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Abstract
In this paper we present a new algorithm for 3D medical image segmentation. The algorithm is
versatile, fast, relatively simple to implement, and semi-automatic. It is based on minimizing a
global energy defined from a learned non-parametric estimation of the statistics of the region to be
segmented. Implementation details are discussed and source code is freely available as part of the
3D Slicer project. In addition, a new unified set of validation metrics is proposed. Results on
artificial and real MRI images show that the algorithm performs well on large brain structures both
in terms of accuracy and robustness to noise.
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1. Introduction
The problem of segmentation, that is finding regions in an image that are homogeneous in a
certain sense, is central to the field of computer vision. Medical applications, visualization
and quantification methods for computer-aided diagnosis or therapy planning from various
modalities typically involve the segmentation of anatomical structures as a preliminary step.

We consider the problem of finding the boundaries of only one anatomical region with
limited user interaction. Interactivity is desirable since the user is given the opportunity to
make use of important implicit external knowledge to guide the algorithm toward a result
that makes sense for her task. The segmentation process can be repeated in order to identify
as many regions as necessary.

Many different approaches have been proposed to address the segmentation problem which
can be dually considered as finding regions or finding boundaries (see (Morel and Solimini,
1994), and references therein). Focusing only on the boundaries is computationally less
complex but also less robust since information inside the region is discarded. This is the
approach of the snakes and active contours variational methods (Kass et al., 1988;
McInerney and Terzopoulos, 1996; Caselles et al., 1995).

While the original region-growing algorithm (Gonzalez and Woods, 2001) formalism is
somewhat crude, interesting extensions have been proposed by Adams and Bischof (1994)
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where some statistical information is derived from the region as it expands. These
techniques have been applied to medical image analysis (Justice et al., 1997; Pohle and
Toennies, 2001). The relation between region-growing and active contours has been studied
by Zhu and Yuille (1996) and more recently active contours have been extended by Chan
and Vese (2001) and Paragios and Deriche (2002) to an elegant active regions formalism
where regions boundaries are deformed according to an evolution equation derived to
minimize an energy based on statistics on the regions.

This paper gives full details of our previously published conference results (Pichon et al.,
2003). We briefly present a new variational method for region based segmentation based on
non-parametric statistics (Section 2) and discuss how this algorithm has been implemented
in the open-source software 3D Slicer (Section 3). We propose a novel validation framework
(Section 4) and use it to analyze the performance of the proposed algorithm both on
simulated and manually segmented images (Section 5). Appendices A and B give full
mathematical details on the fundamental flow and the non-parametric estimation of image
statistics.

We believe that the validation metrics outlined here should prove valuable for a number of
segmentation problems in medical and other types of imagery.

2. Method
In this section we briefly present a very general flow for image segmentation. This technique
is based purely on the statistics of the image. In particular it does not necessitate external
information (such as an atlas) nor makes extra anatomy or modality-based assumptions. This
method is therefore extremely versatile and we will show in Section 5 that it can compete
with more specialized approaches.

Given an image I and a region R, we can write, using Bayes’ rule,

Assuming uniform priors P(x ∈ R) and P(I(x), ||∇I(x)||) the likelihood P(I(x), ||∇I(x)|||x ∈ R)
and the posterior distributions P(x ∈ R|I(x), ||∇I(x)||) are proportional. We use the notation
PR(I(x), ||∇I(x)||) for either the likelihood or the posterior. This can be justified by the facts
that:

• we do not know P(x ∈ R).

• using P(I(x), ||∇I(x)||) would introduce undesired global information. The existence
in the dataset of another unrelated region with statistics similar to region R should
not have any influence.1

We accordingly define the energy functional

(1)

Here, E(I, R) is the volume of the region R where each voxel is weighted by the probability
PR(I(x), ||∇I(x)||) of the intensity and the norm of the gradient of I at this voxel. Likely

1That would be acceptable in the ideal case of a bimodal image. Most medical datasets are composed of more than two classes.
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voxels therefore contribute more to E(I, R) than unlikely voxels and the energy of a region R
will be high if and only if its voxels have consistent values in terms of intensity and norm of
the gradient.

We can deform an initial region R0 at t = 0 into a region R(t) to maximize E(I, R). We show
in Appendix A that the gradient ascent flow is

(2)

where S(t) = ∂R(t) the boundary of R at time t and N is the unit outward normal.

