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Abstract
Breathing emerges through complex network interactions involving neurons distributed
throughout the nervous system. The respiratory rhythm generating network is composed of micro
networks functioning within larger networks to generate distinct rhythms and patterns that
characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within
the ventrolateral medulla assumes a core function without which respiratory rhythm generation
and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic
membrane properties that give rise to different types of respiratory rhythmic activities including
eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are
preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the
behaving animal as part of a larger network that receives important inputs from areas such as the
pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and
sensory inputs that imbue the network with the important ability to adapt to changes in the
behavioral, metabolic, and developmental conditions of the organism. This review summarizes our
current understanding of these interactions and relates the emerging concepts to insights gained in
other rhythm generating networks.
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Introduction
Behaviors are continuously adapted to changes in an organism's internal and external
environment. Not surprisingly, a large degree of plasticity characterizes all levels of
neuronal integration from the molecular, cellular to the network and ultimately behavioral
level. Common principles of behavioral plasticity have been described in numerous
invertebrates (Harris et al., 2010; Marder and Goaillard, 2006; Nadim et al., 2008; Nusbaum,
2002; Ramirez and Pearson, 1993) and mammalian model systems including humans (Lee et
al., 2009; Macfarlane and Mitchell, 2009; Millhorn et al., 1980; Peng et al., 2003). In this
review, we will focus on modulatory processes that are critical for the neuronal control of
mammalian breathing, but we will also describe how insights gained in the respiratory
system relate to other networks and behaviors. Breathing is well integrated with many other
behaviors and needs to adapt continuously to changes in the metabolic and behavioral
demands of an organism. Both the respiratory frequency and amplitude of breathing are
adapted to behavioral conditions like posture, physical activity, sleep, or speech. In fact,
breathing is so sensitive to an organism's internal state that the characteristics of breathing
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can reveal whether someone is calm, agitated, or scared. As in most animal behaviors,
plasticity in the respiratory system seems to depend on a variety of amines, steroids, and
peptides that exert their modulatory actions by acting on a large number of ion channels,
receptors, and second messenger systems (Doi and Ramirez, 2008). Neuromodulatory
processes play equally important roles during well-oxygenated and hypoxic conditions, and
when disturbed neuromodulation has been associated with a number of pathophysiological
conditions ranging from Rett syndrome (Viemari et al., 2005a) to Sudden Infant Death
Syndrome (SIDS) (Paterson et al., 2009).

The mammalian respiratory network and the nuclei controlling neuromodulation are widely
distributed along the neural axis. Important for breathing are the neuronal networks located
in the ventral respiratory column (VRC) (Alheid et al., 2002; Feldman and Del Negro, 2006;
Feldman et al., 2003; McCrimmon et al., 2004). These networks (Fig. 1) include, from
rostral to caudal, the retrotrapezoid nucleus/parafacial respiratory group complex (RTN/
pFRG), the Bötzinger complex, the pre-Bötzinger complex (pre-BötC), the rostral ventral
respiratory group (rVRG), and the caudal VRG (cVRG) (Alheid et al., 2002; Feldman and
Del Negro, 2006; Feldman et al., 2003; McCrimmon et al., 2004; Onimaru and Homma,
2003; Onimaru et al., 2006; Smith et al., 1991; Thoby-Brisson et al., 2009). The distinction
between these networks is based on a histological characterization (Alheid et al., 2002; Gray
et al., 1999; Guyenet et al., 2002), and their distinct functional properties (Gray et al., 1999,
2001; Janczewski and Feldman, 2006; Janczewski et al., 2002; McCrimmon et al., 2004;
Onimaru and Homma, 2003; Onimaru et al., 2006; Thoby-Brisson et al., 2005, 2009). An
important role in respiratory rhythm generation and modulation has also been described for
the Kölliker-Fuse nucleus and the parabrachial complex; both are located in the dorsal pons
(Alheid et al., 2004; Dick et al., 1994; Kobayashi et al., 2005; Milsom et al., 2004). The role
of these neurons in the modulation and generation of eupnea (Chamberlin and Saper, 1994;
Dutschmann and Herbert, 1996; St-John and Paton, 2004; Von Euler and Trippenbach,
1976) and in the transition phase between inspiration and expiration (Cohen, 1971; Morschel
and Dutschmann, 2009; Von Euler and Trippenbach, 1976) has received considerable
attention. Other areas involved in breathing include the cerebellum (Harper, 2000a; Harper
et al., 2000b), the neocortex (Davenport et al., 2010; Von Leupoldt et al., 2010), as well as
the periaqueductal gray, which is particularly important for the integration of speech and
breathing (Subramanian and Holstege, 2010).

