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Abstract
Bone has long been known to be responsive to mechanical loading. For at least 25 years it has
been known that osteocytes sense mechanical load, and because of their response to mechanical
loading, osteocytes are believed to be the mechanosensory cell. The Wnt/β-catenin signaling
pathway has been shown to be crucial in bone development. Mutations in LRP5 and SOST, which
cause high bone mass, have increased interest in the Wnt pathway as a potential target for
osteoporosis therapy and have helped link Wnt/β-catenin signaling to bone’s response to
mechanical loading. Because of its specificity to osteocytes, the Wnt inhibitor sclerostin is a target
for anabolic bone therapies. The response of bone to mechanical loading is critically regulated by
osteocytes secreting sclerostin, which binds to Lrp5.

Introduction
Bone has long been known to be responsive to mechanical loading. The ability of bone to
functional adapt to forces was discovered in the late 19th and early 20th centuries [1-5]. For
at least 25 years it has been known that osteocytes sense mechanical load [6], and because of
their varied response to mechanical loading [7-11], osteocytes are believed to be the cell that
senses whether or not the bone is being loaded and signals osteoblasts and osteoclasts to
respond accordingly [12, 13]. Osteocytes account for the vast majority of bone cells (90–
95%) in the skeleton [12]. They are star-shaped, measure 9 μm by 20 μm in humans, and
derive from mature osteoblasts that embed themselves into mineralized matrix and reside in
the lacunae [14]. They communicate through their dendritic processes and have a cell
spacing of about 25 μm. Each cell has some 50 dendritic processes that preferentially grow
through the canaliculi toward the periosteal side of the bone [15].

Physiologically, mechanical forces are applied to bones through both muscle forces and
ground reaction forces [16]. Forces on bone increase both the bone density and the
geometrical properties of bone due to loading. Geometrically, the distribution of the bone
material is more important than the cross-sectional area. Given the same amount of material,
the bone with the higher moment of inertia (and related section modulus) is more resistant to
bending, and the bone with the higher polar moment of inertia is more resistant to torsion.
These moments of inertia are dependent on how the bone material is distributed [17].
Practically, this means that periosteal bone growth improves bone stiffness more than
endosteal growth.
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There are many examples of how bone adapts to loading. Athletes in high impact sports
have higher bone mineral density and an improved section modulus than athletes in low
impact sports and sedentary controls [18-20] and racquet sports athletes have higher bone
density and section modulus in their dominant arm relative to their contralateral limb [21,
22]. Bed rest and spaceflight lead to decreased bone mineral density in humans [23-26] and
in rodents, hindlimb suspension decreases the bone mineral content and moment of inertia of
the unloaded bones [27, 28].

Recent work has causally linked alterations in Wnt signaling to changes in bone
development and homeostasis. In this review, we introduce the cellular mechanisms
associated with Wnt signaling, describe the key events that helped link Wnt signaling to
bone disease, and discuss Wnt signaling in the osteocyte and the related anabolic bone
therapies. We also describe specific experiments that have provided insights into the roles of
Wnt signaling proteins produced by osteocytes (with an emphasis on sclerostin), which act
in feedback mechanisms to control local response to mechanical loading.

Overview of Wnt signaling
Wnt signaling plays central roles in regulating the development of many tissues and organs,
and alterations in the pathway are commonly associated with human disease. The first Wnt
gene was identified by Nusse and Varmus in 1982, when they reported the presence of a
common proviral insertion site found in tumors induced by mouse mammary tumor virus
[29]. Viral insertion resulted in increased expression of this “integration site 1” gene (Int1).
Studies of Int1 were hampered by the challenges associated with purifying the protein in
biologically active form, so a central focus of early research on this gene focused on
evaluating the genetic pathways associated with the homolog of Int1 in Drosophila, a gene
known as wingless [30]. To provide clarity, researchers in the field then reorganized the
nomenclature to reflect the contributions of studies focused on both Int1 and wingless,
renaming the emerging protein family as “Wnt” (wingless + Int1) [31]. The clinical
significance of this pathway came into sharper focus as downstream signaling components
were identified. For example, one component, the adenomatous polyposis coli (APC) gene,
is deleted in a significant majority of colorectal tumors [32]. This, combined with numerous
other studies, identified regulation of the cytoplasmic and nuclear levels of β-catenin as a
key point of activity for Wnts.