As the region is deformed, PR is estimated in a non-parametric fashion as detailed in
Appendix B.

3. Implementation
We implemented our method as a module of the open-source software 3D Slicer. It is freely
available at http://www.slicer.org. Thanks to the properties of our flow, we were able to use
a very efficient method for evolving the surface. Segmenting a large structure typically2

takes less than 1 min.

The flow (2) is unidirectional (the surface can only expand since pR ≥ 0) any voxel x is
eventually reached at a time T (x). Knowing T is equivalent to knowing R or S since by
definition

(3)

Solving the flow (2) for S(t) is equivalent to solving for T (x) the Eikonal equation

(4)

This can be done very efficiently using the Fast Marching method (Tsitsiklis, 1995; Sethian,
1999). Starting from known seed points which define the initial surface, the algorithm
marches outward by considering neighboring voxels and iteratively computing arrival times
T in increasing order. The seed points are set by the user inside the structure to be
segmented. By construction, when computing T (x), the surface contains the voxel x as well
as all voxels for which T has already been computed. The algorithm terminates when T is
known for all points. Then using (3) we can determine S(t) for any t and let the user
determine what time t0 of the evolution corresponds best to the region she wants.

Note that our method is, in its implementation, reminiscent of region growing. The min-heap
data structure which makes Fast Marching efficient is the direct equivalent of the
sequentially sorted list in the seeded region growing algorithm (Adams and Bischof, 1994).
In fact our algorithm could be made a direct non-parametric extension of seeded region
growing simply by artificially forcing arrival times to zero for all points inside the surface S.
Relations between region growing and variational schemes have been previously exposed by
Zhu and Yuille (1996).

23 GHz processor, 1 GB memory.
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4. Validation framework
Objective and quantitative analysis of performance is absolutely crucial (but often
overlooked) when proposing a segmentation algorithm. Since designing a segmentation
method is challenging (lack of unifying formalism, high diversity in the applications,
subjectivity, implicitness, etc.) it does not come as a surprise that the validation of such an
algorithm is also challenging. Different methods have been studied (see (Zhang, 1996), and
references therein). We propose a unifying framework for discrepancy measures based on
the number and the position of mis-segmented voxels and show how it relates to classical
measures. We then apply it to the validation of segmentation of realistic synthetic images
(for which the “ground truth”, i.e. perfect segmentation is known) at different levels of noise
for accuracy and robustness assessment as well as to manual expert segmentation of real
datasets.

4.1. Classical discrepancy measures
Different measures have been proposed to assess the resemblance between a proposed
segmentation S and the corresponding ground truth G. The Dice Similarity Coefficient has
been widely used and it can be derived as an approximation of the kappa statistic (a chance-
corrected measure of agreement, see (Zijdenbos et al., 1994)). It is defined as

where VX is the volume (number of voxels) of set X.

One disadvantage of this coefficient is that it only takes into account the number of mis-
segmented voxels and disregards their position and therefore the severities of errors. This
was corrected in Yasnoff’s discrepancy measure DM (Yasnoff et al., 1977) and the Factor of
Merit FOM (Strasters and Gerbrands, 1991):

where N is the number of mis-segmented voxels and d(i) is the distance from the ith voxel to
the ground truth. Another popular measure is the Hausdorff distance

H(S,G) is the maximum distance we would have to move the boundaries of one set so that it
would encompass completely the other set. As this is extremely sensitive to extreme errors,
the partial Hausdorff distance (Huttenlocher et al., 1993) Hf (S,G) can be introduced as the
maximum distance we would have to move the boundaries of one set so that it would cover f
% of the other set.
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4.2. Proposed framework
Consider now the error-distance

Assuming that all points x ∈ S ∪ G are equally likely d can be seen as a random variable D
which describes completely the discrepancy between the segmentation S and the ground-
truth G. Using basic statistical tools we can define the probability of error (PE), mean of
errors3 (μD>0), standard deviation of errors (σD>0) and partial distance-error (Df) by

These measures have a natural intuitive interpretation:

• PE is the probability for a voxel x ∈ S ∪ G to be mis-classified (either over- or
under-segmented, i.e. (x ∈ S ∪ G) \ ((S ∩ G))).

• An erroneous voxel is on average μD>0 pixels off. This value is very typical if the
standard deviation σD>0 is small.