An area that is both essential and sufficient for generating the respiratory rhythm is the pre-
BötC, a network located within the ventrolateral medulla (Smith et al., 1991). Disruption of
rhythmic activity in the pre-BötC causes irreversible loss or major disruption of breathing in
vivo (Gray et al., 2001; McKay et al., 2005; Ramirez et al., 1998c; Tan et al., 2008). Isolated
in a brainstem slice preparation, the pre-BötC continues to generate respiratory activity (Fig.
2) (Ramirez et al., 1996; Smith et al., 1991). In these slices, respiratory rhythmic activity can
be recorded directly from the surface of pre-BötC (Lieske et al., 2000) or from the
hypoglossal motor nucleus, which receives respiratory rhythmic input via an interneuronal
population located outside the hypoglossal nucleus (Koizumi et al., 2008).This in vitro
approach has greatly facilitated our understanding of the cellular mechanisms of respiratory
rhythm generation and neuromodulation. Although we still lack a deep understanding of
how the different areas of the respiratory network interact and how they are altered by
neuromodulation, the pre-BötC itself has provided an important avenue to study not only the
fundamental elements of respiratory rhythm generation, but also how a single neuronal
network can generate multiple rhythmic activity patterns as previously demonstrated in
invertebrate neuronal networks (Harris-Warrick and Johnson, 2010; Marder and Goaillard,
2006; Meyrand et al., 1991; Ramirez, 1998a). This review will focus on our current
understanding of respiratory rhythm generation in the pre-BötC and its alteration by
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reconfiguration, neuromodulation, and plasticity (Fig. 1). We will also consider the possible
roles of these mechanisms in physiological and pathophysiological conditions.

Network reconfiguration
The notion that the respiratory network can reconfigure to generate different forms of
breathing such as eupnea, sighs, and gasps was introduced approximately a decade ago
(Lieske et al., 2000). Since that time, much has been learned not only about the mechanisms
of reconfiguration within the pre-BötC (Pena et al., 2004a), but also about the role of the
pons and other areas in reconfiguring the network from the eupneic into the gasping state
(Paton et al., 2006).

Under well-oxygenated conditions, the pre-BötC generates two distinct rhythms: a faster
small amplitude rhythm (“fictive eupnea”) and a much slower large amplitude rhythm (Fig.
2; “fictive sighs”). Several studies have shown that these activities originate from a
multifunctional network located within the pre-BötC that can be partly preserved in the in
vitro transverse medullary slice (Lieske and Ramirez, 2006a; Lieske et al., 2000;
Ruangkittisakul et al., 2008; Tryba et al., 2008). Although the majority of neurons are
activated during both eupneic and sigh rhythmic activities, pharmacological manipulations
suggest that both activities emerge through distinct mechanisms. Fictive sigh, but not
eupneic activity, is critically dependent on synaptic mechanisms involving the P/Q type
calcium channels (Cav2.1). Interestingly, only a relatively small subpopulation of
respiratory neurons receive glutamatergic inputs that depend on P/Q type calcium currents
(Lieske and Ramirez, 2006a), suggesting that the pool of respiratory neurons contains a
subset of neurons with specialized synapses that are critical for sigh rhythm generation.
These synapses depend also on the activation of mGluR8 receptors (Lieske and Ramirez,
2006b), while NMDA-dependent mechanisms play an important role in the generation of
eupneic activity (Lieske and Ramirez, 2006b; McCrimmon et al., 1997). Thus, in the
respiratory network an overlapping pool of neurons generates different rhythmic activities
using different behavior-specific types of synaptic mechanisms. This is a common principle
that has also been described in the spinal cord (Berkowitz et al., 2010), the neocortex
(Kramer et al., 2008; Wulff et al., 2009), and various invertebrate species (Haque et al.,
2006; Jing and Gillette, 2003; Wood et al., 2000).

As the respiratory network responds to hypoxia, the breathing frequency in vivo transitions
into an augmentation followed by depression (Fig. 2A; England et al., 1995; Haddad and
Mellins, 1984; Neubauer et al., 1990), a sequence that is also seen in the isolated pre-BötC
(Telgkamp and Ramirez, 1999). During the depression phase, the inspiratory burst changes
from an augmenting, bell-shaped burst to a decrementing burst which is one of the
characteristic features of gasping (Fig. 2A and B; Lieske et al., 2000; Pena et al., 2004a).
The transition into the gasping activity pattern can be gradual, both in vitro and in vivo.
During the transition, bursts with varying rise time and burst duration are typical, a
characteristic that was referred to as pre-gasping in vivo (Wang et al., 1993). Hypoxia
causes also a characteristic decrease in synaptic inhibition, which has been observed under
both in vivo and in vitro conditions (England et al., 1995; Ramirez et al., 1998b; Richter et
al., 1991; Thoby-Brisson and Ramirez, 2000; Völker et al., 1995). The depression of
synaptic inhibition contributes to the reconfiguration of the respiratory network by altering
the discharge pattern of a variety of neurons. Late-inspiratory neurons discharge earlier
during inspiration (England et al., 1995). Many expiratory and inspiratory neurons in the
ventrolateral medulla become inactive before cessation of phrenic and/or hypoglossal (XII)
activity (Ballanyi et al., 1994; England et al., 1995; Ramirez, 1998a; Richter et al., 1991;
Telgkamp and Ramirez, 1999; Thoby-Brisson and Ramirez, 2000). While XII neurons
exhibit a massive potentiation of the rhythmic bursts both in vivo and in vitro (Ramirez et
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al., 1997; Telgkamp and Ramirez, 1999), respiratory neurons in the ventrolateral medulla
respond inconsistently and become either weakly de- or hyperpolarized (Ramirez et al.,
1998b; Richter et al., 1991; Thoby-Brisson and Ramirez, 2000).