At the cellular level, Wnts activate several signaling cascades, including the most commonly
studied (“canonical”) pathway, which results in stabilization of the β-catenin protein [33].
This pathway is initiated when a Wnt protein binds to a receptor complex that includes a
member of the Frizzled family of seven-transmembrane receptors plus either Lrp5 (low-
density lipoprotein-related receptor 5) or Lrp6 [34]. Formation of this receptor complex
results in the phosphorylation of the cytoplasmic tail of Lrp5 or Lrp6, leading to the
formation of a binding site for axin [35]. Axin is normally found in a multiprotein complex
that also includes APC and glycogen synthase kinase 3 (GSK3). In the absence of an
upstream Wnt signal, GSK3 phosphorylates residues near the amino terminus of β-catenin,
targeting β-catenin for ubiquitin-dependent proteolysis. The recruitment of axin to the
phosphorylated tail of Lrp5/6 inhibits the activity of GSK3 towards β-catenin (or perhaps
the subsequent ubiquitination), leading to increased β-catenin levels in the cytoplasm. The
increased cytoplasmic levels ultimately lead to β-catenin’s nuclear translocation, its binding
to members of the LEF/TCF family of DNA binding proteins, and the transactivation of
target-gene promoters. Recently, it has emerged that the stability and nuclear levels of the
transcriptional activator TAZ are also regulated by the same process that controls β-catenin
levels, because TAZ enters the nucleus as part of a β-catenin complex [36]. Thus, sites
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driven by TAZ transactivation, independent of TCF/LEF sites, may also be directly
regulated by Wnt signaling (Figure 1).

Wnt signaling and bone disease
Studies of the molecular mechanisms of Wnt signaling as related to osteoblast function were
stimulated by three seminal studies published in 2001 and 2002. The first was a long-term
study focused on identifying the underlying genetic cause of the pediatric syndrome
osteoporosis pseudoglioma (OPPG) [37]. OPPG is characterized by severe, early-onset
osteoporosis and is also associated with abnormal eye vasculature [38]. In 2001, the
underlying genetic mutation for this autosomal recessive disorder was found to be
inactivating mutations in the gene encoding LRP5 [39]. This report was followed shortly by
two manuscripts showing that some patients with an inherited predisposition to high bone
mass carry a point mutation in LRP5 (G171V) that is causally associated with the increased
bone mass [40, 41]. Subsequent generation of mice carrying germline inactivating mutations
in Lrp5 further confirmed the importance of this gene by accurately modeling phenotypes
observed in OPPG syndrome [42-44]. In addition, a strain of mice expressing the G171V
version of Lrp5 specifically in osteoblasts developed high bone mass, further confirming
role of Lrp5 in skeletal homeostasis [45].

