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Abstract
Objective—Many patients following severe trauma have complicated recoveries due to the
development of organ injury. Physiological and anatomical prognosticators have had limited
success in predicting clinical trajectories. We report on the development and retrospective
validation of a simple genomic composite score that can be rapidly used to predict clinical
outcomes.

Design—Retrospective cohort study

Setting—Multi-institution level 1 trauma centers

Patients—Data was collected from 167 severely traumatized (ISS >15) adult (18–55 yo) patients

Methods—Microarray-derived genomic data obtained from 167 severely traumatized patients
over 28 days were assessed for differences in mRNA abundance between individuals with
different clinical trajectories. Once a set of genes was identified based on differences in expression
over the entire study period, mRNA abundance from these subjects obtained in the first 24 hours
was analyzed in a blinded fashion using a rapid multiplex platform, and genomic data reduced to a
single metric.

Results—From the existing genomic data set, we identified 63 genes whose leukocyte
expression differed between an uncomplicated and complicated clinical outcome over 28 days.
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Using a multiplex approach that can quantitate mRNA abundance in less than 12 hours
(nanoString™), we reassessed total mRNA abundance from the first 24 hours after trauma, and
reduced the genomic data to a single composite score using the difference from reference (DFR).
This composite score showed good discriminatory capacity to distinguish patients with a
complicated outcome (area under a receiver-operator curve, 0.811, p < 0.001). This was
significantly better than the predictive power of either APACHE II or NISS scoring systems.

Conclusions—A rapid genomic composite score obtained in the first 24 hours after trauma can
retrospectively identify trauma patients who are likely to develop a complicated clinical
trajectories. A novel platform is described in which this genomic score can be obtained within 12
hours of blood collection, making it available for clinical decision making. (300 words; limit 300)
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Introduction
Traumatic injury remains the most common cause of death in individuals less than 45 years
of age and is a significant healthcare burden (1, 2). Although risk factors such as increasing
age, number of premorbid conditions, and injury severity are well known causes of
increased mortality following traumatic injury (3, 4), predictive models based on
physiologic and clinical parameters still lack the specificity and sensitivity to identify
individual patients at risk of developing organ injury or sepsis.

Current evidence suggests that a systemic immunological dysregulation is central to the
organ injury following trauma. While our understanding of the systemic consequences of
severe injury and sepsis remains incomplete, as evidenced by the lack of success in
translational and clinical trials of therapies aimed at modulating the inflammatory response
(5, 6), the development of prognosticators based on immunological measures are plentiful
(7–12). Unfortunately, these diagnostics and prognostics have not proved sufficiently
successful to enter the clinical armamentarium.

To obtain a better global understanding of the complex immune response following severe
injury in humans, we examined genome-wide expression patterns of blood leukocytes
following severe injury, and observed what was termed a ‘genomic storm’, in which greater
than 75% of the host leukocyte transciptome was altered following severe injury (13). More
importantly, we demonstrated that genomic information collected in the first 12 hours of
severe trauma contained information independent of anatomical and physiological
prognosticators that was associated with different clinical outcomes (14). In a more recent
study, we further demonstrated that differences in leukocyte genomic information obtained
over the first four days was associated with patients who would die from organ failure or
would have prolonged complicated courses (15). Such findings strongly suggest that
genomic information contained in whole blood leukocytes in the immediate post-trauma
period could be used to develop a prognostic tool to determine outcome, and theoretically,
identify those patients most likely to benefit from interventions.

In this report, we propose a novel platform to conduct genomic measurements from whole
blood leukocytes to identify severely traumatized patients who will have a complicated
clinical recovery. Using existing microarray data from the ‘Inflammation and the Host
Response to Injury’ Glue-Grant (GG) collaborative research program, we identify 63 genes
from 167 severely injured patients whose leukocyte gene expression differs between patients
with different clinical outcomes over 28 days. Using existing RNA samples from the
collaborative research program obtained in the first 24 hours after trauma, we then conduct a
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proof of principal study to retrospectively validate the microarray data using a multiplex
RNA quantification scheme based on fluorescently labeled codesets that can quantitate the
63 gene expression levels simultaneously within 12 hours of sample collection (nanoString
nCounter™ Gene Analysis). The gene expression data were re-evaluated in all 167 subjects,
and the resulting gene expression data was reduced to a single metric, as described
previously (14).