Within the pre-BötC, neurons can be differentiated into nonpacemaker and pacemaker
neurons dependent on their ability to intrinsically generate bursting activity. Since
nonpacemaker and pacemaker neurons are differentially affected by hypoxia and
neuromodulators, they will be considered in more detail in this review. In isolation from fast
synaptic transmission, nonpacemaker neurons either enter a tonic firing state or become
quiescent while pacemaker neurons retain spontaneous bursting properties (Pena et al.,
2004a). Pacemaker neurons can be further identified into cadmium sensitive (CS) and
cadmium insensitive (CI) pacemaker neurons. Bursting in CS pacemakers seems to depend
on a nonspecific cation current (ICAN) while burst properties of CI pacemaker appear to be
mediated via the persistent sodium current (INaP) (Pena et al., 2004a). Inhibition of these
currents in the respective pacemaker subtypes eliminates their ability to spontaneously burst
in synaptic isolation (Chevalier et al., 2008; Del Negro et al., 2002a, 2005; Pena et al.,
2004a; Tryba and Ramirez, 2004). However, it is important to emphasize that neither ICAN
nor INaP are exclusive currents mediating pacemaker properties. These inward currents play
also critical roles in amplifying synaptic inputs not only in pacemaker neurons, but also
nonpacemaker neurons (Del Negro et al., 2002b, 2005; Ramirez et al., 1996; Rubin et al.,
2009). Indeed, the role of bursting properties in amplifying synaptic inputs has been
described in many neuronal systems, such as the locust flight system in which sensory
synaptic inputs are amplified in a nonlinear manner by intrinsic bursting mechanisms
(Ramirez and Pearson, 1991, 1993). As will be discussed later in this review, bursting
properties can be induced and suppressed by neuromodulators, which imbues neuronal
networks with the ability to amplify specific synaptic pathways in a state and behavioral
dependent manner. In the locust flight system, bursting properties are induced at the onset of
flight to nonlinearly amplify sensory inputs (Ramirez and Pearson, 1993). During
locomotion intrinsic membrane properties boost synaptic input also in the spinal cord
(Brownstone et al., 1992). These inward currents play important roles also in a variety of
other mammalian systems, such as in networks involved in mastication (Kolta et al., 2007).
In the neocortex, these currents depolarize neurons toward their firing threshold (Pennartz et
al., 1997) and boost synaptic input (Schwindt and Crill, 1999; Stuart and Sakmann, 1995).
Pharmacological blockade of INaP has been shown to modulate locomotion generated in the
spinal cord (Darbon et al., 2004; Tazerart et al., 2007) and it can suppress slow oscillations
generated in cortical networks (van Drongelen et al., 2006).

It is impossible to negate the fact that a substantial portion of neurons that are activated
during respiration possess bursting properties. Moreover, the majority of neurons possess
INaP or ICAN or both, and the balance between these two major inward currents and a set of
outward currents determines whether a neuron is a pacemaker or nonpacemaker (Koizumi et
al., 2010). This conclusion has important implications for rhythm generation in general
(Hudson and Prinz, 2010), which makes it difficult to differentiate between pacemakers and
nonpacemakers as the balance between inward and outward currents is gradual.
Nonpacemakers without any bursting properties and pacemakers with strong bursting
properties are the extremes of a gradient of neurons possessing different degrees of bursting
properties. Consequently, it is probably impossible to unambiguously dissect the relative
contribution of pacemaker versus nonpacemakers. The ratio between pacemakers and
nonpacemakers is not fixed, but dependent on the metabolic and modulatory state of the
network, since neuromodulators, such as NE, SP, or 5-HT, can induce bursting in
nonpacemakers (Pena and Ramirez, 2002, 2004b; Viemari and Ramirez, 2006). In an
attempt to determine the relative contribution of these inward currents to respiratory rhythm
generation, various laboratories have employed substances that are known to block these
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currents. Blocking either INaP with Riluzole or the ICAN by Flufenamic acid alone does not
block fictive eupnea (Pena et al., 2004a), but both substances together lead to the cessation
of respiratory rhythmic activity indicating that these conductances are critical for respiratory
rhythm generation. A recent study extended these observations by demonstrating that
applying Substance P or low doses of AMPA in the presence of Riluzole and Flufenamic
acid could restimulate rhythmogenesis (Del Negro et al., 2005). Hence, the relative
importance of pacemaker neurons in well-oxygenated conditions is the matter of an ongoing
debate.

It is, however, clear that the relative contribution of these currents changes considerably
during the transition from eupneic to gasping activity (Fig. 1). While eupneic activity
involves the activation of neurons possessing INaP and ICAN-dependent bursting
mechanisms, pacemaker neurons that depend on ICAN selectively hyperpo-larize during
hypoxia rendering the network more dependent on INaP during gasping, a finding that has
been confirmed in vitro, in situ, and in vivo (Paton et al., 2006; Pena and Aguileta, 2007;
Pena et al., 2004a, 2008).

Pacemaker neurons may also differentially contribute to the generation of eupneic versus
sigh activity, because the generation of sighs is more sensitive to the manipulation of the
INaP current (Tryba et al., 2008). Thus, lessons learned from the respiratory network indicate
that the different network states are characterized by differential contribution of different
types of bursting mechanisms.

