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Abstract
Significant progress in the interpretation of analytical ultracentrifugation (AUC) data in the last
decade has led to profound changes in the practice of AUC, both for sedimentation velocity (SV)
and sedimentation equilibrium (SE). Modern computational strategies have allowed for the direct
modeling of the sedimentation process of heterogeneous mixtures, resulting in SV size-
distribution analyses with significantly improved detection limits and strongly enhanced
resolution. These advances have transformed the practice of SV, rendering it the primary method
of choice for most existing applications of AUC, such as the study of protein self- and hetero-
association, the study of membrane proteins, and applications in biotechnology. New global multi-
signal modeling and mass conservation approaches in SV and SE, in conjunction with the
effective-particle framework for interpreting the sedimentation boundary structure of interacting
systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to
experimental data, have led to more robust and more powerful strategies for the study of reversible

Internet Resources
There are abundant resources available on the internet covering software, detailed experimental step-by-step protocols, video
instructions, and discussion forums. The following is only a small subset facilitating the application of the methods described in the
present Unit.
General practical tools to help designing AUC experiments can be found at https://sedfitsedphat.nibib.nih.gov/tools/Protocols/Forms/
AllItems.aspx, including detailed step-by-step protocols for conducting SE and SV experiments, a table with criteria for buffer
selection, a grid for SV run conditions with different optical systems, instructions for radial calibration of the interference system, and
a tutorial for the test for equilibrium. A video showing the assembly of cells can be found at http://www.jove.com/video/1530/
assembly-loading-and-alignment-of-an-analytical-ultracentrifuge-sample-cell (Balbo et al., 2009).
All methods discussed above are implemented in SEDFIT and SEDPHAT, unless otherwise stated. They can be freely downloaded
from https://sedfitsedphat.nibib.nih.gov/software/default.aspx, and an extensive online help system and documentation can be found at
http://www.analyticalultracentrifugation.com/default.htm, including a tutorial for ‘getting started’ in SEDFIT, and step-by-step
examples for the data analysis with c(s) http://www.analyticalultracentrifugation.com/examples.htm. ‘Getting started’ tools for
SEDPHAT are available at http://www.analyticalultracentrifugation.com/sedphat/concepts_for_getting_started.htm.
Tutorials on special topics of AUC and/or SEDFIT or SEDPHAT analyses can be accessed at http://
www.analyticalultracentrifugation.com/tutorials.htm. Movies illustrating the mechanism of migration o f there action boundary can be
found at https://sedfitsedphat.nibib.nih.gov/tools/Reaction%20Boundary%20Movies/Forms/AllItems.aspx.
GUSSI is are available for download at http://biophysics.swmed.edu/MBR/software.
SEDNTERP for the calculation of buffer densities and viscosities, as well as protein extinction coefficients and partial specific
volumes can be found at John Philo’s website http://www.jphilo.mailway.com/download.htm
Active discussion forums are SEDFIT-L (https://list.nih.gov/cgi-bin/wa.exe?SUBED1=SEDFIT-L&A=1), SEDPHAT-L (https://
list.nih.gov/cgi-bin/wa.exe?A0=SEDPHAT-L), and RASMB (http://rasmb.bbri.org/cgi-bin/mailman/listinfo/rasmb ).
The websites https://sedfitsedphat.nibib.nih.gov/workshop/default.aspx and http://www.analyticalultracentrifugation.com/default.htm
will have current information on upcoming workshops.
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protein interactions and multi-protein complexes. Furthermore, modern mathematical modeling
capabilities have allowed for a detailed description of many experimental aspects of the acquired
data, thus enabling novel experimental opportunities, with important implications for both sample
preparation and data acquisition. The goal of the current commentary is to supplement previous
AUC protocols, Current Protocols in Protein Science 20.3 (1999) and 20.7 (2003), and 7.12
(2008), and provide an update describing the current tools for the study of soluble proteins,
detergent-solubilized membrane proteins and their interactions by SV and SE.

Keywords
sedimentation equilibrium; sedimentation velocity; chemical equilibria; reversible interaction;
size-distribution; multi-protein complex; analytical ultracentrifugation; protein hydrodynamics

INTRODUCTION
Analytical ultracentrifugation (AUC) is a classical first-principle method of physical
biochemistry, firmly rooted in solution thermodynamics. It allows for the real-time
observation of the redistribution of proteins in dilute solution following the application of a
strong centrifugal field. In sedimentation velocity (SV), the evolution of the sedimentation
process is studied, whereas in sedimentation equilibrium (SE), the final equilibrium
distribution is examined. SV and SE are complementary and together provide an
information-rich characterization of many aspects of protein behavior in solution, including
the protein mass and size, density, hydrodynamic shape, size-distribution and purity, weak
protein interactions, specific reversible interactions, and the formation of multi-protein
complexes. Among the virtues of AUC are the absence of surfaces, the absence of label
requirements, and the powerful size resolution for protein-sized macromolecules and larger.
By adjusting the rotor speed, peptides and proteins with molar masses ranging from 100 g/
mol to 108 g/mol can be studied; furthermore the broad dynamic range of the detection
systems in combination with current data analysis strategies allows for the characterization
of interacting systems having equilibrium dissociation (Kd) between 10 nM and 10 mM
(Zhao et al., 2012; Rowe, 2011).

Current major applications in protein science include the study of peptide and protein self-
association and the characterization of oligomeric state, the characterization of
heterogeneous protein-protein interactions and multi-protein complexes with regard to the
number and size of co-existing complexes, as well as their affinity, the study of membrane
proteins in detergent solutions, and the study of protein solution conformation and ligand-
induced conformational changes.

Compared to the classical approaches, a profound change in the application of AUC has
taken place approximately a decade ago, mainly due to the confluence of three new
developments for SV: (1) Sophisticated and efficient algorithms for the precise numerical
solution of the differential equation of the sedimentation/diffusion process, which can be
applied routinely for the non-linear regression of experimental data using modern personal
computer hardware. Historically, this has been a major limitation in SV methods for most of
the previous century. (2) The introduction of mathematical tools, borrowed from modern
image analysis, for direct data fitting based on integral equations for determining an
unknown size distribution. In this manner, the level of detail of the mathematical model is
adjusted to the experimental sensitivity of the method for polydispersity and trace
impurities. (3) The adaptation of the model to accommodate the specific noise structure
displayed by SV data, which is a combination of time-invariant and radius-invariant baseline
offsets. These can now be directly determined from the least-squares fit of the data as part of
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the model. This advance avoids ‘manual’ alignment, ambiguous data subset selection, and
noise-amplifying data differencing. Consequently, the experimenter can now take full
advantage of the large number of experimental data points, leading to lower detection limits,
higher dynamic range, and an improved precision of the parameter estimates. These,
together with other developments, have spawned many new approaches for studying
mixtures of non-interacting and interacting proteins. The generalization of these concepts to
multi-signal and density-contrast global analysis has led to new tools particularly suitable
for heterogeneous protein interactions, multi-protein complexes, and membrane proteins in
detergent solution. Complementarily, a new, more physically intuitive theoretical framework
for the interpretation of the boundary structure of rapidly interacting systems was developed,
which can be used for data analysis as well as experimental planning. Furthermore, more
precise predictions of hydrodynamic friction from structure-based models are available.
New software capabilities embed all these tools.

As a consequence of these developments, the majority of AUC applications, including the
study of detergent-solubilized membrane proteins, have shifted towards the use of the SV
mode. However, fresh developments have also taken place in SE. In particular, global-
modeling capabilities have been extended, permitting a multi-signal, multi-speed global
analysis and a global density-contrast analysis. In combination with new implicit mass-
conservation constraints, these extend both the range of interacting systems and affinities
that can be measured by SE, and the size range of binding partners in heterogeneous protein
interactions.

Because the basic principles of both the instrumentation and the technique have not
changed, the present commentary is aimed at providing additional and updated information
to the previous more detailed Units for SE and SV of soluble proteins (Current Protocols in
Protein Science Units 20.3 (1999), 20.7 (2003), 7.13 (2010)), as well as SE for detergent-
solubilized membrane proteins (Current Protocols in Protein Science 7.12 (2008)).
Elements of the newer techniques were presented previously in Current Protocols in
Immunology 18.8 (2007) and 18.15 (2008) and will be referenced. A more recent detailed
introduction to SV can be found in (Schuck et al., 2010), and a review for SE can be found
in (Ghirlando, 2011). For the data analysis, we recommend our software SEDFIT and
SEDPHAT, in which are implemented all tools discussed below. It can be downloaded from
https://sedfitsedphat.nibib.nih.gov and an extensive online help system can be found at
http://www.analyticalultracentrifugation.com. Workshops on current AUC methodology are
held regularly in our laboratory at the National Institutes of Health, Bethesda, Maryland.

BASIC PRINCIPLES
For a description of the basic setup of AUC, we refer the reader to the previous Units cited
above, as well as recent reviews (Rowe, 2010; Schuck, 2012; Zhao et al., 2012).

Sedimentation Velocity Analysis of Non-Interacting Systems
Basic Theory—The basic theory is also described in Unit 20.7, but briefly recapitulated
here to provide the context and to introduce the symbols. We can define the sedimentation
coefficient s as the linear velocity u of sedimentation a protein exhibits per unit gravitational
field ω2r (with rotor angular velocity ω and distance from the center of rotation r):

Equation 1

Zhao et al. Page 3

Curr Protoc Protein Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://sedfitsedphat.nibib.nih.gov
http://www.analyticalultracentrifugation.com


It is measured in units of Svedberg, with 1S = 10−13 sec. Because it is dependent on buffer
viscosity and density, this experimental s-value (sexp) is often normalized to standard
solution conditions of water at 20° C (s20,w) according to

Equation 2

with ρ and η denoting the buffer density and viscosity, respectively, and v̄ the partial-
specific volume of the protein. The sedimentation coefficient depends on the translational
friction coefficient f and molar mass M

Equation 3

(with Avogadro’s number NA, and can be related to the Stokes radius RS). It is useful to
relate the frictional coefficient to that of an ideal, smooth, compact sphere of the same
density and mass, which leads to the frictional ratio f/f0 and to the ratio of s-values of the
observed particle and the corresponding ideal, smooth, compact sphere:

Equation 4

We note that sedimentation velocities in excess of any particle’s equivalent sphere,
ssphere, 20w, are impossible. Typically, due to frictional contribution from bound hydration
water, f/f0 -values between 1.1 – 1.2 are obtained for highly globular particles, 1.3 – 1.5 for
moderately asymmetric particles, and in excess of 1.5 for highly asymmetric particles. From
Eq. 3 we can also derive the Svedberg equation

Equation 5

, which is of key importance because it relates the sedimentation coefficient, s, and diffusion
coefficient, D, with the protein molar mass, M. It is based on the insight that, for dilute
solutions, the frictional coefficient for sedimentation is the same as that governing diffusion
(Svedberg and Pedersen, 1940).

Direct Boundary Modeling with Lamm Equation Solutions—In SV, we are not
observing single particles, but rather an ensemble of particles with a radial- and time-
dependent concentration χ(r,t). Generally, sedimentation starts with a well-mixed sample at
a uniform loading concentration χ(r,t=0)=c0. For a single class of proteins, the evolution of
the concentration for a sector-shaped cell in the centrifugal field is governed by the Lamm
equation (Lamm, 1929)

Equation 6

The lack of analytical solutions to this equation has presented a significant obstacle for fully
exploiting SV during most of the 20th century, even though numerical solutions have been
sparsely used to simulate and analyze data (Claverie et al., 1975; Dishon et al., 1967; Cox,
1965). Abundant computational resources and the introduction of highly efficient numerical
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solutions have now enabled a transformation of SV: rather than measuring the velocity of
the boundary midpoint and calculating s via Eq. 1, we can fit directly solutions of Eq. 6 to
experimental data a(r,t) in a direct, least-squares boundary model (see below). Different
strategies for solving Eq. 6 are implemented in different software packages: SEDFIT and
SEDPHAT are based on the solutions described in (Brown et al., 2008) with adaptive
adjustment to pre-determined precision. A different approach has been proposed by (Cao
and Demeler, 2005) and implemented in ULTRASCAN, but if applied as suggested by Cao
& Demeler it lacks the precision required for modeling SV boundaries of medium and large
proteins (Schuck, 2009). Examples for the evolution of concentration profiles of different
size particles are shown in Figure 1.

When experimental data are acquired using the absorbance optical (ABS) system, the radial
profiles are not always well described in terms of a temporal snapshot due to the finite
velocity of the scanner reaching higher radii with a time delay. This can produce significant
errors in the sedimentation coefficients of large proteins and protein complexes (Brown et
al., 2009). However, by evaluating the sedimentation profiles that would be measured in
scan i as χ′(r,ti) = χ(r,ti+(r−r1)/vscan) and assigning later times to larger radii than the initial
scan time stamp ti, SEDFIT and SEDPHAT are able to account for the finite scanning
velocity vscan (typically 40 μm/sec).

The use of Eq. 6 in modeling data requires a definition of the initial conditions, including the
geometric limits of the solution column, specifically the radial positions for the meniscus, m,
and the cell bottom, b. Traditionally, the assignment of m was separate from, and had to
precede, the evaluation of the scans. This was true in the pre-computer approach of plotting
the movement of the boundary midpoint log(r/m) as a function of time, which has a slope of
ω2s based on an integral form of Eq. 1. Similarly, this was true for the g(s*) transformation
(Stafford, 1992), as implemented in SEDANAL and DCDT+. However, in the modern least-
squares modeling of SV data, the meniscus is a fitted parameter and thus can be subject to
the same optimization based on the quality of fit, much like other fitting parameters.
Different groups have established that such a treatment of the meniscus parameter leads to a
well-defined estimate, which is more precise than that discerned from visual inspection of
the experimental scans (Brown et al., 2009; Besong et al., 2012; Gabrielson et al., 2007),
mainly due to the simple facts that the location of the true meniscus location is obscured by
optical imaging artifacts, and that the radial resolution of experimental scans is not
sufficiently high. Correspondingly, refining the meniscus parameter usually improves the fit
significantly and also leads to well-determined macromolecular sedimentation parameters.
Correlation of the meniscus parameter with protein sedimentation parameters of interest can
occur for very broad boundaries either of small peptide sedimentation, of data at low rotor
speeds, of SV configurations with short columns, and/or data with highly polydisperse
material or extended association schemes. For this reason, it is recommended to use
graphically determined bounds as upper and lower limits for the non-linear regression of the
meniscus parameter.

If normal high-speed SV experiments with well-formed sedimentation boundaries between
clear solvent and solution plateaus lead to optimized meniscus values at or outside these
bounds, this is usually a strong indication for the presence of convection. In this case, the
best practice is to repeat the experiment, aiming for a more thorough temperature
equilibration. However, some information can be rescued from such data by excluding some
initial scans prior to temperature stabilization and either (1) letting the meniscus position
refine to its best-fit position as determined by the progression of the boundaries after
convection has ceased (Brown et al., 2009); or (2) using a model where sedimentation is
initialized at some point after start of the sedimentation with the concentration distribution
extracted from an experimental scan at that time (Cox, 1966; Schuck et al., 1998).
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In analogy, the bottom position of the solution column can also be refined from the non-
linear regression of the data. However, this step is only necessary when the experimental
data exhibit back-diffusion in the radial range to be analyzed. Unless there are small solute
components in the sample, this is usually not the case, since the back-diffusion of proteins in
typical high-speed SV is too steep to optically image reliably, and produces concentrations
that are too high for Eq. 6 to be sensible. Thus, the steep back-diffusion sections of the data
are customarily discarded, and the bottom position may become irrelevant for the model.

