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in a number of plant foods. Of these foods, chocolate is very rich

in flavan 3�ols as flavan 3�ol monomers, (+)�catechin and (−)�

epicatechin, and the oligomers as procyanidins. There is evidence

that cacao products containing flavan 3�ols have the potential to

contribute to the risk reduction of cardiometabolic disorders

according to recent epidemiological or intervention studies. This

review focuses on recent advances in research on the ability of

flavan 3�ols to reduce the risk of cardiovascular disease as a result

of improving metabolic syndrome risk factors and these mecha�

nisms.
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IntroductionFlavan 3-ols, a type of polyphenolic substance, are distributed
in a number of plant foods and supplements such as cacao

beans, red wine, beer, berries, apples, black soy bean and French
maritime pine bark. Of these foods, chocolate is the most abundant
flavan 3-ols containing food. As shown in Fig. 1, these include the
flavan 3-ol monomers, (+)-catechin and (−)-epicatechin, and the
oligomers, B-type flavan 3-ols, such as procyanidin B2 (dimer),
procyanidin C1 (trimer), and cinnamtannin A2 (tetramer) that are
linked by C4–C8 bonds.(1–3) It has been reported that chocolate
contains oligomers ranging from dimers to decamer flavan 3-ols.(4)

Recent studies have suggested that chocolate or flavan 3-ols
have a positive influence on human health, due to antioxidant,(5,6)

anti-inflammatory,(7,8) and anti-thrombotic effects.(9) There is
also evidence that cacao products containing flavan 3-ols have
the potential to contribute to the prevention of cardiometabolic
disorders.(10) This review focuses on recent advances in research
on the ability of flavan 3-ols to reduce the risk of cardiovascular
disease as a result of improving metabolic syndrome risk factors.

Inverse Association of Chocolate Intake and the Risk of
Developing Cardiovascular Diseases

The Kuna, an indigenous group who lives predominantly on
small islands off the coast of Panama consume a large amount of
natural cocoa drinks, and are nearly free of hypertension and
cardiovascular disease. In contrast, Kuna who migrate to Panama
urban sites lose this advantage, as they are no longer able to
maintain their habit of drinking cocoa.(11) Recent epidemiological
evidence suggests that ingestion of flavan 3-ols monomers reduces
the risk of coronary heart disease.(12,13) These reports showed a

strong inverse association between intake of (+)-catechin and
(−)-epicatechin as flavan 3-ols monomers and death from coro-
nary heart disease. Epidemiological evidence also suggests that
ingestion of chocolate reduces the risk of cardiovascular diseases
such as stroke and cardiometabolic diseases.(14,15) Buitrago-Lopez
et al.(14) using six cohort studies and one cross-sectional study
showed that the highest level of chocolate consumption was
associated with a 37% reduction in cardiovascular disease (rela-
tive risk 0.63, 95% CI 0.44–0.90) and a 29% reduction in stroke
compared with the lowest levels (Fig. 2). Larsson et al.(15) also
reported a meta-analysis of 5 studies that showed the multivariable
relative risk of stroke was 0.83 (95% CI 0.70–0.99) for the
highest quartile of chocolate consumption (median 62.9 g/week)
compared with the lowest quartile (median 0 g/week). Based on
observational evidence, these results suggested that the level of
chocolate consumption was associated with a substantial reduc-
tion in the risk of cardiovascular disorders.

Association of Ingestion of Chocolate and Metabolic
Syndrome Risk Factors

Numerous randomized, controlled trials (RCT) have investi-
gated the effects of chocolate or cocoa products, especially dark
chocolate, on metabolic syndrome risk factors such as hyper-
tension,(16,17) vascular endothelial dysfunction,(18,19) dyslipid-
emia,(20,21) and glucose intolerance.(22,23) As shown in Table 1,
seven meta-analyses of chocolate intervention trials(24–30) have
been reported recently. Hooper et al.(30) analyzed the data of
1297 subjects in 42 acute or short-term chronic RCTs and showed
that insulin resistance (HOMA-IR: −0.67; 95% CI: −0.98, −0.36)
was improved by consumption of chocolate or cocoa due to
significant reductions in serum insulin. They also reported that
flow-mediated dilatation (FMD) improved after chronic (1.34%;
95% CI: 1.00%, 1.68%) and acute (3.19%; 95% CI: 2.04%,
4.33%) chocolate ingestion. Reductions in diastolic blood pres-
sure (BP; −1.60 mmHg; 95% CI: −2.77, −0.43 mmHg) and mean
arterial pressure (−1.64 mmHg; 95% CI: −3.27, −0.01 mmHg),
and marginally significant improvements in LDL (−0.07 mmol/l;
95% CI: −0.13, 0.00 mmol/l) and HDL cholesterol levels (0.03
mmol/L; 95% CI: 0.00, 0.06 mmol/l) were also observed in the
study. These data are consistent with the beneficial effects of
cocoa products on metabolic syndrome risk factors shown in
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Fig. 1. Chemical structures of flavan 3�ols in chocolate.(1–3)