Neuromodulation and rhythm generation
In the respiratory network, the same neuromodulator differentially acts on a variety of
receptor subtypes, thereby exerting specific and sometimes even diverging effects on
different parameters of the network output. Perhaps, best understood in the neuronal control
of breathing is the role of catecholaminergic neurons that are found in the brainstem and
project onto neurons of the respiratory network (Doi and Ramirez, 2008; Hilaire, 2006;
Hokfelt et al., 1984; VanderHorst and Ulfhake, 2006; Viemari and Hilaire, 2002; Viemari
and Ramirez, 2006). These neurons are clustered in noradrenergic (Fig. 1; A1, A2, A5, A6,
and A7) and adrenergic (C1 to C3) nuclei. In the pons, the activity of A6 (i.e., the locus
coeruleus) neurons is modulated by hypoxia both in vivo (Guyenet et al., 1993) and in vitro
(Nieber et al., 1995; Yang et al., 1997). Although some A6 neurons are excited while others
inhibited during hypoxia, A6 exerts an overall stimulatory effect on breathing. Electrical
stimulation of the locus coeruleus increases breathing frequency (Doi and Ramirez, 2010),
whereas genetic alteration of A6 decreases respiratory activity (Viemari et al., 2004;
Viemari et al., 2005a). Unlike the A6 nucleus, all neurons in A5 appear to be activated by
hypoxia in vivo (Guyenet et al., 1993) and inhibit breathing. Thus, lesions of A5 increase the
respiratory frequency in vitro (Viemari and Hilaire, 2002) and reduce the posthypoxic
frequency depression (Coles and Dick, 1996). Thus, while both A5 and A6 contain
noradrenergic neurons that modulate respiratory network activity, their effects are very
diverse even though they are modulated under similar conditions. In mutants where A5 or
A6 neurons are altered (Viemari et al., 2004, 2005a), the hypoxic response is blunted
supporting a role of both groups in oxygen sensing. A5 and A6 are not the only
noradrenergic nuclei modulating respiration: In the medulla, endogenous release of NE from
A1/C1 neurons stimulates the respiratory rhythm in vitro (Zanella et al., 2006). Exogenously
applied NE on medullary slices stimulates the respiratory rhythm by a direct effect on
inspiratory neurons (Viemari and Ramirez, 2006). Because hypoxia increases TH expression
(Peyronnet et al., 2003; Roux et al., 2000, 2003) and Fos-like immunoreactivity (Erickson
and Millhorn, 1994; Teppema et al., 1997), it is likely that neurons in the A1/C1 and A2/C2
region are activated by low oxygen levels. This modulatory role may be disturbed in certain
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neurological disorders. In Mecp2 mutant mice, a model for Rett syndrome, the number of
tyrosine hydroxylase positive neurons in A1/C1 and A2/C2 and the level of norepinephrine
in the medulla is decreased (Viemari et al., 2005b), yet these mice show an increased
ventilatory response to hypoxia (Roux et al., 2008; Voituron et al., 2009).

Mechanistically, NE stimulates inspiratory nonpacemaker and pacemaker neurons contained
within the pre-BötC acting presumably via α1, α2, and β-noradrenergic mechanisms
(Viemari and Ramirez, 2006). NE induces ICAN-dependent bursting properties in active
nonpacemaker neurons, and it depolarizes CI pacemakers and increases their burst
frequency. In CS pacemakers, NE increases only the amplitude of the depolarizing drive
potential and the number of action potentials during the burst. However, in contrast to the
situation in CI pacemakers NE does not affect the burst frequency in CS pacemakers. This
differential effect is preserved at the network level, since only the modulation of the burst
amplitude but not the frequency depends on the activation of ICAN (Viemari and Ramirez,
2006). This leads to the important conclusion that different network parameters are
differentially modulated by the same neuromodulator acting on different cellular targets.

NE is not the only bioamine acting on the respiratory network. Like other catecholaminergic
neurons, serotonergic neurons are also found in the brainstem and project to neurons
involved in breathing (Dahlstrom and Fuxe, 1964; Fuxe, 1965; Holtman et al., 1990;
VanderHorst and Ulfhake, 2006). Serotonergic neurons are contained in nuclei numbered
from B1 to B9, from the caudal to the rostral axis (Dahlstrom and Fuxe, 1964). The nuclei
can also be referred to as raphe pallidus (B1), raphe obscurus (B2), and raphe magnus (B3).
The action of these groups on breathing is diverse and often data are contradictory probably
due to species differences, state of the animals (awake or sleep), or type and level of
anesthesia (Besnard et al., 2009; Doi and Ramirez, 2010; Holtman et al., 1986; Lalley, 1986;
Sessle et al., 1981). For instance, in rats under volatile anesthesia (Besnard et al., 2009)
electric stimulation of raphe magnus and obscurus induced apnea, whereas stimulation of the
raphe pallidus induced tachypnea. On the other hand, in mice anesthetized with urethane
(i.p.) electric stimulation of the raphe magnus increases respiratory frequency (Doi and
Ramirez, 2010). In cats, stimulation of raphe pallidus and obscurus (Holtman et al., 1986;
Lalley, 1986) increases phrenic discharge amplitude and frequency, whereas they decrease
during stimulation of the raphe magnus (Lalley, 1986; Sessle et al., 1981). Similarly,
exogenous application of serotonergic agents in vitro has various actions on respiratory
activity (Di Pasquale et al., 1992, 1994; Hilaire et al., 1997; Morin et al., 1990;
Schwarzacher et al., 2002). In brainstem slices containing the pre-BötC, exogenous
application of 5HT2A agonist or blockade of serotonergic reuptake increases inspiratory
frequency (Pena and Ramirez, 2002). Consistent with these results, blockade of the
activation of 5HT2A receptors by endogenous release of serotonin decreases respiratory
frequency. This has been recently confirmed in rats using transverse brainstem slices and in
situ preparations and extended to 5HT2C and 5HT4 receptors (Ptak et al., 2009). Indeed,
neurons from the raphe obscurus show a tonic activity and emit projections to the pre-BötC,
which innervates the raphe reciprocally.