Another important ingredient for modeling experimental SV data is the ability to describe
the experimental imperfections that produce signals offsetting the macromolecular
sedimentation signal of interest. For example, Figure 2 shows raw SV data acquired at a
series of time points with the interference optical (IF) detection system during the
sedimentation of a protein. Two types of offsets can clearly be discerned. (1) Time-
dependent vertical offsets of the whole signal pattern caused partly by inconsistent offsets in
the zero fringe shift assignment (which is intrinsically arbitrary due to the periodicity of the
fringe pattern), and partly by vibrations or other adventitious time-dependent changes in the
optical pathlengths on the nm scale. These offsets are termed RI noise, for ‘radius-invariant’
noise. (2) A constant radial signal pattern that is superimposed equally on all scans. This
phenomenon is caused by radius-dependent imperfections in the optical system, and can
have both elements of short and long spatial correlations. It is referred to as TI noise, for
‘time-invariant’ noise. These noise components are also present when other SV data
acquisition systems are used, even though their magnitude is smaller. For example, data
from the ABS system often have negligible RI noise, but invariably show significant TI
noise components that consist of a background profile with short spatial correlation.

Previous approaches to address these noise components have required ad hoc alignment of
scans to eliminate RI noise, e.g., from operator-selected data subsets in regions that are
thought not to change with time. To eliminate the TI noise, schemes for pair-wise
subtraction of scans were devised to eliminate the TI noise from difference data. This
approach will usually introduce some bias and invariably lead to noise amplification. This
strategy is implemented, for example, in SEDANAL and DCDT+. Recently, a more
straightforward method was introduced that does not pose any of these drawbacks, by
simply incorporating these TI and RI signal terms directly into the model as terms b(r) and
β(t), respectively (Schuck and Demeler, 1999). The latter approach rigorously honors all
degrees of freedom presented by the analysis problem, and was shown to be statistically
optimal (Schuck, 2010c). The additional linear baseline parameters can be easily solved for
when using appropriate modern optimization techniques.

The practical significance of modern noise decomposition is an increased precision,
resulting, for example, in the ability to extract reliable information from SV data at very low
signal/noise ratio and to use lower protein concentrations (such as 10 nM of a 50 kg/mol
protein (Zhao et al., 2012)). After the fit, the noise estimates can be subtracted from the raw
data to allow the visualization of the remaining macromolecular sedimentation data in the
original data space for critical visual inspection of the model and of the information content
of the data (Dam and Schuck, 2004).

To extend the description of the baselines, we can add to the SV model expressions for the
signal arising from a mismatch in the geometry of the sample and reference solution column
(solution column height) and/or of the buffer composition in the sample and reference sector
(Zhao et al., 2010). Buffer salts exhibit significant sedimentation, which can be described
extremely well with Eq. 6 (typically, with D ~ 1.4 ×10−5 cm2/s and s ~ 0.14 S for NaCl in
water at 20° C). If the resulting signal contributions from sedimentation in both sectors do
not cancel, a contribution bbuff(r,t) is superimposed on the data, usually taking the form of a
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slowly varying characteristic tilt of the baseline. The ability to include this term into the
sedimentation model, where necessary, relieves experimental constraints in the perfectness
of sample preparation and filling of the centrifugal cells (see below). When such buffer
signal offsets are present, their inclusion in the model prevents errors in the protein
sedimentation parameters, and often results in better fits with tighter confidence limits,
despite the introduction of additional sedimentation parameters for the co-solvents. Despite
this newfound ability to computationally compensate for meniscus and buffer mismatches,
the best experimental practice is still to match them as rigorously as possible.

At very high co-solvent concentrations, whether or not they contribute to the signal directly,
the sedimentation of the co-solvents will generate significant local changes in solvent
density and viscosity that will affect, in turn, the sedimentation process of the protein of
interest. For example, these concentration gradients can result in characteristic retardation of
macromolecular sedimentation process with time, and even produce isopycnic bands of the
protein in the density gradients after long times. It is possible to extend Eq. 6 to conditions
of locally varying and time-dependent density and viscosity, and we have described a
method how the linked sedimentation of co-solvent and macromolecule can be numerically
simulated and fitted to experimental data (Schuck, 2004). Applications of this approach have
been described in the characterization of protein pharmaceuticals (Gabrielson et al., 2009).

In cases where the protein itself is at a concentration exceeding the limit where
hydrodynamic non-ideality is small (e.g., 1–2 mg/ml for globular proteins, lower limits for
more elongated structures), terms can be added to the Lamm equation (Eq. 6) that describe
the concentration-dependence of sedimentation, s(w), and diffusion coefficients, D(w),
arising from the long-range hydrodynamic interactions (Dishon et al., 1967; Solovyova et
al., 2001). SEDFIT, SEDPHAT, and SEDANAL provide for such models, which use linear
approximation of the sedimentation coefficient with a non-ideality coefficient ks. An
example for the application of direct boundary modeling with a non-ideality model can be
found in the study of malate dehydrogenase in complex solvents (Solovyova et al., 2001).
These models can be extended to multiple species, where Johnston-Ogston effects (i.e. the
expulsion of slower sedimenting species from the region of the faster-sedimenting boundary
at higher total concentration) are displayed. However, even though modeling of such
systems is possible, SV data cannot be expected to provide sufficient information for the
reliable determination of different non-ideality coefficients and mutual interaction
coefficients necessary in systems of multi-species and multi-component sedimentation with
hydrodynamic interactions. In this regard, direct boundary modeling of non-ideal solutions
is currently still limited. Furthermore, the linear approximation of the concentration-
dependent sedimentation coefficient breaks down at higher than 5% total macromolecular
volume exclusion (e.g. ~ 70 mg/ml protein). This fact renders impossible the full,
quantitative interpretation of the sedimentation boundaries measured under crowded
conditions.

Whichever model is used for the macromolecular sedimentation concentration profiles c(r,t)
of the proteins of interest, in the direct-boundary model, the experimental data are fitted by
least-squares with terms of the form

Equation 7

, where the brackets emphasize the non-linear parameters that depend on the precise model
of the sedimenting species, as well as non-linear parameters that depend on the solution
geometry. In these optimizations it is of critical importance to monitor the residuals of the
fit. As illustrated in (Dam and Schuck, 2004), fits with incorrect models may sometimes
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roughly describe the boundary data, yet provide qualitatively inaccurate answers if the
boundary broadening from unrecognized heterogeneity is modeled as though originating
from diffusion. To inspect the residuals, in addition to an overlay of the residuals to all
scans, we have introduced a residuals bitmap that displays the radius- and time-dependent
residuals in the form of a greyscale picture (Dam and Schuck, 2004). An example for an
unacceptable fit to the data of Figure 4A using a single-species model and an acceptable fit
with a distribution model is shown in Figure 4B and 4C, respectively.

Usually, fits within the noise of data acquisition and without systematicity should be
expected from SV analyses. It has proven useful to compare models using criteria from F-
statistics (Johnson and Straume, 1994; Johnson, 1992).

Direct Boundary Modeling With Size Distributions—A key development for the
direct-boundary modeling of SV was the explicit, constructive description of polydisperse
systems as a size distribution. SV data are highly sensitive to polydispersity and even trace
impurities due to the strongly size-dependent hydrodynamic separation. Without equipping
the model with appropriate terms to describe the effect of polydispersity, in most cases no
satisfactory fit will be achieved. The basic approach comprises the description of the
ensemble of sedimenting molecules as a differential distribution c(s) that describes the
concentration of species with sedimentation coefficients between s and s+ds (Schuck, 2000)

Equation 8

; for greater clarity, from here onwards we omit the baseline, noise, and buffer terms of Eq.
7.

Diffusion takes place with a  dependence, but separation from differential sedimentation
occurs with a ew2st time dependence. Thus, the description of the diffusion process and the
sedimentation coefficient distribution usually do not strongly correlate. The solution to D(s)
exploits some knowledge of the sedimenting macromolecules, often in the form of a
hydrodynamic scaling law for certain classes of particles. Sometimes, different rules for
calculating D(s) are applied in different segments of the distribution, dependent on s (see
below). This generality and adaptability is possible due to the numerical evaluation of the
Fredholm integral equation Eq. 8, which exploits techniques borrowed from modern image
analysis, with details outlined elsewhere (Schuck, 2000, 2009).

Data fitting to a size-distribution of diffusionally broadened sedimentation profiles
deconvolutes diffusion effects from the sedimentation boundary, much like removing
blurring from point-spread functions in image processing. An example of the gain in
resolution of c(s) when compared to a ls-g*(s) ‘data transformation’ that reflects largely the
boundary shape is shown in Figure 3. In addition to the gain in resolution, because the c(s)
model can usually describe the complete set of experimental data, it can report with
exquisite sensitivity the presence of trace aggregates. With detection limits of 1% or better
for oligomers of antibodies, this approach was found to be highly useful in biotechnology
applications (Berkowitz, 2006; Gabrielson and Arthur, 2011). Another feature of the fit of
Eq. 8 is the ability to include scans from the entire time-range of sedimentation from all
species, without requirement that sedimentation boundaries of all species present be visible
at the same time. This advantage results in a very wide (often 100–1000-fold) range of s-
values that can be covered in the c(s) distribution from a single experiment.
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For folded proteins, typically the most productive scaling law is that for compact particles,
where D(s) is governed by an average frictional ratio f/f0,w for all particles (in a given
segment) (Schuck, 2000; Schuck et al., 2002). The value of f/f0,w is usually refined as part of
the non-linear regression. This model exploits the fact that actual shapes must vary quite
significantly in order to produce a different frictional ratio, and many different shapes can
have the same frictional ratio. Usually considered a downside of hydrodynamics for the
assessment of protein shapes, the low shape resolution turns out to be advantageous in the
present case. Furthermore, as shown in (Schuck et al., 2002), deviations of the best-fit
frictional ratio from the actual frictional ratio will mainly result in broadening of the c(s)
peaks. Due to the high resolution, robustness, and sensitivity of this approach, the vast
majority of the > 1000 applications of c(s) reported in the literature for folded proteins have
used this c(s) method with a refined average frictional ratio as scaling law D(s). In this
manner, this analysis has become the first tool used for the understanding of experimental
SV data of unknown samples, providing a stepping stone towards the appropriate data
analysis and improved experimental design.

Once sedimentation and best-fit frictional ratios have been assigned, each pair of s, and D
can be inserted in the Svedberg equation Eq. 5 to produce a molar mass distribution c(M).
Provided that correct parameter values for solvent density and viscosity and for the protein
partial specific volume are available, the precision of molar masses reported from single
c(M) peaks is ~ 5–10%.

If there are multiple boundaries formed, then multiple c(s) segments can be constructed with
a different frictional ratio attributed to each boundary. Usually, not more than one piece of
diffusion information can be extracted in a well-conditioned manner from a single
sedimentation boundary (see below). For example, for data showing two sedimentation
boundaries, a model with a bimodal frictional ratio f/f0,w can be used, and molar masses of
isolated peaks corresponding to each sedimentation boundary may be obtained.

Other scaling-law c(s) variants available in SEDFIT or SEDPHAT are for worm-like chains
(applicable, for example, to amyloid fibrils (MacRaild et al., 2003)), arbitrarily user-defined
scaling laws (applicable to some unfolded biological macromolecules (Harding et al., 2011),
and proteins with ligand-induced conformational changes. The latter is a variation of the
segmented distribution: for a certain s-range, the diffusion coefficient D(s) is calculated by
the Svedberg equation (Eq. 5) based on a constant molar mass. Thus, this strategy reflects
different possible hydrodynamic friction coefficients exhibited by the same protein (Schuck
et al., 2000). For protein complexes that are known to have a certain frictional ratio, for
example, after imaging of globular or spherical particles by electron microscopy, it is also
possible to phrase the unknown extent of diffusion D(s) in terms of a known frictional ratio
but unknown partial-specific volume, which can be refined in the SV boundary analysis. In
this way, partial-specific volumes can be evaluated, for example, for samples of detergent-
solubilized membrane proteins (Ebel, 2011), or for nano-particles.

Another noteworthy special case is the limit of f/f0,w being infinite, appropriate for non-
diffusing species (Schuck and Rossmanith, 2000). In this case, the resulting c(s) distribution
is referred to as ls-g*(s) due to its relationship with the previously derived apparent
sedimentation coefficient distribution g(s*) from the time-derivative approach (Stafford,
1992), which was popular in the 1990s. In principle, the latter is theoretically also based on
– though not practically applicable to – non-diffusing particles. Many nano-particles, large
proteins, or other macromolecular complexes can be considered ‘non-diffusing’ species for
the purpose of SV. This approximation is valid because, during the short experimental time
provided by their rapid sedimentation, the extent of diffusional boundary broadening is
negligible (which may be the case even though the boundary shows broadening from
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differential sedimentation of polydisperse mixtures). The application of ls-g*(s) allows the
sedimentation coefficient distribution of such “non-diffusing” species to be derived. When
applied to diffusing species, a misfit of ls-g*(s) arises, which can be removed by restricting
the data to a subset of the scans, similar to the g(s*) method. In this case, due to the lack of
diffusional deconvolution, a diffusion-broadened sedimentation coefficient distribution is
produced, reflecting the raw boundary shapes in the dimension of apparent s-values (hence
the attribute ‘g*’). Like the previous g(s*) method, one could model the spread of apparent
sedimentation coefficients to estimate the molar mass of a discrete species. However, much
more accurate and robust estimates can be achieved using the c(s)/c(M) method to evaluate
diffusion information directly, accounting at the same time for polydispersity (Brown et al.,
2009). In contrast to the previous g(s*) from the time-derivative method (Stafford, 1992),
however, ls-g*(s) does not suffer from the same artificial broadening and peak shifts as
reported for g(s*) caused by the problematic approximation of the time-derivative by finite
time differences (Schuck and Rossmanith, 2000). Thus, ls-g*(s) has been used often when
diffusional deconvolution was not desired. For example, ls-g*(s) has been applied to large,
essentially ‘non-diffusing’ particles and/or to distributions of particles with a very wide
range of sedimentation coefficients.

Importantly, like c(s), the ls-g*(s) method has generally no limitation in the shape, time-
interval or total time-range of scans and can incorporate boundaries that are not
simultaneously visible in the observed radial range. In comparison with the time-derivative
method common in the 1990s, the ls-g*(s) approach eliminates practical constraints that
impose the selection of relatively low rotor speeds in SV, while maintaining a 1000-fold
dynamic range of sedimentation coefficients in a single run. Regarding experimental design,
this possibility enables the use of the highest possible rotor speed (50,000 or 60,000 rpm as
limited by the rotor) to achieve the best possible hydrodynamic separation in SV.

Information Content and Regularization—One practically important aspect of the
direct boundary modeling with size distributions, well-known in all fields employing
Fredholm integral equations of the type Eq. 8, is that the solution is ill-conditioned and
requires regularization. When Eq. 8 is solved strictly as stated, typically the absolute best-fit
distributions consist of series of sharp, baseline-separated spikes, the number and location of
which is dependent on very small features in the data, such as details of the noise. Although
it may seem tempting to take this best-fit distribution as if reflecting a true size distribution,
these spikes are highly unreliable and do not reflect the true information content of the data.
In fact, a broad set of such spiky distributions usually fit the data almost equally well. From
these properties of the inverse problem arises the requirement for regularization.
Regularization is the selection, from all the distributions that fit the data statistically
indistinguishably, of one particular solution that has the least information content. As
described in detail by Provencher (Provencher, 1982), by minimizing the information
content of the distributions and adjusting the detail of the distribution to what is reliably
extracted from the experimental data, misleading details of the peak structure are avoided
and the risk for over-interpretation is minimized. This is typically accomplished by a
secondary optimization that quantifies the level of detail in the distribution. The exact form
can be chosen dependent on the system under study. To achieve that, the error surface of the
fit is skewed by a regularization penalty term and minimized, while the magnitude of the
penalty term is adjusted such that the difference in the quality of fit to the raw data of the
penalized solution does not diminish relative to the un-penalized overall best-fit by more
than a permissible factor governed by F-statistics on a given, user-determined confidence
level (e.g., P = 0.683). This produces a statistically acceptable fit that conforms as much as
possible to the parsimony expressed in the regularization terms. (Conversely, it will be
appreciated that, by this design of regularization, the original spiky best-fit solution cannot
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provide a statistically better fit, and that therefore any information from a naive,
unregularized c(s) solution will present details that are misleading.)

