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Abstract
In this issue of Science Translational Medicine, Tanas and colleagues describe a disease-defining
genetic alteration for the vascular cancer epithelioid hemangioendothelioma (EHE). The resulting
EHE-associated fusion gene encodes an aberrantly expressed putative transcription factor. This
molecular information is the latest in a series of genetic discoveries that aid in cancer diagnosis
and may pave the way to targeted therapeutic agents.

In the ancient Chinese text entitled The Art of War, author Sun Tzu writes that a key step to
achieving victory is to “know thy enemy” (1). One of the challenges in the war on cancer
has been in understanding the roots of this complex disease, which represents a multitude of
neoplastic illnesses with different underlying genetic alterations. Cancer is commonly
defined as a disease of the tissue of origin (for example, cancer of the colon, breast, or lung)
and of specific cell types (carcinoma, sarcoma, etc.). Certain cancer subtypes have been
classified by immunohistochemical labeling of marker proteins that are differentially present
in selected tumors. However, conventional pathological analyses alone often cannot
precisely identify the underlying tumor type, nor can they fully predict why individual
patients respond to certain therapies or can display markedly different prognoses. Given the
high complexity of this disease, one might expect that an intricate understanding of human
cancer and, thus, disease management might only be possible when the underlying genetic
changes are fully elucidated. A recent flurry of genome-wide sequencing analyses have
revealed that tumors possess an underlying wealth of tumor-specific (somatic) genetic
alterations that can be useful for improved tumor classification, appropriate therapeutic
stratification, and disease monitoring.

In this issue of Science Translational Medicine, Tanas and colleagues describe the
identification of a novel gene fusion between the WWTR1 and CAMTA1 genes in EHE (2).
This study elegantly demonstrates that this gene fusion, resulting from a reciprocal t(1;3)
(p36;q25) translocation, is present in virtually all EHEs but absent from other vascular
neoplasms. This is an important finding because EHEs are difficult to distinguish clinically
from other vascular tumors. Using this molecular translocation, the authors provide an
immediately useful fluorescence in situ hybridization (FISH) test for accurate identification
of EHE.

The WWTR1/CAMTA1 fusion gene consists of the vascular tissue–specific WWTR1
promoter and part of the gene that encodes the NH2 terminus of WWTR1 (a protein that is
highly expressed in endothelial cells), fused in frame to the part of the CAMTA1 gene that
encodes the COOH terminus of the brain-specific CAMTA1 transcription factor. Although
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the function of the resulting fusion protein is not known, it is likely that the aberrant
expression of CAMTA1 in vascular tissue is crucial to the biology of this disease.

The observations by Tanas and colleagues (2) represent the latest in a series of recent
discoveries of genomic alterations identified in human cancers. With the advent of unbiased
approaches for massively parallel sequencing of tumor genomes and transcriptomes, a
variety of previously unrecognized genes are now emerging as cancer gene “mountains,” or
recurrently mutated genes in specific tumors (Table 1). One characteristic of these
mountains that distinguishes them from common cancer genes, such as KRAS or TP53, is
that they appear to be mutated predominantly in one or a few tumor types.

Analogous to the specificity of the WWTR1/CAMTA1 rearrangement for EHEs, mutations
in the isocitrate dehydrogenase genes IDH1 and IDH2 have been found in a significant
fraction of gliomas and acute myeloid leukemias (AML) but rarely in cancers of epithelial or
other origins (3–5). A similar pattern emerges for many of the genes in Table 1, including
TMPRSS/ERG rearrangements in prostate cancer (6), mutations in ARID1A (which encodes
a SWI/SNF transcriptional regulatory protein) in ovarian clear cell carcinoma (7, 8),
alterations of the chromatin remodeling genes DAXX and ATRX genes in pancreatic
neuroendocrine tumors (9), mutations in PBRM1 (which encodes part of the SWI/SNF
chromatin-remodeling complex) in clear cell renal cancer (10), and alterations in the histone
methyltransferase–encoding MLL2 gene in medulloblastomas and non-Hodgkin lymphoma
(11, 12). The mechanism for this tumor specificity is unknown but may be related to the
function of the products of altered genes in cell types that give rise to these tumors, such as
high expression of WWTR1 in endothelial cells or the androgen-regulated spatial proximity
of the TMPRSS and ERG genes in prostate cancer cells (2, 13).

The specificity of these gene alterations has provided new opportunities for cancer diagnosis
and prognosis (Fig. 1). For example, the discovery of alterations in IDH genes has provided
a specific marker to distinguish between primary and secondary glioblastomas (5). The
precise genetic alterations can be detected by direct sequencing of tumor tissue DNA at
several regions of the IDH gene sequence that constitute mutational hotspots. Sequence
analysis of such selectively mutated genes is also useful in classifying visibly
indistinguishable tumor subtypes that have different clinical outcomes. For example, IDH
mutations have been shown to represent an independent prognostic marker for improved
survival in patients with gliomas (3, 5). Similarly, mutations in ATRX or DAXX identify a
subset of pancreatic neuroendocrine patients with improved clinical outcomes (9).
Surprisingly, the same gene may have different effects in different tumor types, as mutations
in IDH and in the DNA methyltransferase–encoding DNMT3A gene have been reported to
be indicators of worse prognosis in patients with AML (14, 15).