Based on the findings reported here, we propose that such a genomic score can feasibly be
utilized as a prognostic tool in the clinical setting to identify trauma patients at risk of
developing organ injury and adverse outcomes, to guide clinical decisions regarding
treatment, and should be validated prospectively in future studies.

Methods
Subject Recruitment and Affymetrix U133 GeneChip Data Analysis

One hundred, sixty three patients between the ages of 18 and 55 who suffered severe blunt
injury were enrolled from six institutions between November 2003 and January 2005 and
compared to 35 age and gender matched, healthy control subjects (13). Samples were
collected with signed informed consent; each institution had their own IRB approval, and
de-identified clinical data are now in the public domain (16). Blood samples were collected
within 12 hours of injury and at 1, 4, 7, 14, 21, and 28 days after the injury while
hospitalized in the intensive care unit, whole blood nucleated cells were isolated, and
genome-wide expression analyses of 54,675 probe sets were performed using the
Affymetrix U133 GeneChip™ (17, 18).

Statistical analysis to assess the overall gene expression patterns following trauma was
performed (13). Briefly, trauma patients were divided into three cohorts based on their
clinical trajectory being either “uncomplicated” (as defined by the absence or resolution of
organ injury (modified Marshall MOF Score) in less than 5 days), “complicated” (resolution
of organ injury in greater than 14 days or no recovery by 28 days, or death), or
“intermediate”. We focused our initial analyses on the extremes of outcome, those patients
who had a either a “complicated” trajectory versus those who had an uncomplicated clinical
course. Using the EDGE software program, statistical analysis was performed to assess
differences in gene expression over the entire 28 day sampling period between complicated
and uncomplicated patients(19, 20). Using this approach, we were able to identify a set of
genes that were differentially expressed using a false discovery rate (FDR) adjusted
probability of <0.001. We then filtered that set to only include the genes that had at least a
two-fold maximal difference in expression between the two clinical trajectories, which
resulted in a set of 63 genes. Gene expression data from those 63 genes were reduced to a
single metric that was then independently tested for its predictive ability at a single
clinically-relevant time point, 24 hours, that evaluated the magnitude of the difference in
expression from healthy, control subjects using a statistical tool that reduces multiplex
genomic data to a single metric (DFR) (14). The DFR calculates the sum of the normalized
differences in expression for each of the genes from the mean expression obtained from age,
gender and ethnicity matched controls, using the equation (14):

where ei is the patient’ s expression level and Mi and Vi are the control group mean and
variance for the ith probe set. Division by the control variance is a rescaling that prevents the
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DFR score from being dominated by genes that are inherently more variable or more highly
expressed. The natural logarithm is applied to make the distribution of the resulting DFR
more symmetric over the patient population (14). In essence, DFR calculates the distance
between each patient’s gene expression profile and the profile obtained from the healthy
reference subjects.

Validation of Affymetrix U133 GeneChip Analysis with nanoString nCounter™ Gene
Expression Analysis

A custom-made nanoString nCounter™ codeset was used to perform a quantitative analysis
that could retrospectively validate the Affymetrix U133 GeneChip™ microarray analysis,
and included only the 63 genes that were found to be differentially expressed between
complicated and uncomplicated patients, and seven variably expressed housekeeping genes.
In order to assess the analytical variance of the nanoString™ platform to detect small
differences in array expression, we performed an ex-vivo study using a human whole blood
sample that was stimulated with lipopolysaccharide (E. coli O26:B6, 100 ngs/ml) for two
hours at 37 °C and compared to unstimulated samples. One healthy, human subject provided
signed informed consent, and the protocol had been approved by the University of Florida
IRB. The sample was divided into 10 aliquots and five were stimulated with
lipopolysaccharide and five were unstimulated, and processed immediately. RNA was
isolated using identical protocols to those employed for the clinical samples (15, 18), and
five replicates from both LPS-stimulated and unstimulated blood were analyzed using both
the Affymetrix U133+ v2 GeneChip™ and the nanoString™ technology.

The nanoString™ technology employs two sequence specific complimentary probes with a
unique code for each of the genes of interest (21). Probe pairs containing a reporter probe
with a signal on its 5′ end, and a capture probe with biotin on the 3′ end with an
individualized fluorescent barcode were hybridized to 100 ng of target mRNA for varying
lengths of time (21). The excess probes were washed away using a magnetic bead-based
purification on the nCounter™ Prep station. Data collection and quantitative analysis of the
codeset was carried out using the nCounter™ Digital Analyzer. The raw data were collected
and normalized for the expression of included house-keeping genes. The analysis was then
repeated on the 167 patient samples and 35 controls at <12 and 24 hours using the
nanoString™ technology and compared the analysis for the 63 predictive genes with the
previously reported microarray analysis (15). Using the microarray data and the DFR (14),
we then derived a metric that could be used to prospectively validate the genomic test.