There is a large body of literature on regularization, as it is an important and well-studied
problem in data analysis in many fields of physical science. Regularization methods often
employed in biophysics are Tikhonov regularization and maximum-entropy regularization.
As implemented in SEDFIT and SEDPHAT, Tikhonov regularization uses a measure of the
total curvature -∫(c″(s))2 ds to favor distribution curves that have as few peaks as possible,
and as broad peaks as consistent with the experimental data. This is appropriate, for
example, for macromolecules with a broad intrinsic size distribution, for example, polymeric
products, or heavily glycosylated proteins with an extensive and polydisperse degree of
glycosylation. Maximum-entropy regularization, also implemented in SEDFIT, minimizes
the information content by maximizing the Shannon-Jaynes entropy -Òc(s)ln (c(s)/p(s))ds,
where p(s) is a default distribution usually taken to be constant (see below). This model is
particularly attractive for systems that likely have a few intrinsically discrete species, such
as purified protein samples. This is the default choice in SEDFIT. Because maximum
entropy regularization has a tendency to produce oscillations for broader distributions
(Schuck et al., 2002), in such cases the user should switch to the Tikhonov method. No
regularization option is currently available for the c(s) implementation in ULTRASCAN.

In practice, for typical SV data with a high signal/noise ratio, both Tikhonov and maximum
entropy regularization will result in very similar distributions. For data with a low signal/
noise ratio, some distinct differences in the peak shapes and widths might be observed. The
type and extent of regularization can be a dominating factor for the peak widths in the c(s)
method. When considering fine details of the distribution, it is generally useful to probe the
family of distributions that fit the data equally well and ask whether or not a certain feature
is imposed by the data or by the regularization. This can be achieved by alternating the
regularization method and the regularization level (P-value).

An additional, highly useful tool is the customization of the regularization to what is already
known or to what can be hypothesized about the sample. This modification of the
regularization can be achieved by imposing Bayesian prior distributions. For example, a
non-constant prior distribution (p(s), above) can be employed (Brown et al., 2007b).
SEDFIT and SEDPHAT allow these priors to be constructed in variety of ways. It is often
useful to use a c(s) distribution obtained from one sample as a prior hypothesis for the
expected distribution of another sample. For example, this can be applied to a dilution series
to determine whether the sedimentation coefficient distribution of a more dilute sample is
consistent with that of a higher concentration. In this manner, one can address the problem
observed at the lower concentrations, namely that the decreased signal/noise level results in
broader peaks with the default regularization. For instance, this approach can better address
the question of whether an oligomer dissociates upon dilution. Also, one can hypothesize
that a certain peak may be described by a single species by using the numerical equivalent of
a Dirac δ-function as a prior hypothesis (Figure 4F). If microheterogeneity contributes to a
c(s) peak, then the resulting distribution, termed c(pδ)(s), will not conform to the sharpness
of the δ-function. (Due to its wide utility when studying purified proteins, this analysis can
be conducted by pressing the keyboard shortcut control-X after obtaining the c(s)
distributions.) The δ-function approach can help to assess the purity of a preparation, and/or
to adjust the regularization of the c(s) distribution to utilize prior knowledge, as may be
obtained from mass spectrometry. Alternatively, when obtaining slightly bimodal, not fully
separated c(s) distributions in studies of species with similar s-values, we may use Gaussians
placed at the centroids of each partial peak to try to baseline-separate the signals from both
species. This can help in the quantification of subpopulations. Vice versa, we may test
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whether a single, broader peak would also be consistent with the data, or if the data have
statistically unambiguous information that the peaks can be sub-divided.

The way in which the Bayesian approach utilizes this additional knowledge is fundamentally
different from hard-wired constraints. Due to the imperfections of the experimental data
alone (originating from both data acquisition and sample), a hard-wired constraint that
strictly imposes a certain model to the analysis will in most cases lead to a statistically
significantly worse fits, which often then requires further judgment regarding whether it
should be rejected or is still acceptable. In contrast, the Bayesian approach always fully
honors the complete information of the data and, by design, ensures the same quality of fit,
by allowing the result to refute the constraint if it is wrong, or by subtly adding on missing
pieces in the interpretation. Notably, the Bayesian approach described above does not
provide a quantitative measure of the agreement with the prior; rather, that is assessed
graphically by the user.

In summary, SV analysis has progressed from a simple ‘data transform’ to a size-
distribution analysis that fully utilizes all the data and invites the utilization of our certain
knowledge of the system, such as the validity of the laws of diffusion and hydrodynamic
scaling laws, to arrive at higher-resolution results. The Bayesian analysis represents a highly
useful further step that now lets us actively probe the consistency of different interpretations
with the experimental data.

Multi-dimensional generalizations of c(s)—Several useful generalizations of the c(s)
are available that make use of additional data or distribution dimensions.

First, it is possible to generalize the sedimentation coefficient distribution to a size-and-
shape distribution c(s,f/f0) (Brown and Schuck, 2006) that allows for a distribution of
hydrodynamic friction values for each single s-value, thereby abandoning the need for a
hydrodynamic scaling law:

Equation 9

An example is shown in Figure 4. The size-and-shape distribution may equivalently be
presented in s-D or s-RS coordinates, although it is easier to create an efficiently discretized
mesh in s-f/f0 coordinates. Computationally, this problem can be solved exactly, in the same
rigorous way as the standard c(s) distribution available in SEDFIT. A fundamentally
different approach, called ‘2DSA’, with a rather unique computational strategy was
proposed by Demeler & colleagues (Brookes et al., 2009) to achieve a size-and-shape
distribution in ULTRASCAN, as described in CPPS Unit 7.13 (2010). However, we are
unaware of attempts to prove the correctness of the algorithm, and 2DSA remains empirical.
In fact, upon detailed examination (Schuck, 2009), several key points of this method were
found to be in conflict with mathematics and incompatible with general scientific principles
of data analysis, and the method is therefore unlikely to give correct results.

Ordinarily, SV data do not contain sufficient information to create well-defined peaks in the
diffusion dimension except for the major peaks (Brown and Schuck, 2006), thus providing
very similar information as c(s). In fact, by integration of the diffusion dimension, c(s,f/f0)
can be collapsed back to a sedimentation coefficient distribution, called ‘general c(s,*)’, that
is independent of scaling laws but typically is virtually identical to the standard c(s).
However, in applications where scaling laws cannot be easily phrased or where species with
very different molar masses co-sediment at the same s-value, the c(s,f/f0) and its related
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distributions may be very useful. An example of the former case occurs in ensembles of
particles with density distributions (Carney et al., 2011).

Another extension of c(s) is for the global modeling of SV data sets acquired in experiments
at different solvent densities (Brown et al., 2011)

Equation 10

In units of sedimentation and diffusion parameters at standard conditions (20,w), all
experiments share the same sedimentation coefficient distribution, which will be mapped to
the measured experimental conditions based on the experimental solvent density and
viscosity. A scaling factor αρ accounts for the experimental fact that not all samples may be
precisely at the same concentration, for example, due to slight dilution errors. This allows us
to treat the protein partial-specific volume as an unknown parameter to be refined globally
in the non-linear regression, and thereby provides a method for the determination of the
partial-specific volumes, for example, of proteins or protein-detergent complexes.

This density-contrast SV approach improves on the precision of the classical Edelstein-
Schachman SE approach due to the significantly higher precision of sedimentation
coefficients, and due to the allowance for protein heterogeneity and impurities (Brown et al.,
2011).

Undoubtedly the most powerful extension of the c(s) method for multi-component mixtures
is the global analysis of SV data acquired in the same experiment simultaneously with
different optical signals λ (Balbo et al., 2005):

Equation 11

The signals can be absorbance data at different wavelengths and/or a combination of
interference and absorbance optical signals. If a total number of Λ different signals are
available, then up to the same number of different macromolecular components can be
spectrally discriminated based on their molar extinction (or signal) coefficient ελk, and
separate sedimentation coefficient distributions ck(s) can be calculated for each component k
(Figure 5). (The remaining required quantity in Eq. 11 is the optical pathlength, d, which
will be 1.2 cm for standard double sector centerpieces.) As shown in (Balbo et al., 2005), the
spectral and hydrodynamic resolution can exhibit synergy, and the information content of
the set of component ck(s) distributions can be far beyond that of separate standard c(s)
analyses of the individual signals.

This multi-signal SV (MSSV) technique is naturally of great utility in the study of protein
interactions, where the stoichiometry of protein complexes can be deduced from the area
ratio of co-localized ck(s) peaks. MSSV has found many applications, as recently reviewed
in (Padrick and Brautigam, 2011; Padrick et al., 2010). In the current version of SEDPHAT,
up to three different signals may be included in the analysis, thus enabling the study of co-
existing binary and ternary complexes formed in mixtures of three different proteins.
Another important application is the analysis of protein-detergent mixtures, where this
approach can reveal the protein/detergent ratio of the detergent-solubilized protein (Salvay
et al., 2007).
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For this multi-signal SV approach to work, sufficiently different spectral signatures of the
interacting components are required. Padrick & Brautigam (Padrick and Brautigam, 2011)
have determined a predictor, Dnorm, that is calculated based on the known extinction
coefficients and allows the prediction of whether different components are likely to be
distinguishable in a two- or three-component MSSV analysis (see below). Often, interacting
proteins have sufficiently different fractions of aromatic amino acids for the combination of
interference signals with absorbance at 280 and/or 250 nm to generate a sufficiently high
Dnorm. The same is true for many protein interactions with nucleic acids (Berke and Modis,
2012), lipids or detergents (Ebel, 2011), or strongly glycosylated proteins. Thus, MSSV can
often be conducted label-free (Balbo et al., 2005). Examples for the analysis of MSSV to
mixtures of three protein components can be found in (Houtman et al., 2006; Barda-Saad et
al., 2010). Detailed instructions for the application of MSSV can be found in the web-based
SEDPHAT help system and in (Padrick et al., 2010). Although Dnorm is based on simple
matrix manipulations, some may find it non-trivial to calculate. As a courtesy, SEDPHAT
can calculate and present this quantity to allow for experimental planning.

A current limitation is that the absence of hyper- or hypochromicity is assumed.
Furthermore, it should be noted that the integrals of ck(s) peaks of different components
foremost reflects the composition of the sedimentation boundary. For these quantities to
reflect the complex stoichiometry, the complex must be quasi stable, which is the case close
to saturation or for slow dissociation kinetics, both of which can be tested via concentration-
independence of the c(s) peaks (see below). An exception can be the reaction boundaries of
rapidly interacting molecules with very similar sedimentation coefficient in their free form
(see below).

Sedimentation Velocity Analysis of Interacting Systems
Direct boundary modeling with a set of coupled Lamm equations for reacting
systems—A key application of SV in protein science is the study of interacting systems. In
recent years, it has become possible to use solutions of coupled sets of Lamm equations of
chemically reacting systems directly for the non-linear regression of experimental SV data.
This takes the form (Fujita, 1975)

Equation 12

where i enumerates the species participating in the interaction with their signal contribution
εidci(r, t), and qi is the local chemical reaction flux between the species. For example, for a
simple bimolecular reaction forming a 1:1 complex, qi becomes q1 = q2 = −q3 = −q with q =
konχ1χ2−koffχ3, and the equilibrium dissociation constant Kd = koff/kon. Because the
sedimentation behavior and fractional saturation strongly depend on the molar loading
concentrations, it is generally highly advisable to run multiple experiments at concentrations
that bracket Kd by a factor 10, if possible, on either side. After a reaction scheme has been
determined, both SEDPHAT and SEDANAL are capable of globally modeling all
experimental data with Eq. 12, SEDANAL in the data differencing mode (Correia and
Stafford, 2009) and SEDPHAT in the direct boundary modeling mode (Dam et al., 2005).
Applications and strategies have been reviewed recently by Brautigam (Brautigam, 2011).

In principle, the Lamm-equation modeling for an interacting system allows kinetic rate
constants to be extracted, as this parameter modulates the shape of the boundaries and their
separation. However, as shown in (Dam et al., 2005), and not surprisingly, the sensitivity of
the data for different kinetic rate constants is limited roughly to the time-scale on which the
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SV experiment takes place, which is dependent on protein size, but typically restricts the
range of koff to around 10−4/sec – 10−3/sec.

Furthermore, Eq. 12 is intrinsically a discrete model, and may not always yield a good fit
and/or accurate results if sample imperfections such as microheterogeneity and trace
impurities are present that will affect the boundary broadening. These deviations from
single-species behavior are most critical for the kinetic rate constants, as the information on
their parameter values also resides in the boundary broadening. For heterogeneous
associations between proteins that do not self-associate, sufficient purity can be tested by the
applicability of single discrete-species models to the individual components. The impact of
aggregate impurities may be reduced by restricting the radial range of the analysis, such as
in partial boundary modeling (Brown et al., 2009). Unfortunately, the influence of
breakdown products or impurities sedimenting slower than the species of interest cannot be
excluded in the same way, as their diffusionally broadened boundary often makes significant
contributions to the sedimentation data across the whole available radial range and typically
overlaps the boundary of interest, especially at early times.

Although very powerful, the direct-boundary modeling with Lamm equations of reacting
systems is usually not the first method of choice, and more robust methods that are more
consistent with the sensitivity of SV for sample imperfections will be highly desirable,
especially if kinetic rate constants are not of primary importance. One could consider it a
virtue of the Lamm-equation modeling of reacting systems that all peculiarities of the
coupled reaction/diffusion/sedimentation process are delegated to the Lamm equation solver
and modeling. However, for successfully designing and interpreting SV studies of
heterogeneous interacting systems, it is essential to understand the salient features of
reaction boundaries.

Effective particle model for the sedimentation of heterogeneous interacting
systems—For rapidly interacting systems (on the time-scale of sedimentation, i.e. usually
koff > 10−2/sec), not all sedimentation boundaries reflect real sedimenting species. To
examine this phenomenon, let us consider at first a simple 1:1 interaction of the type A + B
forming an AB complex in a rapid reaction, with the nomenclature such that sA < sB < sAB.
It has been long known that sedimentation boundaries of rapidly interacting proteins exhibit
several seemingly non-intuitive properties (Fujita, 1975): (1) The data show not three but at
most two boundaries, one always sedimenting at the s-value of either free A or free B,
termed undisturbed boundary, and the other at a composition-dependent s-value between sB
and sAB, termed reaction boundary (2) In a titration series, the s-value of the undisturbed
boundary could switch from sA to sB, but at a transition point where the solution composition
does not correspond to the complex stoichiometry. (3) At a certain solution composition,
also not equal to the complex stoichiometry, there can be only a single boundary. It is
crucially important not to mistake the reaction boundary for that of a stable, independently
sedimenting species.

These properties can be intuitively better understood in the framework of the recently
developed effective particle theory (EPT) for the coupled sedimentation/reaction process
(Schuck, 2010b), which was derived directly from Eq. 8 in the approximation of non-
diffusing particles and rectangular geometry. Due to the instability of the complex in rapid
equilibrium, obviously no separate boundary can stably exist for the complex. Instead, the
whole system with components of free A, free B, and complex AB, as determined by mass
action law, sediments jointly. Thus, in the reaction boundary, there is always a mixture of
free A, free B, and complex. There can be only one undisturbed boundary comprised of the
excess material of one of the binding partners (since the presence of the other would lead to
complex formation, hence a reaction boundary). From the ergodicity of the sedimentation
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process we can conclude that, in the reaction boundary, the relative populations of free and
complexed A and B, respectively, determine their constituent time-average sedimentation
coefficients s ̄A and s̄B, respectively. A fundamental, intuitive insight is that for the material
in the reaction boundary these time-average sedimentation coefficient experienced by
molecules A and molecules B must match, s̄A = s̄B. From this directly follows the s-value of
the reaction boundary, sA⋯ B, its composition, RA⋯ B, as well as the nature and magnitude
of the undisturbed boundary (Schuck, 2010b):

Equation 13

These relationships are illustrated in Figure 6. For example, in our 1:1 binding scheme, it
follows that there always must be less free A in the reaction boundary than free B, due to the
lower s-value of free A lowering the time-average of all A more than free B lowers the time-
average of all B. Therefore, at equimolar total concentrations, the excess material
constituting the undisturbed boundary must always be A. It will always require a certain

excess of total B over total A in solution, termed , to allow s̄A to exceed that of the
free B species sB. This condition is necessary for B to produce the undisturbed boundary,

because the reaction boundary must always be faster than free B. This  is the

phase transition point where there is no undisturbed boundary, and at  we

have excess B comprising the undisturbed boundary, and at  A must be in
the undisturbed boundary. Because the free species’ sedimentation coefficients are different,
the phase transition of the coupled system is asymmetric.