Neuromodulation cannot be discussed without also emphasizing the importance of
peptidergic modulation. Perhaps, the most studied peptide in the respiratory network is
substance P (Gray et al., 2001; Hayes and Del Negro, 2007; Morgado-Valle and Feldman,
2004; Pena and Ramirez, 2004b). Neurons releasing substance P are localized in the nucleus
of solitary tract (NTS), the nucleus ambiguous (NA), the raphe, the dorsal motor nucleus of
the vagus (X), and the hypoglossal nucleus (Ribeiro-da-Silva and Hokfelt, 2000). Substance
P is often coreleased with other neurotransmitter. For example, neurons in the raphe contain
5-HT and substance P (Kachidian et al., 1991; Ptak et al., 2009) and they project directly on
the pre-BötC. NK-1 receptors are strongly expressed on pre-BötC neurons as well as
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serotonergic neurons of the raphe (Alheid and McCrimmon, 2008; Gray et al., 2001;
Stornetta et al., 2003; Wang et al., 2001). Substance P activates the inspiratory frequency at
the network and behavioral level (Del Negro et al., 2005; Doi and Ramirez, 2010; Gray et
al., 2001; Pena and Ramirez, 2004b; Thoby-Brisson et al., 2005). At the cellular level,
substance P slowly depolarizes nonpacemaker neurons, leading to an increase of the firing
rate of action potentials. Substance P also dramatically activates CS pacemakers and to a
lesser extent CI pacemakers, causing an increase in burst amplitude, frequency, and duration
(Pena and Ramirez, 2004b).

This discussion leads to the important conclusion that every parameter in rhythm generation
is controlled by multiple modulators. It must be emphasized that for simplicity we focused
in this review only on three neuromodulators, even though there are many additional
modulators that play equally important roles in the neuronal control of breathing (Doi and
Ramirez, 2008). Another important conclusion is that the same modulator can exert many
different effects on rhythmic activity. Thus, the influence of any given neuromodulator
occurs in concert with many other aminergic and peptidergic substances (Fig. 1). The
complexity of neuromodulation as described here for the respiratory network is reminiscent
to the complexity that is well documented in invertebrate neuronal networks (Nusbaum,
2002; Thirumalai and Marder, 2002) and has important implications for all neuronal
networks. Different sets of modulators with diverse, convergent, and divergent actions will
define different states of a rhythm generating network that may change dependent on the
metabolic, developmental or behavioral conditions of an animal. These network states
involve a complex orchestration of large sets of different ion-channels, multiple receptors,
and numerous neuropeptides and biogenic amines in addition to those described here (Doi
and Ramirez, 2008; Grashow et al., 2009; Thoby-Brisson and Simmers, 1998). A
modulatory state will, therefore, not only determine how a rhythm is generated, but will also
determine the responsiveness of neuronal networks to inputs. Many recent experimental and
computational studies suggest that neuronal networks respond differently to inputs if their
state is altered by modulators (Destexhe and Contreras, 2006; MacLean et al., 2005; Nadim
et al., 2008; Prescott and De Koninck, 2003). In the respiratory network, numerous
excitatory and inhibitory inputs that arise from multiple anatomical regions of the brain to
modulate breathing in amplitude, frequency, and regularity have been described (Doi and
Ramirez, 2008).