• D1−f is the error distance of the worst f% voxels. For example D0.5 is the median of
errors. Equivalently the maximum distance we would need to move erroneous
voxels for the error to be improved to PE = f.

As an example, PE = 10%, μD>0 = 3.1, σD>0 = 0.3 and D0.99 = 14 would mean that the
overlap between the ground truth and the proposed segmentation is 90%. The 10%
remaining pixels are either under-segmented or over-segmented pixels (“false positive” i.e.
pixels that are in S and not in G). On average these pixels are 3.1 pixels off. This value is
very typical since the standard variation is low (0.3). However there is no reason for the
error to be Gaussian and, here, the tail probability is not negligible since the worst 1% pixels
are at least 14 pixels off. This could be due to a thin, long finger of mis-segmented pixels.

Fig. 1 illustrates three different cases of mis-segmentation. Figs. 1(a) and (b) have
approximately the same probability of error PE (and therefore the same DSC (see Eq. (5))
but Fig. 1(a) has a lower μD>0 and partial distance error D0.95. This is due to the fact that
even though Figs. 1(a) and (b) have roughly the same number of mis-segmented pixels, the
errors tend to be more severe in Fig. 1(b). Fig. 1(c) illustrates the case of a low probability of
error PE and a high μD>0. This might seem counter-intuitive. μD>0 is the mean of mis-
classified points. Here, most points are correctly classified and the few points that are not are
rather far off which explains a high μD>0. Moreover, the standard deviation of errors σD>0 is
lower than in Fig. 1(b) since there are less small errors and therefore μD>0 is typical.
Depending on the end-task Fig. 1(a) might be a better segmentation than Fig. 1(b) or not and
any of the above mentioned measures might be the most important metric.

3Note: this is the mean of errors and not the mean error. Valid points are not taken into account at all.
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These measures are related to the measures presented in Section 4.1 according to

(5)

(6)

(7)

Proof
• (5): let a, b, c, d be the true positive, true negative, false negative and false positive

probabilities, respectively, then

Simple algebra yields the equality. The inequality follows immediately from the
fact that 0 < 1 −DSC/2≤1.

• (6): By definition and implying condition D > 0 for all expectancies we have

which is the equality.

For the inequality consider Y = D2 and f (Y) = 1/(1 + Y). f″ ≥ 0 and therefore f is
convex (on ℝ+). But FOM is E{f (Y)}. By convexity E{f (Y)}≥ f (E{Y}). Since

f−1(x) = 1/x − 1 is decreasing .

• (7): let DS = {d(x, G), x ∈ S} and DG = {d(x, S), x ∈ S} be the distance of all points
of one set to the other set. Consider that DS and DG are ordered such that value at
rank 0 is the minimum. Then the partial Haussdorff distance H1−f is the max of the
values at index (fVS) and (fVG) in DS and DG. Consider DS∪G to be the values of DS
and DG where the points corresponding to S ∩ G (those values are all 0 by
construction) are counted only once. We also consider that DS∪G is sorted. Then the
proposed metric D1−f is the element at index (fVS∪G). We know that

This means that the value at index (fVS∪G) of DS∪G has to be smaller or equal to the
largest of the value at index  of DS and the value at index  of DG. The
equality occurs only when these two values are equal. This proves the right-hand
side of (7). For the left side, use
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5. Validation results
We evaluated the validation algorithm proposed in Section 2 using the validation framework
proposed in Section 4 on 2 simulated and 10 real MRI brain datasets. It is fundamental to
understand that the proposed algorithm is very general. In particular it is not designed or
tuned for any particular structure. Other approaches have been proposed that necessitate
(and take advantage of) prior information. For example in (Tsai et al., 2003) a model of
brain structures (i.e., an atlas) is deformed to match the dataset; in (McInerney and
Terzopoulos, 1996; Zeng et al., 1999), the white and gray matter of the brain are segmented
using special geometric constraints based on the neuroanatomical knowledge that the
thickness of the cortical mantle is nearly constant; in (Shattuck and Leahy, 2002) the
datasets are pre-processed to compensate for bias fields in the MR images and non-brain
tissue is removed. Our framework is more general and does not require external information
or make extra assumptions on the anatomical region to be segmented or the imaging
modality. Because implementations of previously proposed segmentation techniques are
typically not publicly available and these algorithms were typically not validated on publicly
available datasets it is difficult to quantitatively compare performances. In contrast an
implementation of our technique is freely available (as part of the open-source software 3D
Slicer). The technique has been validated on publicly available simulated and real datasets.