There are several practical implications of these considerations.

1. To conceptually understand the mechanism of reaction/sedimentation processes:
When applying SV to interacting systems that form complexes that can dissociate
and re-associate during the sedimentation process, the time-average sedimentation
coefficient experienced by all components is crucial for determining the
sedimentation properties. This mode of sedimentation is fundamentally different
from the sedimentation of mixtures of stable, discrete species. Movies displaying
schematically the mechanism of propagation of the reaction boundaries at different
concentrations and sedimentation coefficients can be created for user-defined
parameters in SEDPHAT. Careful consideration of EPT may prevent naïve
misinterpretations, for example, the false assumption that the molar ratio at the
transition between undisturbed boundaries will simply reflect the complex
stoichiometry.

2. For experimental design: Because the salient features of the boundary structure are
expressed in simple terms in Eq. 13, it is possible for any given system with
expected Kd and estimated s-values to predict the s-value and amplitudes of
sedimentation boundaries for the entire range of possible total loading
concentrations of all components. For several interaction schemes, an experimental
design tool is available in SEDPHAT that surveys the boundary properties similar
to Figure 6. In addition, it allows one to consider practical constraints in the
available stock sample concentrations, enter minimum detection limits, and decide
on a general strategy for an experimental concentration series that brackets the
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most significant and informative changes in the sedimentation behavior.
SEDPHAT will translate the graphical user input and propose a detailed sample
mixture and dilution plan. If possible, it will approximate the user input to create a
titration series, dilution series, or Job series, generating additional constraints that
may be useful in the data analysis (see below).

3. For quantitative analysis: Experimental data can be analyzed and average s-values
and amplitudes of the undisturbed and the reaction boundaries can be easily
determined, for example, using c(s) followed by peak integration. These data can
be assembled into isotherms as a function of total loading concentrations and
subjected to quantitative analysis with the equations of Eq. 13. This approach
exploits the clearly visible boundary structure without the need to resort to a
detailed interpretation of the boundary shapes. Thus, the EPT-based isotherm
analysis is a robust approach that can contribute significant information. For
example, the isotherm of the weighted-average s-value sw of the interacting system
remains far below the complex s-value sAB for all concentrations except when the
molar loading concentration ratio matches and saturates the complex stoichiometry.
In contrast, the s-value of the reaction boundary will always be close to sAB when
the molar ratio of any component is in excess of the complex stoichiometry.
Furthermore, the boundary pattern reveals very clear information on the location of
the phase transition, which is closely related to sAB and the equilibrium constant
(Eq. 13). These features allow the binding parameters as well as the binding
stoichiometry to be better determined. The accuracy of this approach has been
demonstrated and it has already been successfully applied to several experimental
systems (Zhi et al., 2010; Schuck, 2010b; Zhao et al., 2011a; Berke and Modis,
2012).

In practice, such an isotherm analysis can be accomplished by creating an ASCII text file
with a table that contains two columns for micromolar concentrations of A and B, followed
in a third column, for example, by the signal-weighted s-value of the reaction boundary.
Optionally, this format can be extended by incorporation upper and lower confidence limits
for each s-value, which represent individual error bars to be considered in the analysis. This
file can then be loaded into SEDPHAT as an SV isotherm data type. After specification of
ancillary information such as signal coefficients, optical pathlengths, isotherm type, these
data can be included in the global analysis. When fitting the user-selected global model for
the interaction, the appropriate model function for each specific data type is applied, and the
model is mapped accordingly into the data space of each isotherm (or other) data set.

Application of c(s) differential sedimentation coefficient distributions—Even
though the sedimentation process of rapidly reacting systems is very different from that of
noninteracting mixtures, it is still possible to apply the same differential sedimentation
coefficient distributions to their SV data. In particular, it has been widely observed that the
diffusional deconvolution in c(s) works equally well as in the application to non-interacting
mixtures. In fact, it was shown recently, with the help of EPT for the approximation of
gradients and diffusion fluxes, that despite the different mechanism of propagation of
reaction boundaries, their diffusion proceeds normally in a very good approximation
(Schuck, 2010a). However, like the s-values, the apparent diffusion coefficients reflect the
interacting system and must be interpreted in this way.

The theoretical expressions for the isotherms of D and M (via insertion of s and D into the
equation Svedberg) of the ‘effective particle’ as a function of total loading concentration, in
analogy of Eq. 13, are presented in (Schuck, 2010a). The M-value associated with the
reaction boundary is intermediary to that of A, B, and AB, but not equal to the population-
average or weight-average molar mass of the system. Because it is a particular strength of

Zhao et al. Page 17

Curr Protoc Protein Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the EPT analysis not to require interpretation of the diffusional spread and precise boundary
shape, as that feature is most sensitive to sample imperfections, the quantitative analysis of
the isotherm of D or M has not been suggested.

The application of c(s) to reaction boundaries is highly useful for the qualitative
discrimination whether or not there is an interaction. For this end, experiments should be
conducted over as wide a range of concentrations as possible, and it is useful (though not
mandatory) to adopt a dilution or titration series. For a dilution series, if the c(s) curves
obtained at different protein concentrations exhibit invariant peak positions and invariant
peak ratios, then there is no interaction. If the peak positions are invariant but their ratio
changes, an interaction with slow dissociation on the time-scale of sedimentation is
indicated. If the peak positions depend on concentration, the presence of a reaction boundary
from a rapidly equilibrating system is demonstrated. Similar conclusions can be drawn from
a titration series, obviously allowing for the titrant peak to grow with concentration. These
considerations should also account for the fact that a standard c(s) analysis will exhibit
lower resolution at lower signal/noise ratios, which can be counter-acted by using Bayesian
prior distributions, as indicated above.

A second, very important application of c(s) to interacting systems, fast or slow, is the
ability to determine signal-weighted-average sedimentation coefficients of the system.
Based on the second moment method (Schachman, 1959), the weighted-average
sedimentation coefficient can be rigorously defined based on the total macromolecular flux
through an imaginary plane in the solution plateau at a radius rp rp

Equation 14

This measure is independent of reaction kinetics and diffusion. It is solely a function of
solution composition and the individual species’ s-values. The right-hand side (rhs) of Eq.
14 prescribes a method for determining sw from the change in the integral over the observed
concentration distribution. Any direct-boundary model that is faithful to this integral will
produce the same sw, independent of the physical motivation or model parameters. For this
property, it is sufficient to ensure that the model produces a good fit to the data. In
particular, this applies to models from c(s), which typically lead to excellent fits of the raw
data. Therefore, we can extend Eq. 14 as

Equation 15

There are some fine points regarding the time-dependence of the integrals in Eqs. 14 and 15,
its relation to reaction kinetics, and the weighting of scans from different time-points that
enter the calculation of c(s), but these factors have a negligible effect on the analysis of
binding isotherms (Schuck, 2003). Although Eq. 14 is strictly applicable only to conditions
producing true solution plateaus, the generalization on the rhs of Eq. 15 is straightforward
(Schuck, 2003). For accurate determination of sw, it is therefore essential that the quality of
fit be monitored, verifying that the model is faithful to the integrals under the concentration
profile. It should be noted that the van Holde-Weischet analysis, which was a useful
qualitative tool at the time of pre-computer SV analysis (Demeler et al., 1997; Schuck et al.,
2002) (but is now obsolete), is unsuitable for this purpose because it abandons the
information on absolute boundary height (Schuck, 2003). When calculating g(s*) based on
the time-derivative method, even though the integrals on the rhs of Eq. 15 can easily be
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formed and their identity with sw is sometimes taken for granted, the relationship of g(s*)
with the integral on the lhs of Eq. 15 is more tenuous. This uncertainty is due to the presence
of numerical distortions (see above) and the fact that the quality of fit to the raw data is not
tested. However, a tool in SEDFIT allows to back-transform g(s*) into the original data
space as a direct boundary model, allowing one to assess the faithfulness to the integral of
the concentration profiles (Schuck and Rossmanith, 2000).

The assembly of sw-values as a function of solution composition allows an isotherm analysis
for the interacting system, independent of the reaction kinetics. Similar to the EPT analysis
described above, the sw isotherm can be loaded as an ASCII file into SEDPHAT, where an
analysis with many different binding models can be carried out, either in single-isotherm
analysis mode or in a global analysis with other isotherms. The latter is accomplished simply
by loading multiple isotherm files side-by-side into SEDPHAT. When multiple signals are
available, the separate determination of signal weighted-average sw-values and EPT-based
boundary structure isotherms from the different signals and their global analysis is
extremely useful.

Overall strategy for the SV analysis of interacting systems—In summary, the
analysis of interacting systems by SV usually consists of several main steps. For previously
well-characterized samples, the experiments may be performed side-by-side.

1. Assuming a heterogeneous association, characterize A and B with regard to
purity and possible self-association: For this purpose, run as wide a concentration
series as possible, and inspect the resulting c(s) distributions. The concentrations
used need to bracket, or at least include, those used for the study of the interaction.
Acquire data at all signals that can be expected to allow spectral discrimination of
A and B. A concentration-independent peak position (except where hydrodynamic
interactions would occur, e.g. > 1–2 mg/ml) belies the presence of self-association.
Determine the average properties of the material in the main peak (control-M in
SEDFIT), and double-check the molar mass estimate to be within 5–10% of the
known value. Compare the signal in the peak with the total sedimenting signal to
determine purity.

2. Assemble a hypothesis for the interaction with regard to the stoichiometry and
binding affinity and plan the binding experiment. Either from structural and
functional prior knowledge about the system under investigation or from initial
exploratory SV-AUC experiments of mixtures at different molar ratios, formulate a
hypothesis of the binding model. In SEDPHAT, select the hypothesized binding
model with known and hypothesized parameters, and open the effective particle
explorer tool. Familiarize yourself with the expected boundary structure and the
overall sw as a function of loading concentrations, similar to the plots in Figure 6.
Enter the available stock concentrations, signal coefficients, and sketch a trajectory
in the feasible part of the parameter space that encompasses significant changes in
the expected observables. SEDPHAT will propose a protocol with log-spaced
concentrations along this trajectory (or optionally along a nearby trajectory that
generates additional constraints), with detailed dilution instructions for sample
preparation. For centrifugal run conditions, one typically will pick the highest
possible rotor speed for optimal hydrodynamic separation (50,000 rpm in an 8 hole
rotor). Set up data acquisition at all ABS wavelengths and/or IF, dependent on the
potential spectral discrimination: Calculate Dnorm by entering the extinction
coefficient matrix in the corresponding calculator tool of SEDPHAT.

3. Experimentally determine c(s) on the mixtures and qualitatively determine
reaction kinetics and reaction scheme. Create a normalized superposition of c(s)
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traces, for example in GUSSI, which is the plotting companion program to
SEDFIT. Discern whether peaks exhibit a characteristic concentration-dependent
shift in relative populations and in peak s-value. This will allow for a classification
of the reaction kinetics. For slow reactions, information on the stoichiometry can be
assessed from the s-value (and attendant M-value) of the complex peak. If A and B
are spectrally distinguishable, determine the complex stoichiometry by MSSV
analysis of the data under saturating or kinetically stable conditions.

4. Determine the binding affinity and complex s-value(s). In the c(s) analyses of all
mixtures, determine the undisturbed and reaction boundary, or all species
boundaries, dependent on the reaction kinetics. Perform an overall integration of
c(s) in SEDFIT to determine the overall sw, for all signals. Enter these in a table in
an ASCII file, e.g. created using Microsoft NOTEPAD or GUSSI version 1.0.2 or
higher, and load these sw isotherms in SEDPHAT. Similarly, determine the
amplitudes and s-values of all the boundaries of the sedimenting interacting system.
Depending on the kinetics of the interaction, add to the global SEDPHAT window
isotherms from species signal amplitudes, or the isotherms described by EPT,
respectively. (For statistical refinement, determine error bars for all isotherm
values.) If a reaction scheme is already identified, select the corresponding model
and fit globally all isotherms. Perform a statistical error analysis on the refined
parameter values. If multiple models seem conceivably consistent with the data,
sequentially pick the different models and compare the overall quality of fit. Utilize
constraints derived from hydrodynamic scaling laws for the species s-values,
considering lowest and highest possible shape asymmetry.

5. If possible, conduct a direct-boundary model with Lamm equation solutions of
the reacting system. Provided the individual species can be reasonably well
described as discrete species with the correct molecular weight, then a global
direct-boundary model with coupled Lamm equations may be conducted. Load all
raw data into SEDPHAT, representing the entire sedimentation process, from all
the cells and all the signals. In the local parameters of each cell, allow for the
meniscus to float, and enter appropriate signal coefficients. If possible, add
constraints linking some of the loading concentrations of different experiments (see
below). Conduct a global fit, at first using parameter values fixed to those obtained
in the isotherm model of Step 3, at a later stage after partial convergence relaxing
these constraints. For unknown kinetics, it can be useful to initialize log10(koff) at
an intermediate value of −3.5. If a good global boundary model is achieved,
calculate the error projection maps of all parameters of interest. If a satisfactory
global boundary model cannot be found, resort to the isotherm model in Step 3, and
calculate error estimates using the projection method.

Obviously, this description cannot be more than a general guide. The individual steps may
need to be supplemented and/or adapted to address specific properties of the system at hand.
What is described is the common denominator of the workflow that we have developed and
applied successfully to many interacting systems in our laboratories through the last several
years.

Sedimentation Equilibrium Analysis of Interacting Systems
As in the comments on SV above, we will not re-introduce exhaustively the principles and
practice of SE. Instead, we restrict the presentation here to new developments in the decade
since the last Unit on SE (CPPS Unit 20.3 (1999)), and just recapitulate the basic theoretical
framework for nomenclature.
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While SV studies the evolution of the sedimentation process with time, SE examines the
equilibrium state. In the limit of infinite time, a single ideal species at an initial loading
concentration c̄ = c(r,t = 0) in a sector-shaped solution column extending from the meniscus
m to the bottom b will slowly redistribute to assume a Boltzmann distribution

Equation 16

, with a curvature determined by the rotor speed and the buoyant molar mass Mb, which is a
function of its molar mass M and density increment (dρ/dw)T,μ, Mb = M (dρ/dw)T,μ (with w
referring to the weight concentration of the protein). In dilute solution with simple buffers,
the latter can be approximated very well with the buoyancy factor given by the partial-
specific volume, such that Mb = M (1 − v̄r ). Often Eq. 16 is presented without the reference
to the initial loading concentration, in which case the concentration c(b) at the bottom of the
solution column (or any other arbitrarily selected reference radius) will serve as a pre-
exponential factor. It should be noted that the relationship between the loading concentration
and the amplitudes of the pre-exponential term will be significantly different from the form
of Eq. 16 if the column is not sector-shaped. For example, if standard six-channel
centerpieces or for external loading six-channel centerpieces are used instead of the sector-
shaped double-sector centerpieces, the correct pre-exponential amplitudes are larger because
less material is in the highest concentration regions close to the bottom of the cell, and they
have to be calculated by numerical integration considering the precise geometry. For this
reason, the exact type of centerpieces used in the SE experiment should be recorded and
entered in SEDPHAT.

For interacting systems, mass action law will hold between the local species concentrations
throughout the solution column. For example, in a system where A binds B to form an AB
complex with an association equilibrium constant Ka, the concentration of complex will be
cAB(r) = cA(r)×cB(r)×Ka, which directly leads to the expected behavior that the radial
distribution of the complex is likewise a Boltzmann exponential, which will be governed by
a buoyant molar mass that is the sum of the individual species’ buoyant molar masses:

Equation 17

Some deviations from Eq. 17 are possible in the presence of repulsive interactions, which
usually are not encountered below concentrations of a few mg/ml, except for highly charged
proteins at low ionic strength.