Statistical Analysis
Continuous demographic variables were tested for normality, variance and was tested for
significance via one-way ANOVAs via Dunn’s or Tukey post-hoc analysis. Categorical
demographic variables were tested for significance using a χ2 test. Separate univariate
logistic regression models were fit to assess the association between DFR, ISS, NISS, and
APACHE II scores as continuous independent measurements and outcome variable
(complicated versus uncomplicated clinical course). Receiver operating characteristic (ROC)
curve analysis was performed by calculating sensitivity and specificity for each independent
variable. We constructed separate multivariable logistic models using clinical independent
predictors only (ISS and APACHE II scores) or combining clinical predictors with genomic
score (DFR in addition to ISS and APACHE II). All independent predictors were entered in
each model as continuous variables. For each model we performed model diagnostics to test
for collinearity (using variance inflation factor and tolerance) and interactions. Model fit was
evaluated using the Hosmer-Lemeshow goodness of fit test. Multiple ROC curve
comparison analyses were performed to assess model predictive performance using AUC for
each model. Area under the curve (AUC) was used to assess model fit. AUC comparisons
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were made using ROCCONTRAST option available in LOGISTIC procedure using a
nonparametric method that exploits the mathematical equivalence of the AUC to the Mann-
Whitney U-statistic. All analyses were performed using SAS (v.9.2, Cary, N.C.) and
SigmaStat v11.

Results
Genome-wide expression of whole blood leukocytes was determined at 12 hours, 1, 4, 7, 14
and 28 days after severe blunt trauma in a cohort of 167 severe blunt trauma patients whose
characteristics have been previously published (13). Using clinical parameters, the 167
enrolled patients were divided into three cohorts based on their time to organ recovery
(TTR), a new metric of organ failure recovery recently described by our group, which is
defined as the time at which a patient is free from organ failure for at least two days.
Prolonged TTR is associated with advanced age, increased severity of injury, shock, and
increased transfusion requirements, thus making it a comprehensive metric to monitor the
complex response in trauma patients(22). This allowed us to divide the cohort into three
distinct groups of patients who had either an uncomplicated, intermediate, or complicated
recovery, as defined in the Materials and Methods (Table 1 and 2). As expected, patients
who experienced intermediate and complicated clinical courses had significantly higher
injury severity scores, ICU and hospital length of stay, noninfectious and infectious
complications, and mortality compared to those patients who had uncomplicated clinical
recoveries (p<0.001) (Table 1).

To explore if there were differences in the genomic response to severe blunt trauma that may
be associated with clinical recovery, we focused initially on the two extremes of the study
population, those patients designated as having an uncomplicated clinical recovery versus
those patients designated as having a complicated recovery. We found that there were 3,681
probe sets representing 2,435 genes whose expression over 28 days was significantly
different between patients with an uncomplicated and complicated recovery, using a FDR
adjusted probability of Q < 0.001. These genes were then filtered to include only those genes
whose expression differed by at least two fold. A total of 63 significant genes were found to
be different between patients with a complicated or uncomplicated recovery (Figure 1A and
Table 3). Of the 63 genes whose expression was found to be significantly different between
trauma patients with complicated and uncomplicated clinical recoveries, greater than two
thirds of these genes were directly related to protective immunity. In fact, the greatest
difference between complicated and uncomplicated patients was with the magnitude and
duration of suppression of genes involved in adaptive immunity pathways, most notably the
suppression of genes involved in antigen presentation (HLA-DQ, HLA-DR, HLA-DM and
CD74) and with interferon and interferon-inducible genes (IFIT 1,2,3,5, IFI44, IFI44L,
IFI6).