Unfortunately, only little is known how different competing inputs interact in the context of
different neuromodulators. In the respiratory network, excitatory inputs mediated by
substance P are only critical for respiratory rhythm generation when levels of serotonin or
NE are low, that is, under conditions that resemble more closely the sleep state (Jones,
2005). By contrast, when 5-HT2a receptors and α-1 receptors are fully activated, that is in a
state when serotonin and norepinephrine levels are high, inputs mediated by substance P are
not critical for respiratory rhythm generation (Doi and Ramirez, 2010). Thus, the
convergence of different neuromodulatory inputs (Fig. 1) provides a safety net in case a
given modulator or receptor is disturbed. It may also explain the state-dependency of a
variety of disorders. In SIDS, there is mounting evidence for a role for 5-HT (Broadbelt et
al., 2009; Duncan et al., 2010; Kinney et al., 2009; Paterson et al., 2006; Rand et al., 2007).
SIDS (and also sleep apnea) occurs during sleep, when aminergic and presumably also SP
levels are reduced. Thus, it seems that the respiratory network is critically dependent on an
individual neuromodulator only in a reduced “modulatory state.” By contrast, in the awake
animal, it is unlikely that a disruption of a single neuromodulator will have much of a
critical effect, since the level of other converging modulators is relatively high. Thus,
understanding the convergence of different neuromodulators is not only an interesting basic
scientific issue, but will also be important for gaining insights into the neuropathology of
breathing disorders.
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The data summarized above indicate that it is not possible to associate specific network
states with the action of individual neuromodulators. Instead, a network state is defined by a
complex set of different modulators with highly diverse, convergent, and divergent actions.
A particular neuromodulator can differentially act on a variety of receptor subtypes, thereby
exerting specific, yet sometimes diverging effects on different parameters of the respiratory
network (e.g., frequency vs. amplitude). Conversely, different neuromodulators, such as
serotonin, SP, or NE, can exert similar effects via different cellular mechanisms. The
specificity and types of these modulatory effects are not necessarily preserved across
different animal species even if compared between related rodent species and strains. These
conclusions are reminiscent of findings in invertebrate systems. Like in the respiratory
system, modulatory responses can vary between different species and even across
individuals of the same species at different developmental stages (Newcomb and Katz,
2007, 2009; Rehm et al., 2008). Also similar to the situation in the respiratory network is the
observation that different neuromodulatory inputs can exert distinct or comparable activity
patterns from the same neuronal ensemble (Saideman et al., 2007). Like in these invertebrate
networks, it is remarkable that despite the large number of concurrent and rather diverse
modulatory processes the various parameters of rhythm generating networks are relatively
tightly maintained even when exposed to extreme conditions. This can be illustrated for the
control of the respiratory frequency in humans. The breathing frequency of children under
normal conditions is 45±13 breaths/min. Acute exposure to 3109 m increases the frequency
range on average by only 86 breaths/min to 51.9±15 breaths/min (Yaron et al., 2003). Under
extreme altitudes, such as climbing to the Everest (8000 m), only one individual of the
American Medical Research Expedition raised the breathing rate to up to 86 breaths/min
(West, 2010). Thus, despite the presence of numerous modulatory systems affecting
breathing frequency, the range over which this particular parameter is modulated is
relatively narrow under normal as well as extreme conditions. For the invertebrate model
system, it has been suggested that homeostatic mechanisms play critical roles in maintaining
different parameters in a tightly controlled range (Rehm et al., 2008). Although little is
known about how these mechanisms regulate the various parameters of the mammalian
respiratory rhythm, they must play critical roles in the homeostasis of breathing (Fig. 1) as
will be discussed below.

Homeostatic plasticity and other forms of long-term plasticity
Homeostatic plasticity is a fundamental mechanism that has been demonstrated in a variety
of neural networks. It is crucial to maintain network stability and it affects nearly every
aspect of circuit development and function (Fig. 1). One principle mechanism is the activity
dependent scaling of neuronal receptors to maintain neurons in a certain firing range
(Turrigiano et al., 1998). But, multiple forms of homeostatic plasticity have been described
in a variety of brain areas (Aizenman et al., 2003; Desai et al., 1999; Ibata et al., 2008; Koch
et al., 2010; Marder and Goaillard, 2006; Stellwagen and Malenka, 2006). Homeostatic
plasticity has been shown to regulate pre- and postsynaptic scaling of excitation and
inhibition. Such changes involve alterations in ion-channel composition which tune and
anchor intrinsic neuronal excitability to a defined range of activity. The mechanisms that
define and regulate these setpoints of cellular activity are not well understood. Alterations in
internal calcium levels [Ca2+]i have been discussed as a possible mechanism balancing
synaptic homeostasis in neuronal networks (Turrigiano, 2008). In fact, since calcium
fluctuations are directly related to the activity of the cells, it has been hypothesized that
calcium plays important roles in regulating many forms of plasticity (Grubb and Burrone,
2010; Lisman et al., 2002; Malenka and Bear, 2004; Zhang and Linden, 2003). Consistent
with this hypothesis, blockade of calcium channels can trigger upscaling of excitatory
synaptic terminals (Ibata et al., 2008). Moreover, pharmacological blockade of calcium
dependent kinases (i.e., the CaMK- family) prevents the effects of activity deprivation on
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excitatory synaptic transmission (Thiagarajan et al., 2002). Besides intracellular calcium as
an activity sensor, multiple other molecules have been implicated to be involved to mediate
homeostatic synaptic plasticity (Aoto et al., 2008; Koch et al., 2010; Rutherford et al., 1998;
Stellwagen and Malenka, 2006). Interestingly, some of these molecules are part of the
inflammatory pathway and include prostaglandin-E2 (PGE2) and tumor necrosis factor-α
(TNF-α) (Koch et al., 2010; Stellwagen and Malenka, 2006). Activation of glia cells and
TNF-α signaling are necessary for synaptic upscaling in cortical neurons, since blocking the
activation of TNF-α receptors prevents the upscaling (Stellwagen and Malenka, 2006).
Recently PGE2, the major reaction product of the Cyclooxygenase-2 enzymes (COX-2) was
reported to acutely inhibit network activity in the neocortex, but if chronically applied led to
a predominantly presynaptic increase in excitatory synaptic transmission (Koch et al., 2010).
The COX-2 pathway is directly activated by hypoxia through the hypoxia induced factor-1α
(HIF-1α) and PGE2 (Fig. 1) has been reported to be an important regulator of the
respiratory rhythm generator (Hofstetter et al., 2007). Thus, the link of activity-dependent
scaling and inflammation could potentially be important for understanding
pathophysiological changes that occur in the cardiorespiratory control following chronic
intermittent hypoxia (IH).

In the context of cardio-respiratory homeostasis, several studies described long-term
regulatory processes for the NTS, an area that is critical for sensory integration not only in
the context of breathing but also other autonomic functions (Greenberg et al., 1999a, 1999b;
Kline et al., 2007; Zhou et al., 1997). Activity-dependent long-term depression (LTD) can
be elicited in a subset of NTS neurons (Zhou et al., 1997), and chronic exposure to IH
causes an activity dependent synaptic downscaling of excitatory synaptic transmission
(Kline et al., 2007).

