.

2. The genetic model is known but not the risk allele. When the genetic model is
additive, F(x) given in Eq. 2 is used (with x = 1/2). Reject Hy if F(1/2) >
F1 n-2(0.95), where F(1/2) is the observed statistic. The P-value equals the
probability of f ,_ > > F(1/2). When the genetic model is not additive (either
recessive or dominant), F given in Eq. 3 is used. Reject Hg if F > F, ,,_ 3(0.95),
where F is also the observed statistic.

The P-value equals the probability of f, ,_ 3 > F, where f; ,, _ 3 follows an F-distribution
with (2,n - 3) df.

3 When the genetic model is unknown, F given in Eq. 3 is used. The rejection rule
and P-value are similar to those in case (2) when F is used.

4 The same as (3). Thus, we focus on (3) only.

2.2.2. Examples Using R—For illustration, we simulated a dataset called “QTLex.txt,”

which contains (Y, G) for n = 100 individuals. In the simulation, the true model was
dominant and the risk allele was B with population frequency 0.3. HWE was assumed in the
population. The heritability was set to 0.1. The trait Y was simulated from a normal
distribution using the model given in Subheading 1 where ;. =0, E(€) = 0, and Var(&) = 1.
The genotype G is AA, AB, or BB. The data can be read as follows.

> c = read.table(*QTLex.txt”,header=T)

If we know the true genetic model (dominant) and the risk allele a priori, we use F(x) given
in Eq. 2 with x =1 as follows.

> objFl=aov(Y ~ (as.integer(G)==1),data=c);

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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> summary(objF1);

DFf Sum Sqg Mean Sq F value Pr($>$F)

as.integer(G) == 1 1 30.230 30.2295 31.317 1.993e-07 ***
Residuals DFf 98 94.599 0.9653

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The function “as.integer(G)” assigns 1 for AA, 2 for AB, and 3 for BB. Thus, “objF1 = aov(Y
~ (as.integer(G)==1),data = c)” conducts the ANOVA comparing the mean trait values
between the two genotype groups: AA and AB + BB. In the first line of the output, “F value”
is the statistic F(1) and “Pr(>F)” is the P-value. These values are reported in the second line.
In this example, F(1) = 31.317 and the P-value is 1.993 x 10~. The strength of association
is indicated by “***” near the P-value, and the interpretation of this significance code is
given in the last line of the output. Since the risk allele is known, a one-sided test should be
used. Thus, the actual P-value is half of that reported one, i.e., 9.965 x 10-8. This P-value is
very significant compared to the 0.05 significance level.

If we did not know the genetic model, the statistic F given in Eg. 3 should be used. See the
following output. In this case, we would not assign scores (1, 2, 3) to the three genotypes.
The output given below shows F = 15.575 with P-value 1.361 x 108, which is also
significant, but larger than the P-value obtained from F(1), which is the most powerful test
when the true model is dominant.

> objF=aov(Y ~ G,data=c);

> summary(objF);

Df Sum Sq Mean Sq F value Pr(>GF)

G 2 30.343 15.1715 15.575 1.361e-06 ***

Residuals 97 94.485 0.9741

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For illustration, we also calculate F(1/2) and F(0) and their P-values. F(1/2) can be obtained
by

> objF05=aov(Y~ (as.integer(G),data=c);
> summary(objF05) ;

In this case, “as.integer(G)” is equivalent to using scores 1, 2, 3 for the three genotypes
(under the additive model). The reported P-value is 1.011 x 10-8, which is the P-value if we
do not know the risk allele. If we know the risk allele, the P-value is 1.011 x 1076/2 = 5.055
x 10~. Both one-sided and two-sided P-values are significant. Interestingly, if we apply
F(1/2) even when the risk allele is unknown, the two-sided P-value (1.011 x 1075) is smaller
than that of F. The test F(0), which is optimal for arecessive model, is obtained as follows.

> objFO=aov(Y ~ (as.integer(G)==3),data=c);
> summary(objF0);

In this case, the ANOVA is applied with two genotype groups: AA + AB and BB. The
reported P-value is 0.1398. If we know the risk allele, the P-value is 0.1398/2 = 0.0699,
which is not significant at the 0.05 level. This illustrates loss of power can occur if the test
used is not appropriate for the underlying genetic model.

Methods Mol Biol. Author manuscript; available in PMC 2013 May 13.
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