Also, corrections are required if binding or conformational changes in the complex causes
significant changes in the hydration properties of the proteins affecting the buoyancy. This
would lead to pressure-dependent, and thereby rotor-speed-dependent, behavior. This
phenomenon though possible, is rarely observed (Harrington and Kegeles, 1973), and
therefore not discussed further.

For beginners, it may be confusing that the buoyant molar masses are products of the
buoyancy factor and true molar mass, such that a given buoyant molar mass can arbitrarily
be expressed as apparent molar mass M* on any given v̄* scale, as long as the product
produces the correct buoyant molar mass, Mb = M*(1 − v̄*ρ). For studying heterogeneous
interactions, it is highly convenient to express both components’ molar masses on the same
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v̄* scale. If this v̄* is arbitrarily taken as that of one of the components, then the apparent
molar mass of the other component will be different from the true molar mass, but all
components’ molar masses will remain additive towards the complex molar mass. This
technicality is inconsequential, and only concerns the units of measuring buoyant molar
mass, which is often not the desired refined parameter of such an analysis. (Otherwise, for
each different complex a different complex partial specific volume, determined by the
weight-average of its components would have to be considered. This seems simpler, at first,
but turns more complicated in other models when the complex molar mass is an adjustable
parameter.) This exercise is required, as SEDPHAT separates the true molar mass and
macromolecular partial specific volume; an alternative rigorous workaround is to set v̄* to
zero and let the buoyant molar mass represent the parameter for the molar mass.

A key difficulty in SE analyses, especially of interacting systems, is the well-known ill-
posed nature of the decomposition of noisy exponentials. Different from most other fields of
biophysics where this problem occurs, the exponents (molar masses) are pre-determined in
SE, which allows us to distinguish several components, provided we have sufficient solution
column length (> 3 mm) and data with sufficient curvature. For arriving at statistically well-
defined binding constants, many data sets are obtained at multiple loading concentrations
and rotor speeds, and – if possible – multiple signals. These sets must be included in a global
analysis. The ability to perform this decomposition routinely, with the help of various
software packages, has developed over the last two decades. Unfortunately, the global
modeling of SE with N = 10 – 20 different profiles introduces 2N unknown concentration
parameters as pre-exponential factors for two-component mixtures. This difficulty creates a
complex error surface notorious for exhibiting local minima and that is very difficult to
optimize.

Two strategies have been introduced to address this central problem. They both revolve
around the idea of mass conservation (MC), i.e. that the total amount of material for each
component that was initially inserted in the experiment should also be found in the
equilibrium profile. Because this has become a key tool to modern SE analysis, we have
emphasized MC in Eq. 16 by introducing the notion of an effective loading concentration c̄
= V−1∫c(r)dV, which corresponds to the average concentration we would achieve by shaking
up the contents of the material in the equilibrium gradient and can be compared with the true
known loading concentration c0. Importantly, when using MC for interacting systems this
relationship becomes slightly more complicated with the new requirement c̄A + c̄AB = cAtot,0
and c̄B + c̄AB = cBtot,0, which can be numerically easily solved. (It should be noted that mass
action law will not hold between the volume-averaged concentrations, i.e. c̄AB 1 c̄Ac̄BKa.)

The first strategy to use these MC relationships merely incorporated them as numerical tools
to aid in the optimization of the error surface to find the best fit, but not necessarily to
enforce these constraints once the putative best-fit has been found (Philo, 2000). This has
been termed ‘soft MC’. This is the form implemented, for example, in the program
HETEROANALYSIS, with the caveat that mass is only calculated up to the fitting limits
and the amount of material between the highest observed radius and the bottom of the
solution column is ignored (HeteroAnalysis Contents, 2012). Unfortunately, due to the
strong concentration gradient and increasing concentrations towards the bottom of the cell, a
very significant amount of material may remain unaccounted for. Thus, although it may be
useful as flexible bounds to intermittently guide the optimization algorithm, a true account
of the mass of material for each component loaded into the centrifugal cell is not
accomplished.

The second strategy is to use MC, accounting correctly for all material, as a true constraint.
Historically, what has prevented this approach from entering routine analysis was the
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difficulty in assigning the bottom position of the solution column, which is obscured by
optical artifacts. (This is in contrast to SV, where the meniscus position is the key geometric
parameter for the analysis of the sedimentation process; in SE the bottom position is more
important as the highest solution concentrations are close to the bottom.) In 1976, Roark
(Roark, 1976) proposed a method based on the inclusion of SE profiles at multiple rotor
speeds, which was applied recently by Vistica et al. (Vistica et al., 2004) as a method to
solve the problem of the unknown bottom position of the solution column. It is based on the
assumption that the total amount of material in solution is the same at all rotor speeds.
Because significant redistribution of material occurs at the different rotor speeds, MC can be
used to calculate the bottom position of the solution column, which is shared by all SE
profiles from the same cell (accounting for trivial corrections due to rotor stretching).
Accordingly, the bottom position of the solution column does not need to be assigned a
priori, but can remain an adjustable fitting parameter. Due to this flexibility, this method
was also characterized ‘soft’, but in a different sense, and we propose it should better be
referred to as the ‘implicit MC’ method.

In practice, SE analysis with implicit MC works best with a series of three rotor speeds that
span the conditions of typical low-speed SE (Richards et al., 1968) and high-speed meniscus
depletion SE (Yphantis, 1964). This has the additional benefit of providing the potential to
determine the baseline parameters, including radius-dependent features (Vistica et al., 2004).
Dependent on the molar masses of interest in the experiment, an algorithm for the prediction
of optimal rotor speeds is implemented as a tool in SEDFIT (see below).

It is also important to recognize that our absolute knowledge of protein concentrations prior
to the AUC experiment is invariably not precise enough to be used as hard constraint.
Therefore, the total concentrations should be allowed to refine in the analysis within bounds.
However, it is possible to create the samples in a way that produces safe constraints. For
example, in a titration series with careful pipetting, the concentration of one component can
be held sufficiently constant in different samples, justifying the addition of a constraint
forcing them to be identical. Similarly, dilution series of stock mixtures are certain to have
the same molar ratio of total material of both components. Using these approaches the total
number of concentration unknowns can be reduced to just a few. Further constraints
between data sets can often be established, for example, between the solution geometry of
data sets from the same physical cell but different detection wavelength.

The implicit MC method not only stabilizes the optimization algorithm, but considerably
tightens the error intervals of the unknown parameters. It also extends the range of binding
constants that can be examined, as well as the general applicability of SE analysis. For
example, just based on the curvature of the SE profiles, co-existing species are impossible to
reliably discriminate if their molar masses differ by less than ~20–30%. This leads to
requirements on the mass ratio of proteins whose interactions can be studied to be less than a
factor 3 – 5, unless the components have significant spectral differences that can be
exploited in a multi-signal analysis. The implicit MC approach overcomes these limitations,
and can be applied even for binding partners that cannot be detected.

The SE analysis with this method is carried out in SEDPHAT using data sets of the type
‘multi-speed SE’, which are groups of SE profiles from the same cell, recorded with the
same signal, at different rotor speeds. This implicit MC method has proven to be extremely
useful in practice, as judged by many studies published in the literature using this approach
(Ghirlando, 2011).
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Characterizing Detergent-Solubilized Membrane Proteins
At the time of the pioneering work of Tanford & Reynolds on the use of AUC for the study
of protein/detergent complexes, advanced SV methods were unavailable. SV has led to new
approaches that have proven extremely useful and surpassed the resolution and reliability of
SE in the study of protein-detergent complexes. In recent years this potential was
systematically explored and applied in many systems by the laboratory of Christine Ebel
(Ebel, 2011). Because the basic relationships have already been described by Fleming
(CPPS Unit 7.12 (2008)), we will just briefly highlight the new tools and refer to the
specialized literature: (1) The buoyant molar mass can now be reliably extracted from SV
experiments, which is especially profitable in the context of distribution models that allow
one to observe and exclude the effects from sample heterogeneity. When interpreting the s-
value in terms of a Stokes radius, all contributions from bound detergent and lipid must be
accounted for. (2) The extension of SV to density-contrast experiments (Ebel, 2011; Brown
et al., 2011) can allow one to determine the average partial-specific volume of the protein/
detergent/lipid complex more reliably than SE in the case of preparations that do not lead to
single species. In either case, H-D exchange must be accounted for when using deuterated
water. This allows the study of detergent systems that cannot be readily density matched.
Although combinations of different oligomeric states, complex frictional ratios, and binding
coefficients can sometimes describe SV data equally well for SV experiments at a single
density, this ambiguity is resolved in experiments at multiple densities. An ‘Ebel-plot’ of
binding coefficients vs partial specific volume can allow the identification and elimination
of hypothetical oligomeric protein states that imply un-realistic solvation (Ebel, 2011; Nury
et al., 2008). (3) The composition of the protein/detergent/lipid complex can be estimated in
an orthogonal approach using multi-signal SV, exploiting the fact that UV absorbance of
most detergents is smaller than that of the proteins under study (Ebel, 2011; Salvay et al.,
2007). While these methods can improve technical hurdles in the determination of the
oligomeric state of membrane proteins, of course they do not address more fundamental
questions of detergents affecting the oligomeric state (Dorwart et al., 2010). Nanodiscs are a
promising new tool in the study of integral membrane proteins in a lipid membrane
environment, and their use in analytical ultracentrifugation studies as recently been
described in detail (Inagaki et al., 2012).

EXPERIMENTAL DESIGN AND PROTOCOLS
In the following, we comment mostly on the experimental design features and protocols that
have changed as a result of the new theoretical and data analysis approaches. For a more
complete and recent systematic discussion of experimental details, the reader is referred to
Current Protocols in Immunology 18.8 (2007) and 18.15 (2008), as well as the internet
resources listed below.

SV or SE?—The developments described have now led to the general acceptance of SV as
the primary method of choice for the AUC characterization of non-interacting single and
polydisperse systems, as well as interacting systems. The simple, yet exquisitely profound
c(s) analysis can be diagnostic in characterizing the solution behavior of the system of
interest, with the added advantage that the SV experimental setup, data collection, and
analysis can be successfully completed within a day or two. The use of an eight-hole rotor
allows the simultaneous study of seven samples – in the case of an interacting system or
self-association, these seven samples can easily cover nearly a 100-fold concentration range,
allowing the construction of a binding isotherm, as recently demonstrated for the
dimerization of enzyme I from E. coli (Schwieters et al., 2010). Another advantage in the
use of SV is that the initial c(s) analysis only describes the diffusion-deconvoluted behavior
of the sedimenting boundary; no specific model is required for its interpretation, thus
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making it an unbiased reporter of the solute’s behavior. The one disadvantage of SV over SE
is that it requires much more material, especially when characterizing an interacting system.
Even though this is usually not a problem when AUC is used to study systems being
analyzed by either NMR or X-ray crystallography, the issue may prove to be more
challenging for biologically interesting systems not amenable to overexpression using
recombinant technologies. Despite this, given the sensitivity of SE to impurities, it is highly
recommended to characterize samples destined for SE studies initially by SV in order to
confirm purity. In this respect, SV is well suited for determining the presence of impurities.

In the case of interacting systems, both SV and SE have their significant advantages –
whereas SV can report the stoichiometry or lifetime of the complexes, SE provides no
kinetic information which can be particularly advantageous when the c(s) distributions
describing the free and reaction boundary are unintuitive. Unlike certain instances of SV,
however, the model best describing an interacting system may not be immediately obvious
from SE data. In terms of a detailed comparison of SV and SE methods for a self-associating
system with known binding mode, it may be relevant that the sw analysis in SV may be
conducted independent of the molecular buoyancy. In an extensive series of AUC
experiments of glutamate receptor variants covering ~5 orders of magnitude of Kd
conducted side-by-side in SE and SV mode, binding constants were found to be in
agreement within a factor of two, with the exception of high-affinity binding (Zhao et al.,
2012).

For very high-affinity and very low-affinity binding, degradation during the long
experimental time in SE can become a significant problem, in which case SV will be more
reliable (Zhao et al., 2012). For high-affinity binding, if the total loading concentration of
the material is significantly above the true Kd, even trace amounts of degradation products
with smaller molar mass can lead to artificially elevated best-fit concentrations of free
monomer, thus artificially increasing the best-fit estimate of Kd, as examined in detail in
(Zhao et al., 2012). Additionally the formation of irreversible aggregates may pose a similar
problem exacerbated in systems at low-affinity binding. The global analysis of SE and SV in
interacting systems is provided for in SEDPHAT.

Concentrations—For SV analysis, the lower limit of useful concentrations provides
signals slightly below the noise of the data acquisition. Dependent on the detection used and
the signal increment, this may be in the range of 1 μg/ml. For example, isotherm analyses of
a 50 kg/mol protein with high-affinity dimerization have taken advantage of ABS detection
at concentrations as low as 10 nM (Zhao et al., 2012). However, in the absence of carrier
protein it is not always predictable if surface adsorption to the windows or centerpiece
depletes the concentration of protein remaining in solution. For SE, due to the formation of a
concentration gradient that in meniscus-depletion configuration approaches zero
concentration independent of loading concentration, it is generally not necessary to load
concentrations at the detection limit. The highest concentration is usually constrained by the
available concentration, or by the hydrodynamic or thermodynamic nonideality interactions
that often start to set in at concentrations in excess of a few mg/ml.

In order to facilitate the experimental design of rapidly interacting system, we implemented
several practical tools in SEDPHAT. Designing series concentrations of samples for SV is
often time consuming due to the required comprehensive consideration of multiple factors
such as extinction coefficient, dynamic range of signals from optical detection systems,
binding constant, etc. The Effective Particle Explorer function in SEDPHAT takes all the
constraints into account and can generate a complete and practical series of concentrations
for the user (Zhao et al., 2011a).
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With regard to the relationship between signal and concentration, it has long been assumed
that IF data can be analyzed on the basis of a constant, protein-independent refractive index
increment. However, this is not always very accurate, since the protein’s refractive index
increment does significantly depend on its amino acid composition. The deviations from a
‘consensus’ value decrease with increasing protein size, but especially peptides < 10 kg/mol
may exhibit significant deviations (Zhao et al., 2011b). For this reason, a calculator function
has been implemented in SEDFIT that, side-by-side with the extinction coefficient and
partial-specific volume, calculates the refractive index increments and a molar signal
coefficient.

In choosing concentrations to be used in an MSSV experiment, additional concentration
restraints are present: the interacting heterocomplex must be well populated and kinetically
stable. These requirements are usually met by exploring high-concentration domains of
concentration space. Of course, one must balance the need to populate the complex against
the linearity of the signal from the mixture. These considerations are discussed in detail in
(Padrick and Brautigam, 2011), and SEDPHAT’s Effective Particle Explorer can be utilized
to find optimal concentrations with these caveats in mind.

Buffers—Buffer matching of the reference and solvent chambers of the AUC cell is critical
for the success of both SV and SE, particularly when using the IF optical detection system,
as this reports on all of the components sedimenting in solution, including the buffer salts.
Buffer matching is best achieved by equilibrium dialysis and use of the dialysis buffer as a
reference. As the final step in protein purification usually involves size-exclusion
chromatography, we have found that use of the actual buffer used for SEC also works well.
If added to the purification protocol as a substitute for dialysis, it has the added benefit of
further purification.

Meniscus matching is also critical for both SE and SV when using IF detection, less so for
SV as meniscus and/or buffer mismatches can be modeled computationally in SEDFIT for a
c(s) analysis (Zhao et al., 2010). The buffer/meniscus mismatch model can be accessed in
SEDFIT by pressing Ctrl-B. In addition to buffer mismatches arising from different
concentrations of the same buffer components in the sample or reference sectors (i.e. having
the same sedimentation coefficient) the model can also account for situations in which a
different buffer is present in the reference sector. Meniscus mismatches, which provide
different starting points for buffer sedimentation, can also be treated in this model. We find
that such buffer corrections become more important when using buffers having a high
refractive index (e.g. 2M NaCl). In cases when sufficiently precise matching becomes
infeasible, it may be prudent to eliminate buffer components from the reference cell
altogether and fill it with water, and simply add to the SV sedimentation model an explicit
term for the sedimentation of small co-solutes.