Next, we wanted to distill the expression values of these 63 genes to an easily
understandable and clinically applicable, single metric. To do this, we utilized the DFR
score, which we have previously shown to describe the overall genomic response of a
patient compared to the response from a reference population, in this case, age, gender and
ethnicity matched healthy controls. For each of the 96 patients classified as complicated or
uncomplicated, we calculated a DFR score based on the expression level of the 63 genes
over time (Figure 1B) (14). The genomic response curves for these two patient populations
diverge and separate by 24 hours extending for at least seven days; the differences in the
genomic scores at <12, 24 hours and days 4, and 7 were statistically significant (p<0.05 by
Mann-Whitney rank analysis). The data suggest that a composite genomic score or DFR
could be generated to identify patients by 24 hours that will go on to experience an adverse
outcome in response to trauma (Figure 1B).
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Unfortunately, neither deep sequencing nor microarrays are amenable to a rapid turnaround
time required for clinical decision making in the critically-ill. In contrast, the nanoString™

nCounter multiplex array is a rapid (12–18 hours) assay that is capable of evaluating the
expression of a large number of genes simultaneously (up to 800) for a patient and would
offer a rapid turn-around alternative to microarray (21). By modifying the quantities of
starting material, we could further reduce the analytical time to a manageable 6–10 hours.
To validate analytical variance; whether the nanoString™ technology could reproducibly
generate similar gene expression patterns, we prospectively compared the nanoString™

quantitation of gene expression with the Affymetrix U133+ v2 GeneChip™ data using ex
vivo LPS stimulation of whole human blood. Five replicates from a single sample of
unstimulated or LPS-stimulated healthy, human whole blood were assessed for expression
of the 63 genes identified above. As demonstrated in Figure 2A, both nanoString™ and
microarray platform yielded similar results for the 63 genes, and were able to segregate
samples based on whether or not the sample was stimulated with LPS. In addition, the
expression of these 63 genes were also correlated well between platforms (Figure 2B),
r=0.88 (p<0.0001), suggesting that the nanoString™ platform was as reproducible as
microarray, and could offer a rapid turn-around alternative (6–10 hrs) to lengthier
microarray analyses, which can take upwards of 3–4 days.

To further support and validate the nanoString™ platform in our trauma patient population,
we evaluated the correlation of gene expression derived from both the microarray or
nanoString™ platform of the 63 genes in the 167 trauma patients from samples taken at 24
hours after trauma. The expression of the 63 genes (Table 3) were well correlated with an r
value of 0.79 (p<0.0001) (Figure 3) between both nanoString and microarray platforms,
similar to the ex vivo LPS analyses above. These data further support the capability of using
a nanoString™ based assay, in place of microarray, to rapidly identify the 63 genes within a
trauma population.

Next, we wanted to prospectively determine if a DFR score based on the nanoString™

platform obtained in the first 24 hours, could be used to discriminate between patients that
experienced adverse clinical recoveries versus those that did not. DFR scores were
calculated for each patient at the 24 hour period, a time point that would have clinical
relevance to the subsequent management of this population (Figure 1B). Receiver operator
curves were then generated to determine the ability of the nanoString™ based DFR to
determine between either uncomplicated outcomes versus the other two groups, or
complicated outcomes versus intermediate or uncomplicated outcomes. Interestingly,
nanoString-based DFR scores could differentiate those patients who would experience a
complicated recovery from those who would go on to have either an uncomplicated or an
intermediate recovery markedly better than seen with microarray. AUC 0.625 vs 0.811
microarray vs nanoString™ respectively, p-value=0.0011 (Figure 4). Surprisingly, the
nanoString™ AUC values were also better than anatomic and physiologic predictors of
clinical course and recovery, such as new injury severity score (NISS), injury severity score
(ISS), or acute physiology and chronic health evaluation (APACHE II) metrics (Table
4)collected for these patients with p-values of 0.005, 0.0009, and 0.0011 respectively
(Figure 4) (14). As shown in Figure 4, addition of physiologic or anatomic scoring systems
to the nanoString™ DFR resulted in only minimal and nonsignificant improvements in the
AUC.

Discussion
MOF and sepsis remains a significant cause of post traumatic injury morbidity and mortality
(23, 24). Identifying severely injured patients early who will have a complicated clinical
outcome has been difficult and remains a significant clinical and therapeutic hurdle.
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Unfortunately, clinical trials for the treatment of patients with severe trauma or sepsis have
been plagued by the inability to identify patients prospectively who will or will not have a
complicated recovery and might benefit from interventional therapies. Entry criteria are
primarily physiologic and are limited to nonspecific inflammatory responses and overall
organ injury, which may be too delayed to permit intervention to affect outcome. In
addition, it is generally accepted that the well-established clinical criteria used to enter
patients into severe trauma or sepsis clinical trials includes individuals who will either not
benefit from the therapy or may actually be harmed (25). Thus being able to calculate a
rapid (<24 hr) genomic score to exclude those patients who will recover and not require
intervention, while identifying patients who will have a poor outcome will be a useful tool
for future clinical trials.