Perhaps, the best studied form of long-term plasticity (Fig. 1) in the respiratory system is the
response to intermittent hypoxia. Investigating the neuronal consequences of repetitive
episodes of hypoxia (Acute Intermittent Hypoxia, AIH) is clinically very relevant, as this
condition is associated with a variety of breathing disorders including Rett syndrome and
obstructive sleep apnea (Lee et al., 2009; Weese-Mayer et al., 2006). AIH causes persistent
increases in respiratory frequency and amplitude of integrated motor neuronal bursts in vivo
(Baker and Mitchell, 2000; Hayashi et al., 1993; Millhorn et al., 1980; Turner and Mitchell,
1997). These changes persisting for ≤90 min are collectively referred to as long-term
facilitation (LTF) (Fuller et al., 2000; Powell et al., 1998). The degree of influence varies
with preparation (Bach and Mitchell, 1996; Turner and Mitchell, 1997), animal strain (Fuller
et al., 2000), gender (Zabka et al., 2006), and experimental conditions (Baker and Mitchell,
2000). AIH causes changes at multiple levels of the respiratory system, including the carotid
body (Dogas et al., 1995; Powell et al., 1998), and motor nuclei (Kinkead et al., 1998). The
likely site for the long-term frequency modulation is the pre-BötC, since intermittent
hypoxia causes a long-lasting frequency increase within the pre-BötC that persists for ≤90
min after repetitive hypoxic episodes (Blitz and Ramirez, 2002). AIH causes immediate
changes in the modulatory milieu and long-term changes involving gene expression. For this
to occur, the intermittent pattern and not duration of hypoxia is critical, as even prolonged
hypoxic exposure does not evoke LTF (Baker and Mitchell, 2000). AIH causes the
intermittent production of reactive oxygen species (MacFarlane and Mitchell, 2009; Pawar
et al., 2009) and release of aminergic neuromodulators. Blockade of serotonin receptors
abolishes both motor amplitude and frequency LTF in vivo (Bach and Mitchell, 1996;
Kinkead et al., 1998). It has been hypothesized (Bach and Mitchell, 1996; Fuller et al.,
2000), that LTF is induced by chemoreceptor activation of serotonergic raphe neurons
(Erickson and Millhorn, 1994; McCrimmon et al., 1997; Pawar et al., 2009). However, not
only serotonin, but also repeated exposure to norepinephrine elicits LTF in vitro (Bocchiaro
and Feldman, 2004; Neverova et al., 2007). Both modulatory systems seem to interact
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(Kinkead et al., 2001). There is accumulating evidence indicating that long-lasting changes
in intracellular signaling molecules involving a reactive oxygen species activated PKC
pathway cause new synthesis of BDNF acting on TrkB receptors (Fig. 1), which in turn will
increase postsynaptic glutamate receptor density and thereby increases glutamatergic
synaptic transmission (Baker-Herman et al., 2004). Thus, taken together these studies
suggest that neuronal networks involved in respiratory control are regulated by multiple
forms of long-term synaptic plasticity.