Partial Specfic Volume—The protein partial specific volume (v̄) can be calculated from
its amino acid composition. This prediction is based on the tabulated values of the partial
specific volumes of amino acid residues, which change slightly with solution conditions. A
SEDFIT calculator function has implemented the relevant calculation algorithm for
predicting the v̄ of proteins (Zhao et al., 2011b). The calculated values of proteins are
extensively used in practice and the accuracy is generally satisfactory. However,
experimental determination of v̄ might be necessary in some circumstances such as proteins
with post-translational modification and hydration measurements. Conventionally, the
measurement of v̄ is performed using H-D density contrast SE experiments (Edelstein and
Schachman 1967). However, use of H2O and D2O introduces the issue of H-D exchange,
which results in a variation of the v̄ value. In order to precisely determine v̄, H-D exchange
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must be taken into account in analyzing density contrast SE data, for example, using direct
global non-linear regression in SEDPHAT.

Further, in order to address the intrinsic high susceptibility to sample heterogeneity of SE
density contrast measurements, we developed a strategy using SV with buffers at different
densities by varying the concentration of H2O and H2

18O (Brown et al., 2011). By globally
modeling the sedimentation boundaries of the data with different buffer densities, the protein
partial-specific volume and sedimentation coefficient distribution are optimized
simultaneously. This approach has been demonstrated to allow precise experimental
determination of v even with levels of sample heterogeneity that would prohibit the use of
the classical Edelstein-Schachman approach (Edelstein et al., 1967).

Selecting Optical System and Setting Scan Parameters
Absorbance or interference data acquisition?

In general, the choice of optical system (and if absorbance optics are used, which
wavelength to use) is sample-dependent. Because of its speed and high data-point density,
the interference (IF) optical system is very desirable, but it requires scrupulous
compositional balancing of the reference and sample buffers, or additional parameters for
describing the sedimentation of the buffer components need to be introduced (see above).
One experimental setting where IF optics are necessary is for a protein that requires a high
concentration of a UV-absorbing chemical to retain stability or activity; as long as the UV-
absorbing material can be balanced in the reference and sample sectors, IF could be used to
follow the sedimentation of the protein whereas the absorbance (ABS) optics would not.
ABS optics should be used if a non-absorbing buffer component cannot be balanced and the
user does not wish to use the computational compensations described above. Because the
ABS and IF optical systems offer complementary information, we find it useful to use both
to collect AUC data if possible.

Since ABS data are usually acquired with quartz windows in the cell assembly, whereas IF
data are collected with sapphire windows, the question arises regarding which windows to
use for the joint acquisition of IF and ABS data. In our experience, both kinds of windows
can work well. Quartz windows are less mechanically stable and can result in higher
systematic TI noise, that sometimes is not completely stationary by undergoes small shifts.
On the other hand, most sapphire windows have a slight absorption of light in the far UV
causing higher noise in ABS detection. (Dependent on the supplier, the absorbance may vary
considerably.) Balancing these two factors, since the elevated noise in the ABS system is
uniform whereas shifting TI patterns cannot be modeled, the default choice is usually
sapphire windows.

Furthermore, using the IF optics with SE experiments carries with it special requirements:
the centrifugation cells must be mechanically “aged”, and water blanks should be collected
(Ansevin et al., 1970). The former step is necessary to ensure that components of the cell do
not shift when different centrifugal fields are applied to them, as is routinely practiced in SE
experiments. The aging process is described elsewhere (Balbo et al., 2007). The water
blanks allow the subtraction of the noise structure of the IF data from the acquired
concentration profile. A water- or buffer-containing cell should be scanned at the
experimental rotor speeds, and a tool is available in SEDFIT for subtracting the “water
blank” when the data are being pre-processed. In practice, a similar correction can be
effected by analyzing the data in multi-speed mode and subtracting TI noise features (and
possibly accounting for rotor stretch) (Vistica et al., 2004).

For the absorbance optics, the choice of wavelength depends on the chemical nature of the
sample and the sample’s concentration. Convenient wavelengths to study for proteins of
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low, moderate, and high concentrations are 230 nm, 280 nm, and 250 nm, respectively. The
first wavelength is measuring absorbance from the peptide bonds in the protein (this
wavelength corresponds to an intensity maximum from the xenon flash lamp used in the
centrifuge), the second is measuring absorbance from aromatic side chains, and the third is
at a spectral minimum where the proximal tails of the first two absorbance features overlap.
Importantly, many small molecules absorb light in the far-UV range, restricting what buffer
components may be used (phosphate is a good choice for far-UV work, but TRIS and
HEPES have significant absorbance there). For SE experiments, it is usually advantageous
to collect data using at least two wavelengths; 280 nm and 250 nm are often the most useful.
For most SV experiments, usually a single wavelength is chosen based on the expected
signal. If DNA or RNA is under study, then the absorbance maximum at ca. 260 nm is a
natural choice for data collection.

Data acquisition for multi-signal SV
Multi-signal SV (MSSV) experiments require careful considerations of the signal and
wavelength choices. Up to three components can be analyzed in such experiments, but it
should be noted that at least as many signals must be collected as components present. In
what follows, we assume the simplest case: a two-component interacting system (A + B ↔
AB). But the principles discussed are extensible to three-component systems. Before
initiating an MSSV experiment, it is advisable to assess whether the proteins are spectrally
distinguishable. In previous work (Padrick and Brautigam, 2011), we have established a
numerical criterion (Dnorm) that indicates whether the experimenter can reasonably expect a
successful outcome from an MSSV experiment. For a two-component system in which the
amino-acid compositions of both components are known and assuming the use of both ABS
and IF,

Equation 18

where the ε’s are molar signal increments, their subscripts indicate the optical detection
system, and the superscripts denote the component’s identity. A Dnorm 0.04 or higher is
desirable for two-component MSSV experiments. Although we find the combination of IF
and A280 to be particularly powerful for such experiments, other combinations of detection
signals are available, and A280/A250 can be employed successfully (Padrick et al., 2010). We
recommend that the user determine Dnorm of all possible dual combinations of A280, A250,
and IF, and choose the combination that has the highest Dnorm. The wavelengths 280 nm and
250 nm are significant because they usually represent a maximum and a minimum,
respectively, in typical protein absorbance spectra. It is important to choose such features in
the UV spectrum for MSSV because the precision of the Beckman absorbance optics is not
sufficient to guarantee that all scans will be performed at exactly the same wavelength.
Choosing maxima and minima therefore minimizes scan-to-scan variation in the detected
absorbances, and makes the analysis tolerant with regard to 1 or 2 nm shifts of the data
acquisition wavelength. Thus, one should be aware of the proteins’ spectral properties, and
if they deviate from the expectations described above, the detection wavelengths should be
adjusted accordingly. If one of the proteins has a prosthetic chromophore with a sufficiently
high molar extinction coefficient, its absorbance maximum (usually in the visual part of the
spectrum) can be chosen. Likewise, if one of the proteins is labeled with an absorbing
moiety (e.g. a fluorophore, see Hellman et al. 2011), its absorbance maximum can be
utilized. The latter two cases should afford excellent spectral discrimination if only one of
the proteins is thus modified (Padrick et al., 2011).
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Absorbance data acquisition in intensity mode
We have shown that negative logarithm of raw intensity data acquired with the ABS system
for each a single sector of a double sector cell also has the same signal structure that can be
modeled with a combination of TI and RI noise, thus allowing the use of intensity data for
SV experiments (Kar et al., 2000). In this manner, SV intensity data can be collected on a
maximum of 14 rather than 7 samples. There are, however, a number of technical limitations
which should be borne in mind by the experienced user. SV absorbance data are usually
collected in a ‘continuous’ mode – prior to data collection, the scanner records the intensity
of the reference sector at 6.5 cm and adjusts the PMT voltage for this single scan. For this
reason, it is usually advisable to avoid menisci or other optical artifacts at this radial
position. Furthermore, it is essential to only have low absorbance (< 0.5 AU) solutions in the
reference sector when collecting data in intensity mode. The use of highly absorbing
solutions in the reference sector will result in high PMT voltages that may bring about PMT
saturation at solute-free regions in the sample sector. As this mode of detection is not
supported by Beckman Coulter, we advise that the reader approach such apparent time-
saving measures with due caution. We further note that SE absorbance data are usually
collected in a ‘step’ mode – in this mode the PMT voltage for the reference and sample
sectors is set for each radial measurement based on the reference intensity.

Post-centrifugal fractionation and tracer detection
Much greater freedom in the detection method is achieved if the sedimentation process takes
place in preparative centrifuges and is recorded after post-centrifugal fractionation
(Bothwell et al., 1978; Darawshe et al., 1993). Proteins can be tagged using radioactive or
chromophorically labels, or may have its concentration determined using an immunoassay.
In the case of nucleic acids, quantitative polymerase chain reaction (qPCR) can be utilized.
Interestingly, qPCR was implemented successfully to study the physical properties of native
chromatin fragments through a combination of ‘tracer’ band sedimentation and isopycnic
ultracentrifugation on preparative ultracentrifuges (Ghirlando et al., 2004; Ghirlando and
Felsenfeld, 2008). In recent years, tracer SE experiments after post-centrifugal fractionation
has been used, in particular, to study the behavior of labeled components under non-ideal
conditions and crowded conditions, as pioneered by Allen Minton and colleagues (Darawshe
et al., 1993; Rivas et al., 1999). For a recent review of theory and applications, see (Rivas
and Minton, 2011).

Centrifuge Run and Scanning Parameters—For SV data collection, once the rotor is
placed into the centrifuge, the chamber is evacuated, and the temperature of the rotor arrives
at the experimental temperature after some time. For 20° C experiments, we routinely
observe a 1-hour equilibration period after the rotor has reached this temperature before
commencing centrifugation. For experiments at 4° C, this waiting period is longer, i.e.
between 8–16 hours. The temperature equilibration should be conducted while the rotor is at
rest. Previous recommendations to equilibrate temperature at 3,000 rpm were based on less-
detailed data analyses than currently in use. The rotor is then accelerated from 0 rpm to the
experimental rotor speed. In general, for the maximal hydrodynamic resolution, we
recommend the highest speed possible. The Beckman An60-Ti and An50-Ti rotors are rated
for 60,000 and 50,000 rpm, respectively. For most proteins, 50,000 rpm is suitable, but for
large proteins or complexes (> ca. 200–300 kg/mol), a slower rotor speed is necessary to
ensure time to collect adequate data before the sample has completely sedimented. In such a
case, we recommend that the user experiment with various rotor speeds prior to starting the
run by simulating the centrifugation using the “Generate” option in SEDFIT. This command
allows the user to input sample parameters and rotor speeds, and it simulates the experiment,
allowing the user to visually assess whether the inputted parameters will lead to a fruitful
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centrifugation run. It should be kept in mind that as few as 20 scans reporting boundary
movements throughout the cell are sufficient for the analysis.

For SE experiments, no temperature equilibration prior to centrifugation is required, as this
end will be accomplished simultaneously with the establishment of the mechanical and
thermodynamic equilibrium. However, the question remains of which rotor speeds to use.
As described above, for a well-conditioned analysis utilizing implicit mass constraints
(Vistica et al., 2004), we have found it useful to consider at least three rotor speeds: one with
a shallow concentration gradient with information on high-mass species, one with a steeper
gradient with more information on smaller species, and one with significant meniscus
depletion that assists in the determination of baseline offsets and has information on the
smallest species. Calculator functions exist in SEDFIT to estimate these speeds (“Calculator
→ estimate equilibrium rotor speeds”). This calculator is appropriate for interacting systems
because it queries the user for the highest and lowest expected mass values. The calculator
also gives a rough estimate for the time of the system to reach equilibrium given the inputted
parameters and assuming a temperature of 4° C. A separate calculator function (“Calculator
→ minimum time to equilibrium”) is also available and can consider different experimental
conditions to estimate the time to reach equilibrium (van Holde and Baldwin, 1958).

For SV experiments, the data should be collected quickly. This does not represent a
difficulty for the IF optical system, because it only takes a few seconds to acquire a scan
from a given cell. If IF data alone are being collected, it is appropriate to program a small
(1–5 min.) wait time between scans so that the maximum scan number (999) is not exceeded
before centrifugation is complete. However, the ABS system, which monitors light intensity
as a function of radius by using a stepper motor to move a slit over a photomultiplier tube, is
significantly slower. For this reason, we set the scanning parameters for ABS optics to
collect the data as quickly as practicable without compromising the data quality. We find
using the “continuous” collection mode with a step size of 0.003 cm and 1 replicate strikes a
good balance between speed and data quality. Also, the data-collection method is modified
such that there is no wait time between scans. For SE data taken with the ABS system, there
is ample time to collect the scans, so we use the stepping mode with 0.001 cm steps and 10–
20 replicates. We generally wait 4–6 hours between scans.

DATA ANALYSIS
Considerations for the Analysis of SV data

For data analysis of SV data, all scans that have information on the sedimentation process
should be loaded into SEDFIT or SEDPHAT. Inexperienced users often load too many
scans; late scans in which no sedimentation is evidenced should be excluded. However, it is
notable that the analytical methods used in these programs do not require one to restrict the
data to a particular time domain. In practice, usually about 50–200 scans are input.
Depending on the scan parameters used, the user may need to down-sample the scans, for
example selecting only every 2nd available scan. The user graphically chooses initial
estimates for the meniscus, bottom, and fitting-limit positions.

The most commonly used analysis performed on SV data in SEDFIT and SEDPHAT is the
c(s) analysis. Useful parameters to employ for this analysis of most protein samples include
a resolution of 50–100, an s-range spanning the expected sedimentation coefficients, a
starting frictional ratio of 1.2–1.4 (this parameter is set to be refined), and a regularization P-
value of 0.68. This latter setting controls the regularization level used in the analysis
(Schuck, 2000; Schuck et al., 2002), and a value of 0.68 strikes an excellent balance
between the resolution of the distribution and the accuracy of its information content. For IF
data, both TI and RI noise must be calculated to achieve accurate modeling of the SV data.
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For ABS data, the RI noise decomposition is rarely appropriate, but the TI noise calculation
is helpful to remove data features due to window imperfections. The meniscus position
should always be refined, as it is probably not known by the user with sufficient accuracy.
The bottom position is only refined when small molecules with significant back-diffusion
are analyzed. The analysis is initiated by clicking “Fit” in the main menu of the program,
during which an iterative optimization of the linear and nonlinear parameters of the system
is performed. Once the fitting session has converged, the c(s) distribution is displayed along
with the corresponding data, fit lines, and residuals. The fit should be examined for defects.
The rmsd should be low; less than 0.01 signal units under most experimental settings is
adequate. The residuals should be nonsystematic. This desired feature can be assessed by
examination of the residuals bitmap (introduced above), which should be free of strong
horizontal, vertical, or diagonal features. Systematic residuals usually indicate that a
parameter that should have been refined was actually fixed at a non-optimal value; two
leading candidates are the frictional ratio and the sample meniscus position. If this is the
case, the user should correct the problem and reinitiate the fitting session. Another possible
source of systematicity is that the underlying assumptions of the c(s) model are violated. In
particular, the user should consider whether an interaction may be occurring (the c(s) strictly
distribution assumes noninteracting species and the presence of thermodynamic or
hydrodynamic interactions can lead to increased residuals) or species with varying frictional
ratios are present (the simple c(s) distribution assumes a single frictional ratio for all
species).

An examination of the final refined distribution may indicate a buffer mismatch. This defect,
which is especially common in interference data, usually manifests as a sharp peak or
upward feature at the low-s extreme of the c(s) distribution. As mentioned above, recent
advances (Zhao et al., 2010) have been introduced that allow the user to compensate for the
mismatch computationally.

Also described above is the fact that the sedimentation coefficients of rapidly sedimenting
species may be inaccurately refined in ABS data analyzed by these programs because the
sedimenting boundary moves significantly during the finite scanning time (i.e. after the time
stamp of the scan has been recorded). This discrepancy results in an overestimate of the s-
value. Compensatory terms to the Lamm-equation calculation (accessed by “Options →
Fitting Options → Lamm Equation Parameters” in SEDFIT and “Options → Lamm
Equation Options” in SEDPHAT) can be added to ameliorate this error (Brown et al., 2009).