Fig. 2. Relative risks for cardiovascular disease, heart failure, and stroke in adults with higher levels of chocolate consumption compared with
lower levels. Reproduced from (14) with permission.
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Table 1. Effect of chocolate on cardiovascular health: systematic reviews and meta analyses

n 
(study)

n 
(subjects)

Hooper L, Kay C, 
Abdelhamid A, Kroon PA, 
Cohn JS, Rimm EB, 
Cassidy A.(30)

Am J Clin Nutr 
2012; 95: 740–751.

Effects of chocolate, cocoa, and 
flavan�3�ols on cardiovascular 
health: a systematic review and 
meta�analysis of randomized trials

42 1297 HOMA�IR: −0.67; 95% CI: −0.98, −0.36 
chronic FMD: 1.34%; 95% CI: 1.00%, 1.68%  
acuteFMD: 3.19%; 95% CI: 2.04%, 4.33%  
MBP: −1.64 mmHg; 95% CI: −3.27, −0.01 mmHg  
LDL: −0.07 mmol/l; 95% CI: −0.13, 0.00 mmol/l  
HDL: 0.03 mmol/l; 95% CI: 0.00, 0.06 mmol/l

Shrime MG, Bauer SR, 
McDonald AC, 
Chowdhury NH, 
Coltart CE, Ding EL.(29)

J Nutr 2011; 
141: 1982–1988.

Flavonoid�rich cocoa consumption 
affects multiple cardiovascular risk 
factors in a meta�analysis of short�
term studies

24 1106 SBP: −1.63 mmHg (p = 0.033)  
LDL: −0.077 mmol/l (p = 0.038)  
HDL: 0.046 mmol/l (p = 0.037)  
HOMA�IR: −0.94 points (p<0.001)  
FMD: 1.53% (p<0.001)

Tokede OA, Gaziano JM, 
Djoussé L.(28)

Eur J Clin Nutr 
2011; 65: 879–886.

Effects of cocoa products/dark 
chocolate on serum lipids: a meta�
analysis

10 320 TC: −6.23 mg/dl (−11.60, −0.85 mg/dl)  
LDL: −5.90 mg/dl (−10.47, −1.32 mg/dl)  
HDL: −0.76 mg/dl (−3.02–1.51 mg/dl)  
TG: −5.06 mg/dl (−13.45–3.32 mg/dl)

Ried K, Sullivan T, 
Fakler P, Frank OR, 
Stocks NP.(27)

BMC Med 
2010 Jun 28; 8: 39.

Does chocolate reduce blood 
pressure? A meta�analysis

13 288 SBP: −3.2 +/− 1.9 mmHg (p = 0.001)  
DBP: −2.0 +/− 1.3 mmHg (p = 0.003)

Jia L, Liu X, Bai YY, Li SH, 
Sun K, He C, Hui R.(13)

Am J Clin Nutr 
2010; 92: 218–225.

Short�term effect of cocoa product 
consumption on lipid profile: a meta�
analysis of randomized controlled 
trials

8 215 TC: 5.82 mg/dl (95% CI: −12.39, 0.76; p = 0.08)  
LDL: −5.87 mg/dl (95% CI: −11.13, −0.61; p<0.05)

Desch S, Schmidt J, 
Kobler D, Sonnabend M, 
Eitel I, Sareban M, 
Rahimi K, Schuler G, 
Thiele H.(26)

Am J Hypertens 
2010; 23: 97–103.

Effect of cocoa products on blood 
pressure: systematic review and 
meta�analysis

10 297 MBP: −4.5 mmHg (−5.9–−3.2, p<0.001)  
SBP: −2.5 mmHg (−3.9–−1.2, p<0.001)

Taubert D, Roesen R, 
Schömig E(25)

Arch Intern Med 
2007; 167: 626–634.