While the mechanisms underlying the effect of LRP5 mutations on bone mass are still being
debated in the literature, an important advance came from studies on two other disorders
associated with increased bone mass: sclerosteosis and van Buchem disease [46]. Both
disorders are caused by loss of expression of the gene SOST, which encodes the protein
sclerostin [47, 48]. In sclerosteosis, this loss is due to inactivating mutations in the coding
region, while the underlying defect in van Buchem disease is a 52-kilobase deletion in a
putative regulatory element necessary for expression of SOST [49]. Subsequent studies
found that SOST, which is specifically secreted from osteocytes [50-52] and some types of
chondrocytes [53-55], is normally bound to the LRP5 protein to inhibit its signaling [56-58].
In patients with the high bone mass associated mutation in LRP5, the ability of SOST to
bind and down-regulate LRP5 function is lost, leading to increased bone growth [56, 57, 59,
60]. Other proteins such as dickkopf 1 (DKK1) and mesoderm development (MESD) also
bind to wild-type LRP5 [61-63], but not to mutant forms of LRP5 linked to high bone mass
[64]. This evidence, combined with several mouse models in which LRP5 (and the related
LRP6 protein) function is specifically altered within the osteoblast and osteocyte lineage
[65-67], has led to a model proposing that Lrp5 and Lrp6 function within osteoblasts to
regulate osteoblast function. It should be noted that another model has been proposed, in
which Lrp5 is involved in the regulation of serotonin secretion from the enterrochromaffin
cells of the intestine [68]. Alterations in serum serotonin then lead to changes in osteoblast
function. The relative contributions of these two models are still being assessed. For a more
thorough discussion of the current status of therapies targeting serotonin, we refer readers to
a recent review on this topic [69].

Wnt signaling in osteocytes and related bone therapies
Osteocytes express several known inhibitors of the Wnt/β-catenin pathway. Of these
inhibitors, sclerostin is most commonly linked to osteocytes because its expression is
generally considered to be relatively specific to those cells [50-52]. Osteocytes secrete
sclerostin along their dendrites in the canaliculi after the cells became embedded in
mineralized matrix [70]. Consistent with the high bone mass phenotype of sclerosteosis and
van Buchem disease patients, mice with a deletion of Sost had dramatically increased bone
mineral density that was due to increased bone formation rather than to decreased osteoclast
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activity [71, 72], while overexpression of Sost decreased bone mass and strength due to
decreased bone formation [50].

Since the Wnt signaling pathway has been shown to be crucial in bone development, it has
received much interest as a potential target for osteoporosis therapy [73]. Specifically, the
genetic linkage of the high bone mass diseases sclerosteosis and van Buchem disease to the
SOST gene plus the specificity of sclerostin in osteocytes point to sclerostin’s potential use
as an anabolic bone agent. The only currently available anabolic drug for treating
osteoporosis is teriparatide (Forteo®; Eli Lilly and Company, Indianapolis, IN) [74].
Teriparatide is the human recombinant form of parathyroid hormone (PTH) and acts through
the PTH receptor. Patients receiving intermittent teriparatide treatment had higher bone
mineral density than those treated with bisphosphonates [75]. Treatment with PTH drives
bone formation by decreasing sclerostin expression [76]. In wild-type and estrogen-deprived
rats, PTH treatment directly regulated Sost transcription, decreased Sost/sclerostin
expression, and increased bone mineral density [77]. When the PTH receptor was
constitutively activated in osteocytes, mice had reduced sclerostin and increased bone mass.
After the deletion of Lrp5 in these mice, the high bone mass phenotype was no longer
apparent [78]. An alternative, but not mutually exclusive model, is that PTH signals directly
through LRP6 to activate β-catenin. Taken together, PTH functions as an anabolic bone
agent through the osteocytes to decrease sclerostin expression and activate the Wnt/β-
catenin pathway through Lrp5.

Sclerostin antibodies are being developed to target the protein directly in order to improve
bone mineral density. In preclinical studies, the administration of the sclerostin antibody
AMG 785 (Amgen Inc., Thousand Oaks, CA) increased the formation of trabecular,
periosteal, endosteal, and intractorical bone of postmenopausal osteoporotic rats [79] and
cynomolgus monkeys [80]. In a phase I study in humans, a single dose of the sclerostin
antibody increased bone mineral density in the hip and spine after 85 days relative to
placebo controls [81]. In a phase II trial on postmenopausal osteoporotic women with
femoral neck T-scores of −3.5 to −2, sclerostin antibody treatment increased bone mineral
density in the hip and spine significantly more than bisphosphonate and teriparatide
treatment after one year with more density increase in the spine than the hip. Bone density
increased rapidly through the first six months but the rate of increase slowed in the second
six months [82]. In both trials the drug was well-accepted with mild side effects. If the
increases in density translate to functional increases in strength and decreases in fracture
risk, and longer term trials demonstrate continued tolerability and safety, sclerostin antibody
treatment will be an effective, bone-specific anabolic treatment for osteoporosis. The clinical
success of PTH and the early successes of the sclerostin antibodies demonstrate the
importance of the Wnt signaling pathway through osteocytes in bone formation.