Many variations on the c(s) distribution are available. For example, it may be known that
two or more hydrodynamically resolved species have divergent frictional ratios; to obtain
accurate estimates of the respective frictional ratios, it is possible to divide s-space into
several segments, each having an independent frictional ratio. Carrying this idea further, it is
feasible to calculate the frictional ratios for species that are not hydrodynamically resolved
using the c(s, f/f0) distribution discussed above (Brown and Schuck, 2006). Further, it may
be advantageous to model one region of s-space with discrete species and another with a
continuous distribution (an example might be a sample with highly populated monomers
(the discrete species) with aggregates (the continuous distribution)). These c(s) offshoots are
implemented in SEDFIT and SEDPHAT.

Following a c(s) analysis of an interacting system, it is advisable to construct isotherms
based on the results. Such isotherms can be analyzed to arrive at an equilibrium binding
constant (or constants) for the system. For more details regarding isotherm construction, see
“Considerations for the Analysis of Isotherms,” below.
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For systems with no contaminants and only a few species evident in the c(s) distribution, it
is possible that a more accurate description of the data will be obtained with a discrete-
species analysis. As mentioned above, for interacting systems, it can be desirable to directly
model the boundary with Lamm-equation solutions to the reacting system. Because this
method of SV data analysis may take some time to converge, we recommend that an
isotherm analysis on the system (see below) be performed first to establish excellent
parametric estimates that can be entered into the Lamm-equation analysis. While the goal of
perfect purity can be difficult to achieve for biological samples, SEDPHAT has features that
can minimize the influence of these sample contaminants. For example a “non-participating”
species can be introduced to compensate for a single contaminant. If aggregates are
encountered, a “partial boundary model” can be employed, which restricts the analysis to
only the relevant radial portion of the scans (Brown et al., 2009), eliminating contributions
from aggregates. Many of the strategies employed for SE data analysis (see below) are also
applicable for the Lamm-equation approach to interacting systems. The analysis should be
as constrained as possible. For example, the individual components of a two-component
system should be studied so that their sedimentation coefficients and molar masses may be
treated as constants in the analysis of mixtures. If data from multiple signals were collected,
this step also allows the refinement of extinction coefficients, in a manner equivalent to that
of the MSSV experiment detailed below. These refined values would be entered and fixed in
the global analysis of the mixtures. For these mixtures, concentrations should be studied that
result in the measurement of adequate populations of the complex and individual
components. For example, a titration series can be examined in which one component can be
held at a constant concentration while those of the other are varied. In the global analysis
(and by analogy to the SE data analysis presented below), the concentrations of the first
component can be linked across all data sets, removing several parameters from the analysis.
In general, component concentrations should be refined (i.e. not fixed). If the proper
domains of concentration space are surveyed, then refined values for Kd and scomplex can be
reliably and precisely obtained. The value for koff may also be refined, but, as mentioned
above, it is only accurately estimated when it is in the 10−3–10−4 s−1 range. After the
parameters of interest have been refined, several criteria should be checked to establish the
goodness of the fit. These include non-systematic residuals, low rmsd’s, modest drifts from
input concentrations, and physically intuitive values of the parameters (see “Considerations
for Isotherm Analysis”, below). The error intervals of the parameters of interest should be
obtained using the methods described below (“General Statistical Methods”). Further details
on this type of analysis are available in (Brautigam, 2011; Dam et al., 2005).

Another c(s)-based analysis enabled by SEDPHAT is the MSSV experiment. A detailed
examination of this method is available elsewhere (Padrick et al., 2010), so we restrict
ourselves here to a brief summary. Below, we will assume that the IF molar signal
increments are known from the amino-acid compositions of the proteins (i.e. via SEDFIT’s
calculator function). Knowing one of the signal increments well for each protein is a
prerequisite of the experiment, because this increment will be used as a standard against
which the signal increments for the other detection signal will be refined. In the experiment,
one centrifugal cell will contain only A, one only B, and a third will contain both proteins,
with one (usually the smaller) at a significant molar excess. This expedient helps to ensure
adequate occupancy and kinetic stability of the expected AB complex. There are three steps
taken to accomplish this analysis: (1) refinement of εABS280 for A, (2) refinement of εABS280
for B, and (3) the MSSV analysis of the mixture.

For step (1), the SV data sets for protein A (IF and A280) are loaded into SEDPHAT, and a

multi-signal analysis is carried out, holding  constant and allowing  to refine. In
this analysis, the data are globally modeled by a single c(s) distribution. Of course,
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variations on this strategy are available, including segmented c(s) distributions and hybrid
discrete/continuous distributions. Once a satisfactory fit to the data is obtained, the

configuration is saved and the refined  noted. In step (2), the above is repeated for

protein B, resulting in a refined value for . In step (3), the SV data sets for the mixture
are loaded into SEDPHAT, and the known and refined signal increments are input. A global
analysis is performed using two overlapping distributions—one accounting for species A
(cA(s)) and the other for B (cB(s)). For co-sedimenting complexes, these distributions will
have peaks at the same sedimentation coefficient (and presumably a sedimentation
coefficient that is greater than that of either of the two species). The molar ratio of the
species present in the co-sedimenting s-range can be obtained by integration of the
distributions. The stoichiometry of the complex may be derived from this information and
an estimate of the mass of the complex.

We suggest that four criteria be used at this point to assess the reliability of the molar-ratio
estimate. They are:

1. Rationality of the calculated molar ratio. A 20:1 ratio of an AB complex
probably is not “rational”, whereas a 1:0.9 ratio is likely, within error, to indicate a
1:1 complex.

2. Rationality of the distributions. Detection of a small component alone at very
high s-values or vice versa is not likely and probably indicates poor spectral
resolution.

3. Mass conservation. The concentrations of the proteins in the mixed sample should
be known, and facilitating this calculation are the concentrations available from the
SV experiments performed with the samples alone. Integration over the entire s-
range in the analysis of the mixture should comport with this expectation.

4. Statistical tests of alternative explanations given the data. For example, if a 1:1
complex is observed, can a 2:1 or 1:2 complex be ruled out? Our ability to use the
statistical tools and segmented distributions in SEDPHAT can provide answers to
this question. For example, a segment of s-space can be defined where the complex

is observed, and a fit performed as above. The χ2 of the best fit (called ), is noted.

Then, a critical  can be defined by using the “Statistics” menu of SEDPHAT
(“Statistics → Critical chi-square for error surface projections”), choosing a
confidence level of 0.95 (i.e. 2 σ), and confirming the defaults for degrees of

freedom. The program will report . Then the c(s) segment with the complex can
be constrained to have either 2:1 or 1:2 complexes. After repeating the fit with the

constraint in place, the χ2 is examined. If this value is higher than , we may
safely reject the alternative hypothesis. If not, the data do not have enough
discriminatory power to confidently reject likely alternative hypotheses.

Considerations for the Analysis of SE Data
A successful sedimentation equilibrium experiment, be it for the analysis of a single, non-
interacting solute or the characterization of an interacting system, requires data collection at
a minimum of three rotor speeds that report on all of the species present in solution.
Furthermore, it is crucial to demonstrate that sedimentation equilibrium has been in fact
attained. Typically, sedimentation data are collected at 6-hour intervals and compared using
either WinMATCH or SEDFIT. Equilibrium is reached when differences between
successive scans can be described as non-systematic random noise typical for the method of
detection being used. The time to reach equilibrium depends on many factors, including the
solution column height, the experimental temperature (which directly influences the solution
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viscosity), and the asymmetry of the macromolecule. A typical solution column of 5 mm
containing globular proteins at 20.0°C usually requires at least 48 hours to reach
equilibrium; as a guide, SEDFIT also provides a calculator for estimating the minimum time
to equilibrium. As the sample concentrates at the bottom of the AUC cell, multi-speed SE
data are best collected starting at the lowest speed and incrementally raising the rotor speed
once equilibrium has been reached. This approach has the added advantage that it typically
takes less time to re-establish equilibrium when raising the rotor speed.

Having established equilibrium at all rotor speeds data are preprocessed in SEDFIT for
export into SEDPHAT. Multi-speed data for each detection system are loaded into SEDFIT
and sorted into equilibrium scans; in this manner, the attainment of equilibrium for each
rotor speed is confirmed, and data are exported as experimental (‘xp’) files into SEDPHAT.
Each experimental file contains the parameters used for data collection, specifically the
solution density, viscosity and temperature as well as the effective partial specific volume
and extinction coefficients of the macromolecules of interest. As each experimental file
contains multi-speed data, it is possible to apply TI noise corrections to the data (see below).

The analysis of hetero-interacting systems requires characterization of the individual
components by SE using the same conditions used to study the interaction. An analysis of
the multi-wavelength SE data collected for each of the components can be conducted with a
model termed ‘A (single species of interacting system)’; this does not only provide a method
for experimentally the determining partial specific volume (assuming that the
macromolecule does not self-associate), but also a method for providing the effective
extinction coefficients at the absorbance wavelengths of interest. Such a determination is
carried out by fixing one of the values for the extinction coefficient (this process is
analogous to that described above for MSSV). Typically, when IF data are collected, the
molar signal increment for the protein calculated in SEDFIT is fixed and absorbance
extinction coefficients at 280, 250 and/or 230 nm are experimentally determined through the
implementation of implicit MC constraints. In cases when interference data are not
available, then the extinction coefficient at 280 nm is fixed. This value, along with the
interference molar signal increment can be calculated based on its amino-acid composition
in SEDFIT. As noted above, the collection of SE IF data requires the use of mechanically
aged cells and the subtraction of previously measured water blanks. The use of internally
loaded 6-channel centerpieces is thus precluded. Also note that absorbance data for protein
and protein-protein interactions are typically collected at 280, 250 and 230 nm. By choosing
these absorbance wavelengths, one not only minimizes possible issues with the AUC
monochromator but also extends the range of accessible protein concentrations. Data
collection at these wavelengths in combination with the use of 12 or 3 mm pathlength cells
allows for the characterization of high and low-affinity interactions.

The parameters obtained from the characterization of the individual components are used to
initialize the analysis of the interacting system. SE data collected at multiple wavelengths
and detection systems, and concentrations spanning the expected Kd, in the form of ’xp
files’, are assembled into SEDPHAT. Currently, SEDPHAT supports a maximum of 30 xp
files, which is usually far more than sufficient. To implement the use of implicit MC, the
loading concentrations of each of the components are entered, cells for which data are
collected at multiple wavelengths are linked in terms of a single concentration(s).
Furthermore, in the case of an experiment designed using a dilution series, the ratio of
component B to A can be fixed or floated as a single global parameter, providing an
example in which the experimental design can be used for the simplification and
optimization of the data analysis. The implementation of MC also requires that the value of
the cell bottom be refined during data fitting; in this case data collected for the same cell
using the same detection system (e.g. absorbance data at multiple wavelengths) can be
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linked in terms of a common meniscus and bottom. We do not recommend linking bottom
radii for interference and absorbance data, as they utilize independent radial calibration
procedures.

Having assembled all of the xp files and initial constraints, the data are modeled in terms of
the appropriate interaction model. It is important at this stage not to implement the use of TI
noise, as this may become correlated with the interaction model used. Fitting is carried out
implementing the simplex, Marquardt-Levenberg and simulated-annealing fitting routines to
establish a global minimum on the SE data error surface. The r.m.s.d for each xp file and the
systematicity in the residuals are used as criteria to establish the goodness of fit and
satisfaction with the model used to fit the data. In the case of an unsatisfactory fit, the model
can be improved or further refined (e.g. is this an A + B ↔ AB or A + B + B ↔ ABB
interaction, does one need to include positive or negative cooperativity in the case of the
latter?). The optimized concentrations can also be used as a criterion for the goodness of fit
and propriety of the model as these are usually close (within 10–15%, but dependent on the
technique used to determine protein concentrations prior to AUC) to those expected. It is
also essential to check that the optimized values for the cell bottom are not constrained by
the limits placed on the parameter and/or totally unreasonable. Following the analysis and
optimization, the best model that describes the experimental data is further refined by
inclusion of TI noise for the absorbance as well as the interference data, assuming that the
latter had the corresponding water blanks subtracted. The implementation of TI noise will
result in a decrease of the r.m.s.d. and improve the quality of the residuals. Care should be
taken to note that the TI noise should only account for time invariant systematic noise in the
data it should be reasonably flat and show no curvature.

The optimized fit should be further analyzed to obtain confidence limits in the measured
equilibrium dissociation constant(s) and demonstrate that all of the species involved in the
chemical equilibrium are actually populated. Both of these features are implemented in
SEDPHAT – the former, based on the projection method, is now automated whereas the
latter can be accessed through the appropriate sub-menu within the ‘display’ function. These
steps are important for the evaluation of the information content of the data and possible
design of further experiments. It should be noted that a simple evaluation of whether an
interaction is actually occurring or not can be obtained when the single xp files are being
constructed and assembled – an analysis in terms of a single non-interacting solute provides
a signal-weighted-average molar mass; this parameter should increase with increasing
concentrations or under conditions that favor complex formation.

A special case is presented in the study of self-associating systems, in that it is not possible
to experimentally determine partial specific volume of the protein of interest by SE. Either
SEDFIT or SEDNTERP can be used to provide the partial specific volume of proteins, and
these values are generally deemed as reliable. In the case of non-protein self-associating
systems, the use of SE presents a particular challenge, as the experimentally determined
affinity is correlated to the value of the partial specific volume. In a recent study on the self-
association of peptide-nucleic acids (PNA), we confirmed that the partial specific volume
was correctly determined (Durchschlag and Zipper, 1997, 1994) by comparing the affinity
of interaction obtained by SE with that obtained from a c(s) SV analysis (Englund et al.,
2012). This result highlights the importance of combining SE and SV experiments.

These considerations can also be applied to protein nucleic-acid interactions. One key
feature to note is that both the effective partial specific volume and refractive index
increment for nucleic acids depend on the buffer composition and in particular the ionic
strength. For this reason, it is crucial that the effective partial specific volume be determined
experimentally by SE. Also, when IF data are collected, the molar signal increment needs be
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determined experimentally using the defined extinction coefficient at 260 nm as a reference
(e.g. see idtdna.com for single-stranded nucleic acids, or biophysics/idtdna.com for double-
stranded nucleic acids) as the refractive index increment dn/dc depends on the ionic strength
(Kam et al., 1981).

Considerations for the Analysis of Isotherms
As mentioned above, there are several SV isotherm-based analyses available in SEDPHAT.
The first step in constructing an isotherm is to analyze all relevant SV data sets in SEDFIT.
Regardless of the kinetics of the interaction, there are always at least two isotherms available
for the analysis, and they should be globally analyzed. For bimolecular interactions that
display slow kinetics (i.e. at least three peaks in a c(s) distribution), two isotherms should be
globally analyzed: the sw isotherm and a population isotherm. The sw isotherm is derived by
integrating in SEDFIT the entirety of the distributions and tabulating the reported signal-
average s-values along with the respective total component concentrations in an ASCII file.
The population isotherm is constructed similarly, except the signal populations, not the s-
values, of the individual peaks are tabulated. For rapidly interacting systems, three isotherms
can be input: the sw isotherm, the sfast isotherm, and the “Effective Particle” population
isotherm. The sfast isotherm is constructed exactly as the sw isotherm, except only the
reaction boundary is integrated. The Effective Particle population isotherm is constructed
like the population isotherm described above, but, because there are only two peaks present
(the stationary and reaction boundaries), only these peaks are integrated and their signal
populations tabulated. SEDFIT has a tool available that facilitates these analyses and
integrations (“Options → Fitting Options → Serialize Fit”). These isotherms are loaded into
SEDPHAT by executing the “Data → Load New AUC Isotherm Data” command from the
main menu. The extinction information for the components must be input so that the signal
information from the isotherms can be converted to concentration space. At this point, it is
necessary to impose a model (e.g. A + B ↔ AB); information on the model may come from
orthogonal methods or from complementary AUC experiments, such as an MSSV analysis.
The s-values of the components must be known and input; presumably these are known
from separate SV analyses. The s-value of the complex(es) must be estimated and input. For
a slowly exchanging system, scomplex is known, but for systems with a fast koff, this s-value
may be estimated from the mass of the complex and some hydrodynamic assumptions using
calculators available in SEDFIT. If a crystal structure of the complex is known, the pdb file
may be submitted to a hydrodynamic modeling program like BEST (Aragon, 2011; Aragon
and Hahn, 2006) or HYDROPRO (Garcia de la Torre et al., 2000) for estimating scomplex.
For systems with multivalent components, educated guesses at complex s-values may be the
only available option. scomplex may be refined, but this optimization should only be
attempted if the isotherms reveal significant information on its value, as in the sfast isotherm
or certain concentration domains (high concentrations, equimolar) of the sw isotherm. The
total concentrations of the components are taken from the isotherm files. Refinement can
also be constrained to certain s-value ranges, based, for example, on hydrodynamic
considerations. However, if one suspects that the active concentrations of a component
systematically deviate from the input values, a global correction factor can be applied and
refined.