The work of Shattuck and Leahy (2002) is a notable exception since it has been validated on
publicly available images. We will show in Section 5.1 that even though it is very general
and assumption free, the performance of the proposed technique is comparable to this more
specialized approach.

5.1. Simulated datasets (N=2)
The Brain Web datasets have been generated from a known ground truth using a physical
modeling of the MRI process (Kwan et al., 1999). We can assess in a perfectly objective
way the performance of our method by comparing the result of our segmentation with the
underlying ground truth. Note that even though these datasets are computer-generated they
are very realistic (see Fig. 2(b)) Another interesting aspect of this project is that from the
same ground truth, datasets with different levels of noise can be simulated which allows us
to study the robustness of our method with respect to noise. Using the proposed framework,
the authors segmented the lateral ventricle, white matter (WM) and white matter and gray
matter (WM+GM) on 2 datasets:

• Normal brain, T1, 1 × 1 × 1 mm (181 × 181 × 217 voxels), 3% noise, 20% intensity
non-uniformity (“RF”) (standard parameters of the Brain Web model).

• Normal brain, T1, 1 × 1 × 1 mm (181 × 181 × 217 voxels), 9%, 40% (highest levels
of noise available).

The results (Table 1) show that the proposed algorithm gives very good results on these
structures (according to Zijdenbos et al. (1994), DSC > 0.7 is regarded as good agreement in
the literature). The complex structure of the white matter makes its segmentation more
challenging and explains the somewhat mediocre performance (in the case of the maximum
noise dataset, the cerebellum was not perfectly segmented).

In the highest level of noise, connectivity between the lateral and the third ventricles was
lost (the intraventricular foramen of Monro disappeared in the noise). This increased the
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strength of the ventricle edges in the noisy dataset and, paradoxically, simplified the
segmentation. Overall the algorithm appears extremely robust to noise.

On the same datasets, Shattuck and Leahy (2002) report4 DSC = 93% (standard noise) and
DSC = 81% (maximum noise) for the white matter. These scores are slightly better than our
own results (DSC = 91.9% and DSC = 80.3%, respectively). However, it is very important
to keep in mind that there is a trade-off between performance on a specific problem and
versatility. Our technique was not created specifically for white matter extraction and, unlike
more specialized techniques, it can be used for a very wide variety of structures and
modalities. In summary, the wide applicability of the proposed technique comes at a minor
performance cost vis-à-vis the work of Shattuck and Leahy (2002).

5.2. Real datasets (N = 10)
In this section we use, as the ground truth, the expert manual segmentations of 10 full brains
and brain tumors from the Brain Tumor Database (Kaus et al., 2001). The semi-automatic
segmentation was performed by a student with no special medical training and no inside
knowledge of the proposed algorithm.

The 10 patients’ heads were imaged in the sagittal and axial plane with a 1.5 T MRI system5

with a postcontrast 3D sagittal spoiled gradient recalled (SPGR) acquisition with contiguous
slices. The resolution is 0.975 × 0.975 × 1.5 mm (256 × 256 × 124 voxels). Datasets where
manually segmented into three regions:

• tumor

• white and gray matter

• other

Because of inter- and intra-expert variability we should expect these results not to be as
good as in the synthetic case. It should also be noted that the arbitrary conventions of the
manual segmentations are responsible for a lot of the observed error since for example the
ventricle was labeled as gray matter, the medulla oblongata and the spinal cord have been
left out etc. (compare Figs. 2(a) and (c)). Overall, nonetheless, results are consistent with the
artificial case (Tables 2 and 3).

6. Conclusion
We presented a new surface evolution flow based on learned non-parametric statistics of the
image. Implementation is straightforward and efficient using the Fast Marching algorithm
and is freely available as part of the 3D Slicer project. An extensive validation study as well
as a new unified set of validation metrics have also been proposed.

Future work will include a detailed analysis of the variational and statistical aspects of the
algorithm. An expansion of the validation framework is also underway.
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Appendix A. A fundamental flow
In what follows we only consider the 3D case. The region R is an open connected bounded
subset of ℝ3 with smooth boundary S = ∂R and N denotes the corresponding inward unit
normal vector to S.