In addition to sclerostin, osteocytes express the Wnt inhibitors Dkk1 and secreted frizzled-
related protein 1 (sFRP1). Both play a role in regulating bone mass. Dkk1 inhibits osteoblast
differentiation and bone formation by binding to Lrp5/6 [61, 62, 83], and Lrp5 high bone
mass mutant mice have altered Dkk1-Lrp5 binding [64]. Deletion of a single allele of Dkk1
is enough to increase bone formation and improve structural characteristics but has no effect
on bone resorption [84]. sFRP1 inhibits Wnt signaling either by binding to Wnts and
preventing them from binding to the Lrp5/6 complex [85] or by binding directly to the
Lrp5/6 complex to prevent Wnts from binding there [86]. Mice with sFRP1 deleted have
increased trabecular bone mineral density, and in vitro, their osteoblasts show increased
proliferation and differentiation into osteocytes [87]. sFRP1 expression is at peak levels in
early osteocytes undergoing cell death and at decreased levels in mature osteocytes, which
demonstrates that sFRP1 is involved in negative regulation of osteocyte survival [88].
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Osteocyte-like MLO-Y4 cells have been used in fluid flow shear studies to demonstrate
other pathways that are involved in cross talk with the Wnt/β-catenin pathway. One of the
proposed mechanisms by which osteocytes sense mechanical load is through interstitial fluid
flow through the lacunae-canaliculi network—for two mechanosensory reviews in this issue,
see [89, 90]—which causes a shear stress on the cells [91]. Fluid flow shear stress in MLO-
Y4 cells induces prostaglandin E2 (PGE2) and increases the number of gap junctions and the
expression of the gap junction protein connexin 43 (Cx43) [92]. PGE2 in turn activates
cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) [93] and protects
cells from dexamethasone-induced apoptosis by increasing the phosphorylation of GSK3,
which causes nuclear translocation of β-catenin [94]. Osteoblasts and osteocytes not
subjected to fluid flow but treated with PGE2 also show β-catenin nuclear translocation and
activated Wnt signaling [95]. Under shear stress, increased expression of PGE2 activates the
PI3K/Akt pathway, which in turn causes phosphorylation of GSK3, nuclear translocation of
β-catenin, and the activation of Wnt signaling independent of Lrp5/6 [96]. β-catenin also
induces expression of Cx43, which increases osteocyte communication through gap
junctions [97]. Taken together, these results demonstrate that there is cross talk between
PGE2, PI3K/Akt, and Wnt signaling and that PGE2 can activate Wnt signaling independent
of Lrp5/6.

Studies in conditional knockout mice have demonstrated the importance of the Wnt/β-
catenin pathway in regulating the osteoclast inhibitor osteoprotegerin (OPG). Increased OPG
through β-catenin promotes osteoblast differentiation and prevents the differentiation of
osteoclasts [98]. The conditional deletion of β-catenin in osteoblast precursors (using
collagen I alpha I-; Col1a1-Cre) mature osteoblasts (osteocalcin-; Ocn-Cre), and osteocytes
(dentin matrix acidic phosphoprotein 1-; DMP1-Cre) leads to a decreased level of OPG and
an increased number of osteoclasts [98-100]. These conditional knockouts demonstrate the
importance of β-catenin through the differentiation of osteoblast precursors (Col1a1+ cells)
to osteoblasts (Ocn+ cells) to osteocytes (DMP1+ cells) in the regulation of OPG.