In addition to identifying tumor subtypes with different courses of natural progression,
tumor-specific alterations may be useful in stratifying patients for specific therapies. In some
cases, the proteins encoded by the altered genes provide direct therapeutic targets. the classic
example of such rational therapeutic targeting is the protein kinase inhibitor imatinib
(Gleevec) and its use in CML patients with the BCR/ABL translocation. More recently, lung
cancers and neuroblastomas that contain alterations in the ALK tyrosine kinase provide an
exciting use for new protein kinase inhibitors such as crizotinib (16–22). Mutations in IDH
genes have spurred efforts to identify compounds that inhibit its newly acquired metabolic
function (23, 24). Alterations in BRAF genes have led to the development of various
targeted compounds that block the aberrant protein kinase activity of the encoded mutated
signaling protein; the most recent of these drugs, vemurafenib, has shown dramatic clinical
effects in patients with melanoma—the tumor type in which this gene is most frequently
mutated (25, 26). Importantly, the effect of such targeted inhibition is efficacious only in
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tumor cells that express the genetically altered version of the target gene. Given the high
expression of the WWTR1/CAMTA1 fusion gene in EHEs, it is conceivable that this gene
could serve as a useful therapeutic target if the fusion gene is required for continued
proliferation of EHEs and the targeting compounds are specific for the altered cells.

Because they are not present in normal cells, somatic alterations should be highly specific
for tumor cells and, thus, have the potential to serve as biomarkers for tumor detection and
monitoring. Mutation-associated biomarkers also could be useful for monitoring tumor
response to specific therapies, detection of residual disease after surgery, and long-term
clinical management. For example, quantitative reverse transcription–polymerase chain
reaction (qRT-PCR) measurement of BCR/ABL mRNA transcripts has provided a sensitive
method for determining the response, at the molecular level, to imatinib therapy in CML
patients (27). More broadly generalizable approaches have been developed recently with the
use of cancer-specific gene-sequence alterations (28) and genomic rearrangements (29, 30).
Tumor-specific recurrent rearrangements, such as the WWTR1/CAMTA1 translocation in
EHEs, may be particularly useful as biomarkers because these genetic disruptions can be
detected with a direct PCR-based test that analyzes the DNA sequence across the rearranged
fusion gene junction.

Although understanding the complexity of cancer provides new avenues for clinical
intervention, a number of challenges must be met before such approaches can be made
clinically practicable. First is the transfer of high-throughput genomic analyses from the
research laboratory to clinical evaluation of individual patient samples. Although such
mutational analyses can be performed on a gene-by-gene basis in clinical labs (including the
newly described FISH analysis of the WWTR1/CAMTA1 translocation), it is now possible
to routinely analyze the entire genomic landscape of each patient’s cancer (31). Although
this proposition may seem daunting, technology has reached the point at which a large
number of individual gene tests could be performed more efficiently through the
simultaneous analysis of all protein-coding genes. Such assays take full advantage of new
DNA sequencing technologies; however, substantial effort is required to make such large-
scale tests affordable, timely, and integrated in routine care.

Perhaps more important, the immense amount of data obtained by such tumor sequencing
needs to be carefully analyzed to extract bona fide somatic alterations and to interpret the
results of these molecular events from a biological and a clinical perspective. Using genomic
sequencing information for tumor diagnosis, therapeutic decision making, and clinical
monitoring will require a new generation of appropriately trained scientists and physicians
who can incorporate the ever-changing connections between genetic alterations and novel
therapies into clinical practice. Much remains to be done, but with such molecular tools, we
are on the verge of understanding the complexity of human tumors in individual patients.
Once the enemy is known, writes Sun Tzu, “a thousand battles, a thousand victories” (1).
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Fig. 1. Combating cancer
Approaches for translating cancer-genome analyses to patient care.
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Table 1

Cancer gene mountains identified through unbiased approaches.

Altered gene Tumors with specific gene alterations References

ALK Lung cancer, neuroblastoma (16–21)

ARID1A Ovarian clear cell carcinoma, endometrioid tumors (7, 8)

ATRX Pancreatic neuroendocrine tumors (9)

DAXX Pancreatic neuroendocrine tumors (9)

DNMT3A Acute myeloid leukemia (14)

FOXL2 Ovarian granulosa cell tumors (32)

IDH1 Gliomas, acute myeloid leukemia (3–5)

IDH2 Gliomas, acute myeloid leukemia (3–5)

MLL2 Medulloblastoma, non-Hodgkin lymphoma (11, 12)

NOTCH1 Head and neck cancer, chronic lymphocytic leukemia (33–35)

PBRM1 Clear cell renal cancer (10)

PPP2R1A Ovarian clear cell carcinoma, uterine carcinoma (7, 36)

TMPRSS/ERG Prostate cancer (6)

WWTR1/CAMTA1 Epithelioid hemangioendothelioma (2)
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