Effect of cocoa and tea intake on 
blood pressure: a meta�analysis

5 173 MBP: −4.7 mmHg (−7.6–−1.8 mmHg; p = 0.002)  
SBP: −2.8 mmHg (−4.8–−0.8 mmHg; p = 0.006)

Fig. 3. Structure of (–)�epicatechin metabolites. (A) 3'�O�Methyl�(–)�epicatechin, (B) (–)�epicatechin�7�O�glucuronide, (C) 3'�O�Methyl�(–)�epicatechin�
7�O�glucuronide, (D) (–)�epicatechin�3'�O�glucuronide, (E) 4'�O�Methyl�(–)�epicatechin�3'�O�glucuronide. Chemicals A, B and C were obtained from
rat urine, D and E were obtained from human.
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short-term intervention trials. However, further larger and longer-
duration trials are required to confirm the potential cardiovascular
benefits of cocoa flavan-3-ols.

Bioavailability of Flavan 3�ol

Numerous reports have investigated the bioavailability of
flavan 3-ols. Flavan 3-ols monomers, such as (−)-epicatechin and
(+)-catechin are well absorbed, and are metabolized mainly in the
small intestine or liver, forming sulfate, glucuronide or methylated
metabolites through the action of sulfotransferases (SULT),
uridine-5'-diphosphate glucuronosyltransferases (UGTs) and
catechol-O-methyltransferases (COMT),(31) respectively. Non-
metabolized flavan 3-ol monomers are therefore rarely detected
in the blood. We provided evidence that the chemical structure of
(−)-epicatechin glucuronide, a major metabolite of (−)-epicate-
chin, was different between human and rats(Fig. 3).(32) The anti-
oxidative activities of those metabolites was also shown to be
reduced in metabolites derived from human biomaterials.(33)

In contrast, there are numerous feeding studies on animals and
humans that demonstrate polymeric epicatechin as procyanidins
are not absorbed.(34) For example, we showed that only about 0.5%
of the epicatechin dimer, procyanidin B2, is absorbed,(35) with the
majority passing unaltered into the large intestine where it is
catabolized by colonic microflora to a diverse range of phenolic
acids(36,37) including 3-(3-hydroxyphenyl)propionic acid and 4-O-
methylgallic acid.(38) These acids are then absorbed into the
circulatory system and excreted in the urine. It is possible the

biological effects of procyanidins described above are attributable
to these phenolic acids, although there is a lack of detailed
information in this area.

Flavan 3�ols Bioactivity: In Vitro Studies

As described above, despite the bioavailability of flavan 3-ols
being very low, there has been a large number of in vitro studies
to examine improvements in metabolic syndrome risk factors
following the ingestion of these compounds. Studies using cell
culture or isolated organs showed that the nitric oxide (NO)
radical, a potent endothelium dilatation factor, and endothelial
nitric oxide synthase were increased by the addition of flavan
3-ols.(39–41) However, almost all these investigations lacked
physiological significance as the parent compounds rather than the
metabolites were used at high levels than those achieved in blood
following oral administration of flavan 3-ols. Several recent
studies have investigated flavan 3-ols-conjugated metabolites in
mammals and microbial degradation products, with one study
showing that O-methylated epicatechin inhibited NADPH oxidase
in the endothelium.(42) Phenolic acids, which are metabolites of
colonic fermentation, have also been reported to possess certain
bioactivities.(43,44) Unfortunately, biological significance was also
not achieved in these studies due to the high dose of metabolites
used in the experiments. Taken together, these studies suggest that
absorbed procyanidins, catechins or phenolic acids contributed
only a portion of the improvement in metabolic syndrome risk
factors.

Table 2. Chololate consumption frequency predicts lower BMI: regression results(45)

Adjustment model
Chocolate consumption frequency, association with BMI

δ (SE) p value

Unadjusted –0.142 (0.053) 0.08

Age and sex adjusted –0.126 (0.053) 0.02

Age, sex and activity adjusted –0.130 (0.052) 0.01

Age, sex and calorie adjusted –0.146 (0.059) 0.01

Age, sex and satfat adjusted –0.190 (0.059) 0.001

Age, sex, satfat and CES�D adjusted –0.191 (0.059) 0.001

Age, sex, satfat, fruite and vegetable, and CES�D adjusted –0.201 (0.060) 0.001

Age, sex, satfat, fruite and vegetable, and CES�D and calories adjusted –0.208 (0.060) 0.001

Fig. 4. VO2 (A), VCO2 (B) and energy expenditure (C) in rats fed control or 0.2% flavan 3�ols containing diet. Values are mean and SD. Significantly
different from control, *p<0.05.
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Flavan 3�ols Bioactivities—a New Angle of Observation