Genome-wide expression analysis offers the advantage of surveying the entire transcriptome
of a cell or tissue, and evaluating changes in expression without any pre-existing bias. Past
studies conducted by the Inflammation and Host Response to Injury Large Scale
Collaborative Research Program (Glue Grant) have strongly suggested that information
contained in the leukocyte transcriptome early after trauma could be used to discriminate
much later clinical outcomes (14, 15). Those studies identified families of genes involved in
inflammation, antigen presentation and T cell responses as being discriminatory. Similarly,
we were able to identify 63 genes whose expression was significantly different (FDR
Q<0.001 and fold change >2) between trauma patients with an uncomplicated and
complicated outcome (Table 3 and Figure 1).

Although a multiplex genomic approach to patient identification remains attractive, there are
a number of technical challenges that must be overcome before a genomic test can be readily
used in a critical care setting. There are three main hurdles. First, there must be techniques
that can readily and easily isolate the cell populations of interest from critically ill patients,
in this case total blood leukocytes. Second, microarray and sequencing approaches are both
too time consuming and expensive to be used routinely and still suffer from a lack of clinical
validation and reproducibility (26). Third, genomic data must be reduced to a single metric
that can be effectively interpreted and applied quickly. In severely traumatized or septic
patients, this all must be accomplished within a matter of hours, not days or weeks.

We have successfully addressed all three issues. An alternative simpler and more rapid
approach is the use of microfluidics chambers that lyse erythrocytes and yield a pure
leukocyte population(27). We have used these in the past in critically ill patients, and
demonstrated that in ten minutes, we can obtain yields of total leukocytes that give genomic
signals comparable to that seen with macroscale techniques (28). Second, the nanoString™

multiplex array was selected as an alternative to microarray because of its ability to rapidly
assay for genomic expression, and when appropriately modified, can generate quantitative,
reproducible results within 8–12 hours. In addition, because the hybridization technology
does not require prior sample amplification, the mRNA concentration response curves
should theoretically be more linear and result in less data compression than seen with
microarrays. This increase in dynamic range offered by the nanoString™ platform may be
one of the reasons why there is a difference in the discriminatory ability between the two
platforms as shown in Figure 4. Regardless, we confirm that the genomic expression
patterns for the 63 genes obtained by microarray correlates well with the expression values
obtained by the using the nanoString™ platform both in vitro (Figure 2B), as well as in vivo
in the original 167 consortium patients who experienced severe blunt trauma (Figure 3) (13).
Finally, we used a genomic tool developed by the Program that consolidates all of the
information in the 63 genes equally into a single metric (14). Importantly, when the gene
expression profile of each patient was distilled to a single genomic score, these scores were
able to discriminate patients that developed a poor clinical outcome from those who
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recovered (Figure 4). Additionally, the calculated genomic score is a linear, normally
distributed value in this cohort, and it would be very easy to reset the thresh-hold to capture
a less complicated clinical trajectory if one wished to do so. The precision of the assay
decreases as the thresh-hold is reduced, but it can be used to capture a larger at-risk
population.

There are, however, a number of important considerations. First, this is a retrospective
analysis and the genes were selected by identifying those whose expression differed over the
28 day study period. The DFR generated to predict clinical trajectory over the first 24 hours
is therefore not independently obtained, and must be validated prospectively before its value
can be properly evaluated. Second, DFR scores are based on peripheral leukocyte expression
from a relatively small cohort of 167 severely injured trauma patients without significant
head injury. As a result, the ability to extend these results to other patient populations
currently remains unknown. These caveats aside, the value and importance presented within
this report rests with the ability to develop the infrastructure for integrating genomics into a
rapid prognostic for the assessment of the critically ill patient.

It is generally accepted that past randomized controlled interventional trials have failed in
this patient population in large part due to the heterogeneity of the patient population as well
as the inability to select the sickest patient with the highest mortality who have been shown
to be the ones to ultimately benefit from therapy (25). The clinical implications of this lie in
the fact that this platform could ultimately be coupled to a therapeutic intervention that is
aimed at the subset of patients predicted to have a complicated outcome, thus eliminating
those patients expected to recover regardless of intervention.