Given an image I, a non-negative weighting function w(·, ·) and a region R we define the
energy

(A.1)

where E is the weighted volume of the region R. The weight of a voxel x is determined by
the function w(·, ·) of the local properties I(x) and ||∇I(x)|| of the image. Ideally, w should
reflect the local properties of the region we want to segment. As this is not known a priori
we heuristically estimate w as we evolve R to maximize E.

Proposition 1
Notation as above. Then for a given weighting function w, the evolution in which the energy
E(I, w, R) is decreasing as fast as possible (using only local information) is .

Proof
Let ψt: R → ℝn be a family of embeddings, such that ψ0 is the identity. Let w: ℝn → ℝ be a
positive C1 function. We set R(t):= ψt(R) and S(t): = ψt(∂R). We consider the family of w-
weighted volumes

Set  then using the area formula (Simon, 1983) and then by the divergence
theorem, the first variation is

(A.2)

where N is the inward unit normal to ∂R. Consequently the corresponding w-weighted
volume minimizing flow is

A different derivation of the same result has previously been proposed by Siddiqi et al.
(1998).
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Since w is a non-negative function, the flow is reversible. In particular, the flow in the
reverse direction,

(A.3)

gives the direction in which the energy is increasing as fast as possible (using local
information). In the context of segmentation, one may think of (A.3) as a bubble and of the
original flow as a snake.

Given an approximation R0 of the region to be segmented we can use a maximum
likelihood-like approach to determine the weighting function w0 which would a posteriori
justify the segmentation of R0.

Proposition 2
For a given fixed region R0, the energy E(I, w, R0) is maximized by setting w to pR0 the
conditional probability on that region

(A.4)

Proof
We can rewrite the energy as

where NR0 (u, v) is the volume of the set of points x ∈ R0 such that I(x) = u and ||∇I(x)|| = v.
But this is just a constant multiple of pR0 = P(I(x), ||∇I(x)|||x ∈ R0) which is therefore by the
Schwartz’s inequality is the maximizer of E.

As the region evolves, w is periodically updated according to (A.4). This changes the
definition of the energy (A.1) and therefore (A.3) can only be considered a gradient flow for
every time interval when w is fixed.

Appendix B. Non-parametric estimation of image statistics
Instead of using the distribution pR0 = P(I(x), ||∇I(x)|||x ∈ R0) as described in (A.4) we use p
= pM · pH, where M and H are the median and inter-quartile range (the difference of between
the first and last quartile) operators on a 3 × 3 × 3 neighborhood. M and H convey about the
same information as I (gray level) and ||∇I|| (local homogeneity). For example if ||∇I|| is
large then values in a 3 × 3 × 3 neighborhood are very dispersed and therefore the
interquartile range is large. These measures were chosen primarily because they are robust
to noise 6 and they respect edges 7 of the image better than their linear counterparts.

6The interquartile range and the median are completely insensitive to isolated outliers.
7See (Gonzalez and Woods, 2001) for details on median filtering and its advantages.
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We use Parzen windows (see for example Duda et al., 2001) to estimate the probability
density functions. This is a non-parametric technique and therefore no assumption is
required on the shape of the distributions. Given a window function φ and N samples m1, …,
mN and h1, …, hN the densities are estimated by

This corresponds to convolving the samples histogram with φ. It can be shown that the
estimates p̂M and p̂H converge toward the true estimates pM and pH with n → ∞ and φ → δ.
We used φ = gσ a centered Gaussian kernel of standard deviation σ = σ̂H/10 to estimate pH
and σ = σ̂M/10 to estimate pM.
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Fig. 1.
Three synthetic examples of mis-segmentation. The ground truth G is in gray and the
segmentation S is in black.
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Fig. 2.
Results on real and noisy simulated datasets (left and right respectively): (a) sagittal slice of
real dataset and proposed segmentation (WM+GM); (b) axial slice of artificial dataset and
proposed segmentation (ventricle); (c) expert segmentation (gray) and proposed
segmentation (white); (d) underlying ground truth (gray) and proposed segmentation
(white); (e) rendered surface of proposed segmentation (WM+GM); (f) rendered surface of
proposed segmentation (ventricle).
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