A study in over 1000 American men and women showed a
negative correlation between the frequency of chocolate consump-
tion and body mass index (BMI) (Table 2).(45) Taub et al.(46) also
reported that ingestion of chocolate stimulated mitochondrial
biogenesis of skeletal muscle in patients with type 2 diabetes or
heart failure. We showed recently that repeated ingestion of the
flavan 3-ols fraction influenced energy expenditure in rats.(47) In
that study, the animals were fed for 2 weeks with either a normal
diet or one containing 0.2% flavan 3-ols derived from cacao. At
the end of the experimental period, energy expenditure was
estimated by an indirect calorimetric method that measured

oxygen consumption (VO2) and carbon dioxide excretion (VCO2)
for 22 h. As shown in Fig. 4, total O2 consumption was increased
significantly in the flavan 3-ols group compared with controls. As
a consequence, total energy expenditure also increased signifi-
cantly in the flavan 3-ols group. We observed that repeated
ingestion of flavan 3-ols reduced mean blood pressure to the
same degree as that reported in published meta-analyses. In
contrast, a single administration of flavan 3-ols in rats was shown
to cause an immediate elevation in blood pressure and heart
rate leading to increased blood flow and recruitment of capillaries
in skeletal muscle (Table 3)(48). In addition, studies by Yamashita
et al.(49) demonstrated that flavan 3-ols prevented glucose intoler-
ance and obesity by promoting translocation of glucose transporter

Table 3. Influence of single oral administration of cocoa or flavan 3�ols on microcirculation in rat cremaster muscle

Each value represnts the mean ± SD. Significantly difference from vehicle; *p<0.05, **p<0.01.

n
ΔRBC velocity 

(μm/s)
Δnewly recruited 

capillary (number)
Δheart Rate 
(beats/min)

Δmean blood pressure 
(mmHg)

Vehicle 8 5 min 1.2 ± 2.6 4.3 ± 0.8 –2.1 ± 1.8 –4.6 ± 4.3

20 min –0.6 ± 3.1 8.6 ± 3.1 3.2 ± 8.2 2.1 ± 3.6

Cocoa 8 5 min 61.2 ± 23.3** 8.2 ± 1.3 7.3 ± 3.6 14.2 ± 9.6

20 min 116 ± 26.2** 19.6 ± 5.6** 12.2 ± 4.2* 30.2 ± 7.8*

Flavan 3�ols 8 5 min 58.4 ± 29.7** 7.6 ± 1.4 6.3 ± 2.8 13.8 ± 8.3

8 20 min 98.6 ± 35.6** 19.1 ± 4.2** 14.6 ± 3.1* 28.9 ± 8.8*

Fig. 5. The results indicated these recent reports were summarized as Table 5. Hypotensive effect was shown by oral administrated flavan 3�ols
through induced endothelial nitrogen oxide synthase (eNOS) expression. In skeletal muscle, enhancement of energy expenditure was induced
by oral administration of flavan 3�ols, it resulted activation of AMPK. AMPK activation enhanced both transcription and translocation of glucose
transporter type 4 (GLUT4), resulting acceleration of glucose uptake. AMPK might be activated peroxisome�proliferator� activated receptor
coactivator 1 (PGC1α) which was the key factor of mitochondrial biogenesis. Improvement of dyslipidemia or BMI lowering activity seen in RCT or
epidemiological studies also might be induced by such mitochondria biogenesis promoting effect.
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4 and phosphorylation of AMP-activated protein kinase (AMPK)
in the plasma membrane of skeletal muscle and brown adipose
tissues.
These results in recent reports are summarized in Fig. 5. A

hypotensive effect is produced by the oral administration of flavan
3-ols that induced expression of endothelial nitrogen oxide syn-
thase (eNOS), while this effect is unclear in a point whether this
effect was produced by metabolites of monomers in circulating
blood or oligomers that remained in the gastrointestinal tract.
In skeletal muscle, enhancement of energy expenditure is induced
by oral administration of flavan 3-ols following with AMPK
activation. AMPK activation enhanced both transcription and
translocation of glucose transporter type 4 (GLUT4), resulting in
acceleration of glucose uptake. It has been shown that AMPK
also activates peroxisome-proliferator-activated receptor coacti-
vator 1(PGC1α) which is a key factor in mitochondrial biogenesis.
Improvement of dyslipidemia or lowering of BMI in RCT or

epidemiological studies may also be induced by this mitochondrial
biogenesis promoting effect. On the basis of these results, recent
studies have attempted to define the mechanism responsible for
the beneficial effects of flavan 3-ols from a new perspective.

Conclusion

In conclusion, flavan 3-ols may improve hypertension, dys-
lipidemia, insulin resistance, and obesity induced by inappropriate
daily habits. However, further studies are required to elucidate the
mechanisms responsible for the risk reduction of cardiovascular
diseases caused by flavan 3-ols.
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