Along the same lines, such a metric could actually be used to determine response to therapy.
Of note, two thirds (42) of the 63 genes identified as being differentially expressed between
uncomplicated and complicated trauma patients are genes known to be associated with
adaptive immunity in general, and specifically are known to be associated with interferon
signaling., We found that the expression of these genes was suppressed in trauma patients
with complicated outcomes. Such findings imply that this battery of genes might not only be
useful in identifying patients at risk of complications after trauma, but also who are
responsive to biological response modifiers (29). In this manner, the metric may be useful at
identifying those patients who might benefit from therapies that target adaptive immunity
such as IL-7, IL-15, IFNγ, and GITR agonists, and also those patients who respond
appropriately to the treatment modality.

Importantly, we describe the development of a novel rapid turn-around multiplex array that
can be performed from blood sampling within a 12–18 hour time frame and integrated into a
single metric or score that can predict long term outcome and identify patients in whom
interventional therapies may be beneficial. Though these findings will need to be validated
in a larger multicenter trial, a nanoString™ DFR score based on the expression of the 63
gene subset has better discriminatory ability compared to other established clinical
predictors based on organ failure or injury (Table 4 and Figure 4). This would allow
clinicians to identify patients who will be at risk for developing adverse clinical outcomes,
thus allowing them to focus care on prevention of complications such as secondary
infections and multisystem organ failure.
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Figure 1.
Heat map and calculated DFR for the 63 genes that distinguish clinical trajectory. Using a
false discovery adjusted probability of <0.001 and a 2-fold difference in expression, the
temporal pattern of expression of 63 genes that differed between patients with the two
clinical outcomes is presented. A. Cluster analysis of the two cohorts B. Summary of the
difference from reference (DFR) score calculated for each patient in the uncomplicated and
complicated cohorts at each time point. Statistical analysis at each time point (0, 1, 4, 7, and
14 days) revealed significant differences in DFR between complicated and uncomplicated
patients (p<0.05, Mann Whitney Rank analysis).
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Figure 2.
Comparison of gene expression patterns and variation in human whole blood ex vivo
stimulated with bacterial lipopolysaccharide. A single sample was divided and one-half
stimulated with 100 ng/ml of E. coli LPS for two hours at 37° C. Total RNA was isolated
from the two preparations and divided into ten equal aliquots, five analyzed by microarray,
and five analyzed with the nanoString™ technology. A and B. Heat maps of the hierarchical
clustering of the gene expression data for the two technologies, revealing that both
methodologies easily detected the change in gene expression changes induced by LPS
(U=Unstimulated samples; S=Stimulated samples) C. Pearson correlation coefficients for
the change in gene expression of the 63 genes produced by the LPS stimulation. Values
represent fold change over control expression values.
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Figure 3.
Pearson correlation between the microarray and nanoString™ expression level of the 63
genes found to be differentially regulated between uncomplicated and complicated patient
cohorts. Values represent fold change over control expression values.
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Figure 4.
Receiver operator curves (ROC) demonstrating the ability of nanoString™ versus microarray
platforms to discriminate between clinical outcome. A. ROC curves for comparison of
univariate analysis. B. ROC curves for comparison of multivariate analysis. AUC for
nanoString DFR is significantly higher than AUC for ISS, NISS, and microarray models,
with p=0.005, 0.0009, and 0.0011 respectively. Adding nanoSpring DFR to APACHE II and
ISS model increases AUC significantly from 0.66 to 0.81 (p=0.0026). AUC for model with
APACHE II, ISS, and nanoString DFR is significantly higher than AUC of the model with
APACHE II, ISS, and mcicroarray DFR (p=0.0008).
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Table 1

Separation of “Inflammation and Host Response to Injury” severe trauma cohort into tertiles.

Patient outcome designation

Uncomplicated Marshall < 6

TTR <4 days

Intermediate Marshall < or >6

TTR 4–14 days

Complicated Marshall >6

TTR >14 days
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Table 2

Patient demographics and outcomes. Table summarizes the demographics and outcome variables in the 167
patients with severe blunt trauma. The trauma patients were assigned to three subgroups based on their
extreme clinical trajectories: ‘Uncomplicated Recovery’ indicating those subjects who did not develop MOF
(MOF <6) and had a TTR of less than 4 days, ‘Intermediate Recovery’ indicating those patients that had MOF
scores < or > 6 and a TTR of 4 to 14 days, and ’Complicated Recovery’ where patients had MOF and a time to
recovery in excess of 14 days. Values represent the mean ± S.E.M., with median and middle quartiles in
parentheses. Demographic and outcome data were analyzed by one-way ANOVA with a Tukey’s or Kruskall-
Wallis (‡) post hoc analysis, or Chi-square (†), where appropriate. Significance was designated at the p<0.05
level of confidence.