Role of Wnt signaling in response to mechanical loading
Shortly after the discovery of the link between Lrp5 and bone mass, Johnson hypothesized
that Lrp5 is crucial in the sensation and response of bone to load [101]. Mice carrying
germline mutations in Lrp5 have been made that model the high [45, 65] and low bone mass
[42-44] phenotypes. Johnson’s hypothesis was confirmed when mice with a deletion of Lrp5
did not respond to mechanical loading [102]. Furthermore, mice with missense mutations of
Lrp5 (A214V and G171V) that cause high bone mass had an altered response to mechanical
loading. One of these mutations (A214V) increased periosteal bone formation compared
with wild-type controls, while the other (G171V) improved endosteal bone formation
compared with the wild-type [103]. The mechanosensitivity of Lrp5 acts at least in part
through the osteocytes, because mice with an osteocyte-specific deletion of Lrp5 were less
responsive to mechanical loading [104].

Mechanical loading decreases Sost transcription and sclerostin protein expression while
increasing bone formation [11, 105]. Mechanical loading also decreases the transcription of
Dkk1, while sFRP1 transcription is unchanged [11]. When mice underwent unloading
through hindlimb tail suspension, Sost transcription significantly increased in the tibia, while
increases in Dkk1 and sFPR1 transcription approached significance [11], though a recent
study has suggested that sclerostin response may be site-specific [106]. Local down-
regulation of sclerostin in osteocytes is required for mechanotransduction-based bone
formation [107], and mice with a deletion of Sost that underwent unloading through
hindlimb tail suspension were resistant to bone loss [72]. Taken together, these reports
suggest that the response of bone to mechanical loading is crucially regulated by osteocytes
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secreting sclerostin, which binds to Lrp5. When osteocytes sense a mechanical load, they
reduce the expression of Wnt inhibitors, most prominently sclerostin. This down-regulation
allows Lrp5 to be instead bound by Wnts, which may already be present or may have been
up-regulated by the mechanical loading [108], and the result is activation of the Wnt/β-
catenin signaling pathway.

Summary
The reports at the beginning of the last decade demonstrating that mutations in LRP5 are
causally associated with changes in human bone mass stimulated extensive research into
understanding the underlying mechanisms. This work demonstrated that components of this
pathway, including LRP5, are required for osteocytes to respond to mechanical load. In
addition, regulation of secretion of the Wnt inhibitor, SOST, from osteocytes plays a key
role in coordinating the response to these mechanical signals. However, there are several
outstanding questions remaining to be addressed. For example, what is the mechanism by
which LRP5 is activated via mechanical loading? Does this involve a Wnt ligand? If so,
which one(s)? Answers to these questions will further inform the development of therapies
based on activating this pathway to treat osteoporosis and other bone diseases.
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Figure 1. Schematic of inactivated (left) and activated (right) Wnt/β-catenin signaling pathway
Wnt ligands bind to a receptor complex that includes a member of the Frizzled family and
either Lrp5 or Lrp6 (right). In the absence of a Wnt signal (left), a “destruction” complex
that includes Axin, APC, and GSK3 facilitates GSK3-mediated phosphorylation of β-
catenin, targeting it for ubiquitin-dependent proteolytic degradation. In the presence of a
Wnt signal, the cytoplasmic domain of Lrp5/6 is phosphorylated, which serves as a binding
site for Axin, recruiting the destruction complex to the membrane and inhibiting its activity.
This results in increased cytoplasmic levels of B-catenin, which can enter the nucleus and
interact with members of the LEF/TCF family of DNA binding proteins to activate target
gene promoters. Recently, regulation of the stability of the transcriptional transactivator,
TAZ, has also been linked to B-catenin degradation, allowing GSK3-mediated
phosphorylation of B-catenin to also regulate the targets of TAZ transactivation. A complex
regulatory network has evolved to inhibit Wnt signaling at the level of the plasma
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membrane. For example, SOST and Dkk1 both bind to Lrp5/6 to inhibit the ability of Wnt to
bind and activate signaling through its receptor complex.
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