After inputting a reasonable initial guess for Kd, a global refinement is initiated that will
usually converge rapidly. The fit lines should be scrutinized closely for correspondence to
the data points and for systematic deviations therefrom. Poor, very systematic fits may
indicate an incorrect model, and the user may experiment with other likely models if
appropriate. If the fit is deemed good, the fitted parameters should be examined and their
rationality assessed. For example, an attomolar equilibrium dissociation constant and an
scomplex greater than physically possible would indicate an unrealistic result, and the cause of
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these wayward parameters should be investigated. The model may be incorrect, an errant
parameter may have been input, the parameter may not be well restrained by the data, or the
data may simply not support the simultaneous refinement of all of the parameters. In the
absence of an error, one strategy that can be explored is to fix or constrain (within user-
defined limits) one or more of the previously fitted parameters at or near to a reasonable
value and repeat the fitting session. If more meaningful parameters result, the constraint can
be provisionally released to examine its potential to refine rationally under this new,
hopefully more stable set of related parameters. A global multi-method analysis, based on
the availability of data from multiple biophysical methods, can also be applied. This
methodology, implemented in SEDPHAT, uses the orthogonal information content from
different data sets as mutual restraints (Zhao and Schuck, 2012). After a reliable fit has been
achieved, confidence intervals for the parameters of interest can be obtained using the
statistical approaches described in the next section.

General Statistical Methods
With any model, once a best-fit has been found, it is crucial to examine the statistical
significance of the result. For this purpose, three fundamentally different approaches have
been used in AUC, all implemented in SEDPHAT.

For simple parameter error surfaces that can be optimized well with automated optimization
algorithms, Monte-Carlo methods are possible. It requires the generation of synthetic data
sets that follow the best-fit model but have different random noise, with similar noise
properties as the original data. In each iteration, the model is re-fitted to the synthetic data
set, and a distribution of best-fit parameter values is built up. From this, for example, the
95% confidence interval is determined by parameter values encompassing the 2.5% and
97.5% quantile. In order to create meaningful precision of the confidence interval, typically
1000 – 10,000 iterations are required. A significant drawback of this method is presented by
the problem that automated optimization does not work well for complex error surfaces. If at
some iterations the ‘best-fit’ parameters are caught in local minima, the resulting parameter
value distribution will be skewed. This is likely to occur with SE analyses, which have the
most complex error surfaces.

A better approach is to trace the projections of the error surface on a parameter of interest
(Bevington and Robinson, 1992). This approach fixes the parameter of interest at a sub-
optimal value close to the best-fit value, and tests to what extent the fit quality degrades
while allowing all other parameters to compensate for the constraint. This test is repeated
multiple times moving the parameter of interest further from the best-fit value. Once the
increase in the rmsd of the fit exceeds a statistically pre-set level based on F-statistics, one of
the sides of the error interval is reached. The same approach is used for the other side of the
confidence interval. In SEDPHAT, this procedure has been automated (which is simpler
than in the Monte-Carlo case since one parameter is always fixed), providing on user request
just the confidence interval or complete traces of the error surface projections. The latter can
be highly instructive, in particular since ubiquitous systematic errors in the data make the
choice of the confidence level ambiguous.

A third approach, long recognized to be highly unreliable in actually estimating parameter
uncertainties, is the co-variance matrix. In this method, essentially a parabolic
approximation of the error surface is made at the global minimum, and its curvature is used
to predict parameter errors. In contrast to the F-statistics method above, it relies on the
absolute errors of the data acquisition to be known. Clearly, the parabolic approximation of
the error surface may not be realistic over the range of parameter values in question.
However, this method can display the cross-correlation coefficients of the parameter values,
which is useful for quickly examining the rigidity of the model.
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Generally, it cannot be over-emphasized that the parameter error estimates can be greatly
influenced by the application of constraints, for example, hydrodynamic constraints on s-
values, constraints on the loading concentrations by suitable experimental design in both SE
and SV, or mutual constraints arising in the global analysis of multiple data sets or multiple
techniques (Zhao and Schuck, 2012).

Using GUSSI to produce publication-quality graphs of SV and SE data and analyses
GUSSI is a stand-alone, companion program for SEDFIT and SEDPHAT. GUSSI can be
called from the Plot menus of these analytical programs to automatically parse and present
the results of the analysis. It gives the user considerable control over the appearance of the
output, and can write high-resolution images that are suitable for presentations and
publication. The GUSSI interface features a large view of the graph along with a GUI-based
“Control Panel” that eases access to the most-used graph parameter values. Changes in the
parameters are updated in the graph window in real time. Once the user has settled on an
appearance for the graph, a “state” file may be saved that contains all information necessary
to reproduce the plot. Also, plot can be saved in one of four file formats: EPS, PNG, PDF,
and SVG. The following protocols are meant as brief introductions; further information is
available in the GUSSI documentation, which is available from that program’s Help menu.

For the c(s) distribution
1. Load SV data into SEDFIT or SEDPHAT and analyze using a continuous

distribution, a segmented distribution, or a hybrid discrete/continuous distribution.

2. In the analysis program, choose “Plot → GUSSI c(s) plot”. If you are working in
SEDPHAT, you may be asked some questions about the appearance of the
distribution(s).

3. GUSSI will open. A splash screen will appear, followed by the initial GUSSI c(s)
plot with defaults applied.

4. Add distributions as needed. This task can be accomplished by:

a. Adding saved distributions.

b. Copying and pasting. One can choose “Copy → Copy Distribution Table”
in a different SEDFIT or SEDPHAT session and then paste these data into
GUSSI (Ctrl-V or “Distributions → Paste a Distribution”).

5. Adjust individual distribution properties as desired. Available options for each
distribution are:

a. Line color, type, and thickness.

b. Marker existence, type, color, and size.

c. Area fills below the distribution

6. Adjust global plot properties as desired, including:

a. Normalization.

b. Axis properties (ticks, text, and limits).

c. Existence and properties of a legend.

d. Display of integral plots in addition to the differential c(s) distributions.

e. Conversion of the s-values of the distribution to standard conditions
(s20,w).
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f. Figure size and dpi.

7. Save the GUSSI state (“File → Save GUSSI State”) if recall of the graph for
further manipulation is desired. Also, the data only can be saved and input later into
the program.

8. Save the figure by choosing “Save Figure Only” from GUSSI’s File Menu.

For a data/fit/residual plot of SV data
1. Load SV data into SEDFIT or SEDPHAT and analyze using any available model

that will apply the model directly to the SV data.

2. In the analysis program, choose “Plot → GUSSI data-fit-residuals plot”. If multiple
data sets are loaded into SEDPHAT as “Experiments”, the SEDPHAT will prompt
you to select one of them for plotting (only one at a time may currently be plotted
in this GUSSI module).

3. GUSSI will open after displaying its splash screen. The data will be displayed with
default parameters applied. As in SEDFIT and SEDPHAT, the data and fits are
presented in an upper panel, whereas the residual plot is presented below.

4. Adjust parameters as desired, including:

a. Color mode. By default, early scans are colored violet, and late scans are
red; scans between these extremes are drawn progressing through rainbow
colors. Other modes available are a SEDFIT-like color gradient, a
grayscale gradient, black-and-white, a uniform color, or a user-defined
gradient.

b. The existence, color, type, and thickness of the fit lines.

c. The existence, color, and size of the data markers.

d. The existence of the residual plot and appearance of its lines.

e. Data sampling; SV data are usually too dense to show all of them on a
single presentation-quality graph, so GUSSI by default down-samples the
data it receives to every 3rd scan and every 3rd data point. These sampling
rates are user-adjustable.

f. Which systematic noise features are subtracted from the data and fit lines.

g. Axis ticks, text, and limits.

h. Figure size and dpi.

5. Save the GUSSI state (“File → Save GUSSI State”) so that the adjusted graph state
can be recalled if necessary. As with the c(s) distribution, the data only may also be
saved (“File → Save Data Only”) and loaded later into the program.

6. Save the figure by choosing “Save Figure Only” from GUSSI’s File Menu.

For a data/fit/residuals plot of SE data
1. Load and analyze SE data in SEDPHAT (this step is facilitated by utility functions

in SEDFIT).

2. Once the analysis is final, choose “Plot → GUSSI data-fit-residuals plot”.

3. If multiple “Experiments” are being analyzed, SEDPHAT will prompt the user to
select one for plotting. GUSSI is optimized to display multi-speed SE data sets that
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are recommended for use in SEDPHAT (see “Considerations for the Analysis of
SE Data,” above).

4. After GUSSI’s splash screen disappears, it displays the data, fit lines, and residuals
as in SEDPHAT, with the data and fit lines in an upper panel and the residuals in a
lower panel.

5. Adjust the appearance of the figure as desired. Adjustable parameters for individual
concentration distributions include:

a. Fit line color, style, and width.

b. Marker existence, color, style, and size.

c. Existence of the residual plot and the appearance of its lines.

d. Data-point sampling. Often, especially for long-column data, the data are
too dense to be shown on this style of plot, and so the data-points can
easily be down-sampled.

6. Adjust the overall parameters of the plot, including:

a. Axis ticks, text, and limits.

b. Subtraction of noise from the data and fit lines.

c. Existence and properties of a legend.

d. Figure size and dpi.

7. Save the GUSSI state (“File → Save GUSSI State”) if it is desirable to alter the
graph later. The as with the other two protocols, the data alone may be saved (“File
→ Save Data Only”) and later input back into GUSSI.

8. Save the figure by choosing “Save Figure Only” from GUSSI’s File Menu.

GUSSI may also be started independently of SEDFIT or SEDPHAT to facilitate the
updating of saved data or “ states. ” The program is a vailable free-of-charge from http://
biophysics.swmed.edu/MBR/software.
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Figure 1.
Examples for the shapes of Lamm equation solutions. The profiles are calculated for
particles of different size and sedimentation properties. All conditions are calculated for a
rotor speed of 50,000 rpm, and 50 concentration profiles are shown at different (in each case
equally spaced) time intervals. Later scans are indicated by a higher color temperature. (A)
Small molecules with a sedimentation coefficient of 0.2 S and a diffusion coefficient of
6×10−6 cm2/sec, in Δt = 300 sec intervals. Similar values are frequently observed for
sedimenting buffer salts. (B) Sedimentation of a peptide of 1 kg/mol and 0.3 S, Δt = 1000
sec. (C) A small protein of 10 kg/mol and 1.5 S, Δt = 500 sec. (D) A protein of 100 kg/mol
and 6 S, Δt = 300 sec. (E) Particle of 1 Mg/mol and 30 S, Δt = 50 sec. (F) A floating particle
with a sedimentation coefficient of −3.0 S and a diffusion coefficient of 2.71×10−7 cm2/sec.
Such data patterns may be obtained, for example, with large emulsion or lipid particles. In
flotation, the radial dilution is replaced with radial increase in concentration in the plateau
region of successive profiles. (Figure reproduced from (Schuck, 2012).)
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Figure 2.
Demonstration of interference optical data before (top) and after (bottom) subtracting the
estimated TI and RI noise contributions. Both the time-dependent (radius-invariant, RI)
signal offsets arising from jitter and integral fringe shifts, as well as the radius-dependent
(time-invariant, TI) signal offset arising from imperfections in the smoothness of the optical
elements, can be clearly discerned. After fitting the data with a model including terms for TI
and RI noise, the best-fit values for the TI noise (red line in top panel) and for the RI noise
(not shown) can be subtracted from the raw data, as shown in the lower panel. As long as the
degrees of freedom for unknown TI and RI noise are maintained in the further analysis, this
subtraction does not alter the information content of the data, but allows better visual
inspection of the signal from the macromolecular redistribution. (Figure reproduced from
Curr. Protoc. Immunol., Chapter 18, Unit 18 15 (2008)).

Zhao et al. Page 47

Curr Protoc Protein Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
c(s) distribution of the data shown in Figure 2. For comparison, the dashed line shows the ls-
g*(s) distribution derived from a subset of the scans.
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Figure 4.
Example of SV analyses of a system with non-interacting species. (A) Representative subset
of the raw data after elimination of systematic noise contributions. (B) Residuals bitmap
from a fit with insufficient quality: the data in (A) are modeled with an impostor single-
species fit, resulting in clearly systematic deviations that can be discerned from the strong
diagonal feature in the bitmap. (C) The quality of the fit with a c(s) model results in a
residuals bitmap with very few diagonal features. There are some vertical and horizontal
lines indicative of the remaining residuals due to technical imperfections in the data
acquisition process, such as higher-order vibrations of optical components. (D) Size and-
shape distribution, transformed into coordinates of sedimentation coefficient and molar
mass. The color temperature of the contour lines indicates the population of species. Like in
one-dimensional c(s), the peak-width in c(s,M) contains contributions both from
regularization (reflecting limited resolution given the signal-to-noise ratio of the data) and
from true heterogeneity. (E) Reduction of the c(s,M) distribution to a pure sedimentation
coefficient distribution, general c(s,*). This is equivalent to a conventional c(s) analysis but
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without any constraints to a common average frictional ratio of all species. The inset shows
a pure molar-mass distribution, c(M,*), also derived by integration of c(s,M) in a direction
orthogonal to c(s,*). (F) Size distribution c(s) using a hydrodynamic scaling law (black line
with broad peaks). Also shown is the result of a Bayesian analysis using prior knowledge in
the analysis of this non-interacting system, here in the form of c(Pδ)(s) (blue line with sharp
peaks) using the hypothesis that the sample consists of discrete species. Generally, the peak
width in c(s) can result from either a true polydispersity of the protein (e.g., strong
heterogeneity in glycosylation, in conformation, primary sequence, etc.), or from the
standard regularization favoring broader peaks for data with low signal/noise ratio. (Figure
reproduced from (Schuck et al., 2010).)
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Figure 5.
Example of the multi-signal ck(s) analysis of a triple protein mixture of a viral glycoprotein
(green), its cognate receptor (blue), and a heterogeneous antigen-recognition receptor
fragment (red). The content of each protein component in the different s-ranges is obtained
from the global analysis of sedimentation data acquired with the interference optics and with
the absorbance system at two different wavelengths (data not shown), using two
chromophorically labeled proteins and one unlabeled protein. Solid lines show the ck(s)
analysis of the triple mixture. The analogous distributions of each protein alone are shown as
dashed lines. The formation of two coexisting binary complexes at ~5 S and ~7 S and a
ternary complex with 1:1:1 stoichiometry at ~8.5 S can be discerned. Figure reproduced
from (Schuck et al., 2010).
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Figure 6.
Properties of the reaction boundary A···B as a function of the total loading concentration of
A and B, calculated by EPT for the system of Figure 1. (Top) Velocity of the reaction
boundary sA···B following Eq. 6. (Middle) Composition RA···B of the reaction boundary
following Eq. 7. (Bottom) Fractional signal of the undisturbed boundary, assuming that both
components are globular with equal weight-based extinction coefficients. In all plots the line
for the phase transition cBtot

*(cAtot) is shown as black dotted line, separating the region of
A···(B) in the upper left quadrant from B (A) elsewhere. Figure reproduced from (Schuck,
2010b).
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