Uncomplicated Recovery, n=55 Intermediate Recovery, n=71 Complicated Recovery, n=41 Probability

Demographics

Age 33 ± 2 (32, 21–43) 35 ± 2 (34, 25–45) 34 ± 2 (34, 26–42) p=0.515‡

Sex (M/F) 30/25 47/24 30/11 p=0.151†

APACHE II 24.4 ± 0.8 (25, 21–29) 28.4 ± 0.6 (29, 24–32) 29.4 ± 0.8 (29, 26–33) p<0.001

ISS 26.2 ± 1.8 (24, 17–35) 32.6 ± 1.5 (34, 22–42) 35.7 ± 2.0 (38, 27–42) p=0.001

NISS 32.6 ± 1.8 (29, 22–40) 36.9 ± 1.5 (34, 27–45) 39.8 ± 1.9 (41, 29–44) p=0.01‡

Total Transfusion, ml 1705 ± 172 (1400, 700–2229) 2782 ± 241 (2100, 1400–
3787)

2952 ± 423 (2150, 1050–
3500)

p<0.001‡

Total Crystalloid, ml 10544 ± 765 (9070, 7409–
12163)

13802 ± 808 (12000, 9025–
17837)

15226 ± 1530 (12935, 8728–
18683)

p<0.001‡

Worst Base Deficit −9.2 ± 0.4 (−8.9, −11.6–(−6.4)) −8.7 ± 0.6 (−8.0, −10–(−5.9)) −10.6 ± 0.8 (−10.3, −13.8–
(−6.0))

p=0.456‡

Lowest Systolic BP, mmHg 92.3 ± 3.0 (88, 80–108) 88.3 ± 2.1 (87, 78–100) 86.6 ± 3.0 (84, 77–97) p=0.233‡

Outcomes

Survival 100 % 94% (67/4) 83% (34/7) p=0.002

Maximum Marshall Score 3.0 ± 0.1 (3, 2–4) 5.5 ± 0.3 (5, 3–7) 8.8 ± 0.4 (8, 7–10) p<0.001‡

Hospital Length of Stay,
days

15.2 ± 1.7 (12, 9–18) 26 ± 1.7 (22, 17–33) 35.8 ± 3.6 (30, 23–42) p<0.001‡

ICU Length of Stay, Days 4.8 ± 0.4 (5, 3–6) 12.3 ±0.7 (11, 8–15) 25.1 ± 2.3 (21, 18–30) p<0.001‡

Time to Recovery, days 2.9 ± 0.1 (3, 2–4) 10.0 ± 1.0 (5, 3–14) 22.0 ± 0.9 (20, 18–28) p<0.001†

Noninfectious Complications 5.5 % (3/52) 64.8% (46/25) 90.2 % (37/4) p<0.001†

Nosocomial Infections 20.0 % (11/44) 64.8% (46/25) 85.4 % (35/6) p<0.001†

Surgical Site Infections 7.3 % (4/51) 22.5% (16/55) 41.5 % (17/24) p<0.001†
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Uncomplicated Recovery, n=55 Intermediate Recovery, n=71 Complicated Recovery, n=41 Probability

Ventilator Associated
Pneumonia, Cases/1000 vent
days

3.8 21.6 25.3 p<0.001†
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Table 3

Sixty three genes identified as having a different expression between patients with a complicated or
uncomplicated recovery.