Conclusion
The convergence of reconfiguration, neuromodulation, state dependency, and homeostatic
plasticity (Fig. 1) provides multiple mechanisms by which the pre-BötC is capable of
generating multiple, dynamically responsive yet stable sets of respiratory rhythmic activity.
As discussed, the pre-BötC retains its ability to generate stable rhythmicity throughout
changes in the oxygen environment using both network reconfiguration and
neuromodulation. The ability of the pre-BötC to retain stable rhythmicity and transmit this
activity to a variety of motor outputs is not a trivial property, as many neuronal networks
within the mammalian nervous system shut down during hypoxia in an attempt to conserve
the energy during oxygen limiting conditions. This is readily seen in the hippocampus
(Krnjevic and Leblond, 1987; Garcia et al., 2010), neocortex (Jiang and Haddad, 1992), and
striatum (Calabresi et al., 1995). Hence, sustaining stable rhythmicity in the pre-BötC even
during severe levels of hypoxia underscores the importance of this network, as loss of the
respiratory rhythmic activity would ultimately lead to death. This robustness may be one
reason why the pre-BötC is capable of generating behaviorally relevant rhythmicity even
when isolated from the rest of the nervous system (Fig. 2), thus facilitating a rigorous
cellular and network analysis. In the intact animal, the pre-BötC constitutes a core network
which operates within a larger network of interconnected nuclei that contribute not only to
the generation of the respiratory rhythm, but also to the plasticity and state-dependency that
characterizes breathing (Fig. 1). The principles gained in the respiratory network apply to all
neuronal network functions not only to the mammalian nervous system, but also to the
networks of invertebrates. The emerging conclusions gained by studying the respiratory
network are surprisingly complex, and we are clearly only touching the surface of our
understanding. Yet, this degree of complexity is obviously necessary to guarantee that the
respiratory network is very adaptive and at the same time sufficiently stable to maintain
regular network activity even under adverse environmental and behavioral conditions.
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Fig. 1. Networks within networks
A schematic illustrating some of the interactions that are involved in the neuronal control of
breathing. As complex as this schematic may appear, it still represents only a fraction of the
known interactions. The interactions depicted in this figure are clustered according to their
function in the neuronal control of breathing. Network interactions that are important for the
generation of the respiratory rhythm include the interactions between the cortex, cerebellum,
PAG (Periaqueductal Gray), Kölliker-Fuse, cVRG (caudal Ventral Respiratory Group),
rVRG (rostral Ventral Respiratory Group), RTN (retrotrapezoid nucleus)/pFRG (parafacial
respiratory group), and the pre-Bötzinger complex (pre-BötC). While the pre-BötC is
capable of generating three distinct rhythmic activities via network reconfiguration
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(eupneic-, sigh-, and gasping-rhythm) even in isolation (see also Fig. 2), in the intact animal
other networks will also contribute to the reconfiguration and the shaping of the respiratory
rhythms that are transmitted to the motor nuclei. The extent and significance of these
contributions to the overall motor output and ultimately the behavior is a topic of intense
investigations. Respiratory rhythm generation is also the target of three types of modulatory
processes: Neuromodulation characterizes the modulatory processes occurring on a moment-
to-moment basis and it is mediated via numerous aminergic and peptidergic substances
acting on various receptor subtypes. For simplicity, the schematic illustrates only three
neuromodulators: NE (norepinephrine) acting on α1, α2, and β noradrenergic receptors; 5-
HT (serotonin) acting on 5-HT1A, 5-HT2A, 5-HT2C, 5-HT4, and 5-HT7 receptors; and SP
(substance P) acting on the NK1 receptor. These neuromodulators are released by nuclei that
include the Raphe magnus, obscurus, and pallidus and the noradrenergic regions: A1, A2,
A5, and A6. For further explanations see text. Long-term plasticity characterizes the
modulatory processes that lead to long-term changes in respiratory activity, which includes,
for example, long-term facilitation of the respiratory frequency and amplitude which is
evoked by intermittent hypoxia (see text for details). Long-term plasticity is mediated
among other molecules by BDNF acting on the TrkB receptor and reactive oxygen species
(ROS) as well as HIF1α. Critical areas involved in long-term plasticity are the carotid body
and the pre-BötC as well as a variety of motor nuclei. Important chemosensory areas include
the NTS (nucleus tractus solitarius), the RTN, and the Raphe nuclei besides the carotid
body. These chemosensitive areas are important sensors for inputs from the environment,
which is in part affected by the breathing behavior itself. Homeostatic plasticity
characterizes regulatory processes that are critical for stabilizing network activity in the
context of respiratory rhythm generation as well as neuromodulation and long-term
plasticity. Unfortunately, little is known about the homeostatic mechanisms that are
specifically relevant for the neuronal control of breathing, but much is already known in
other networks in particular in the networks located in the neocortex and hippocampus.
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Fig. 2.
Isolating the pre-Bötzinger complex in a single medullary brainstem slice preserves multiple
rhythms that reflect breathing rhythms found in vivo and illustrates reconfiguration of a
multifunctional network. (A) Integrated traces from an in vivo electromyogram (∫EMG)
recorded from respiratory muscles show multiple rhythmic behaviors for breathing. (a) In
control conditions, eupnea, “the normal breathing rhythm” conditions, is characterized by
augmented bell-shaped waveform. (b) During the transition to hypoxia (initial phase of
hypoxia), the frequency of eupnea and sigh rhythms become faster (i.e., augmentation). The
sigh rhythm consists of large amplitude complex waveforms. While slower in frequency,
sigh rhythms are generated together with the eupnea rhythm (for detail see text). (c) During
hypoxia, the frequency of the breathing rhythm is slow (late phase of hypoxia) (i.e.,
depression) and the waveforms can be clearly distinguished from the eupneic bursts based
on their fast rise time. Collectively, these waveforms, during the depression, are described as
the gasping rhythm. (d) Overlay of representative eupneic (black line), sigh (red line), and
gasping (blue line) waveforms found in the respiratory rhythm in vivo. (B) Integrated
activity (∫pre-BötC) of extracellular recordings obtained from the surface of the pre-
Bötzinger complex within the medullary brainstem slice illustrates that this neuronal
network generates several patterns of neuronal activity that are reminiscent to breathing
behaviors found in vivo. (a) In control conditions, fictive eupnea is generated. The
waveforms in fictive eupnea are similar to that of eupnea, having an augmented bell-shaped
waveform. (b) Large amplitude, complex bursts, described as resembling sighs in both
frequency and waveform. Similar to that in vivo, the fictive sigh rhythm is commonly
increased during the augmentation phase during the transition to hypoxia (initial phase of
hypoxia). (c) During hypoxia, the frequency of the fictive respiratory rhythm slows (late
phase of hypoxia, i.e., depression) and the waveforms of the population rhythm changes
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from the augmented bell-shaped waveform of fictive eupnea to a fictive gasping waveform.
Similar to the gasping rhythm in vivo, fictive gasping possess waveforms that have fast rise
times. (d) Overlay of representative fictive eupneic (black line), fictive sighs (red line), and
fictive gasping (blue line) waveforms illustrates the ability of pre-Bötzinger complex to
generate multiple rhythms that likely contribute to in vivo breathing rhythms. Moreover,
these waveform patterns represent the summation of different, yet overlapping mechanisms
involving network reconfiguration and neuromodulation of the pre-Bötzinger complex (see
text for full discussion).
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