Gene ID Official Name Complicated vs.
Uncomplicated Fold

Change

AGFG1 ArfGAP with FG repeats 1 2.03

ANKRD55 ankyrin repeat domain 55 3.29

ATP6V1C1 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1 2.13

CD24 CD24 molecule 2.38

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain −2.03

CDK5RAP2 CDK5 regulatory subunit associated protein 2 2.91

CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non- specific cross reacting
antigen)

2.01

CEACAM8 carcinoembryonic antigen-related cell adhesion molecule 8, CD66b 2.19

CMPK2 cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial −2.91

DACH1 dachshund homolog 1 (Drosophila) 2.04

EPSTI1 epithelial stromal interaction 1 (breast) −3.01

FLJ39051 hypothetical protein LOC399972 2.50

FOLR3 folate receptor 3 (gamma) 2.01

GALNT14 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 14
(GalNAc-T14)

2.04

GNLY granulysin −2.16

GRB10 growth factor receptor-bound protein 10 2.14

HERC5 hect domain and RLD 5 −3.27

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 2.06

HLA-DMA major histocompatibility complex, class II, DM alpha −2.25

HLA-DMB major histocompatibility complex, class II, DM beta −2.25

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 −2.57

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 −2.31

HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 −2.41

HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 −2.68

HLA-DRA major histocompatibility complex, class II, DR alpha −2.69

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 −2.48

IFI44 interferon-induced protein 44 −3.27

IFI44L interferon-induced protein 44-like −4.53

IFI6 interferon, alpha-inducible protein 6 −2.68

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 −6.96

IFIT2 interferon-induced protein with tetratricopeptide repeats 2 −2.99

IFIT3 interferon-induced protein with tetratricopeptide repeats 3 −3.23

IFIT5 interferon-induced protein with tetratricopeptide repeats 5 −2.19

IL1R1 interleukin 1 receptor, type I 2.06
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Gene ID Official Name Complicated vs.
Uncomplicated Fold

Change

IL1R2 interleukin 1 receptor, type II 2.69

ISG15 ISG15 ubiquitin-like modifier −2.48

LCN2 lipocalin 2 2.43

LOC100127983 hypothetical protein LOC100127983 2.03

LRG1 leucine-rich alpha-2-glycoprotein 1 2.20

LTF lactotransferrin 2.23

MIAT myocardial infarction associated transcript (non-protein coding) 2.35

MMP8 matrix metallopeptidase 8 (neutrophil collagenase) 4.2

MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 −2.68

NAIP NLR family, apoptosis inhibitory protein 2.33

NSUN7 NOL1/NOP2/Sun domain family, member 7 3.03

OAS1 2′,5′-oligoadenylate synthetase 1, 40/46kDa −2.04

OAS2 2′-5′-oligoadenylate synthetase 2, 69/71kDa −2.11

OAS3 2′-5′-oligoadenylate synthetase 3, 100kDa −2.46

OLAH oleoyl-ACP hydrolase 5.82

OLFM4 olfactomedin 4 3.61

PCOLCE2 procollagen C-endopeptidase enhancer 2 2.77

PDGFC platelet derived growth factor C 2.04

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 −2.27

PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) −2.64

RSAD2 radical S-adenosyl methionine domain containing 2 −4.47

SIPA1L2 signal-induced proliferation-associated 1 like 2 2.01

SLC26A8 solute carrier family 26, member 8 2.23

TCN1 transcobalamin I (vitamin B12 binding protein, R binder family) 2.19

TDRD9 tudor domain containing 9 3.29

TGFBI transforming growth factor, beta-induced, 68kDa −2.14

THBS1 thrombospondin 1 2.06

VNN1 vanin 1 3.14

XAF1 XIAP associated factor 1 −2.58
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Table 4

Comparison of microarray and nanoString™ DFR to established clinical predictor models of outcome with
corresponding area under the curves (AUC) and their 95% confidence interval values for each multivariable
model.

Complicated/intermediate vs. uncomplicated

Variable AUC (95% CI)

nanoString™ DFR 0.784 (0.702, 0.867)

Microarray DFR 0.801 (0.721, 0.88)

APACHE II 0.729 (0.637, 0.82)

ISS 0.65 (0.544, 0.756)

NISS 0.638 (0.531, 0.744)

APACHE II+ISS Model 0.75 (0.655, 0.844)

APACHE II+ISS Model+nanoString DFR Model 0.819 (0.742, 0.896)

Complicated vs. uncomplicated/intermediate

Variable AUC (95% CI)

nanoString™ DFR 0.811 (0.729, 0.893)

Microarray DFR 0.625 (0.514, 0.736)

APACHE II 0.6 (0.49, 0.709)

ISS 0.621 (0.512, 0.729)

NISS 0.587 (0.477, 0.697)

APACHE II+ISS Model 0.659 (0.56,0.757)

APACHE II+ISS Model+nanoString DFR Model 0.811 (0.731,0.892)
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