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Abstract
Objective—To review the expression of the glucocorticoid receptor (GR) in anterior pituitary
and adrenocortical cells and tumors derived from these tissues as well as factors that may
influence its expression.

Methods—We present an overview of the relevant literature, with a focus on data generated from
our studies.

Results—The expression of the GR is an essential element of the negative feedback that closes
the loop formed by corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol in
the context of the hypothalamic-pituitary-adrenal (HPA) axis. Although the GR expression in
anterior pituitary cells—and in particular the corticotrophs—was first demonstrated several years
ago, it was not known until relatively recently where, by what cells, and in what form the GR is
expressed in the adrenal cortex. The variability in the expression of the GR in pituitary and
adrenocortical cells may underlie the substantial differences in HPA axis function across
individuals, especially when testing for tumors associated with hypercortisolemia. This expression
is influenced by a multitude of tissue-specific factors, which may explain why it is so difficult to
interpret (or reproduce) studies that are based on GR functional polymorphisms on different
cohorts of patients or even different sets of laboratory animals.
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Conclusion—This review highlights the variability in expression and function of the GR in
pituitary and adrenocortical cells as one of the reasons for the appreciable differences in HPA axis
function across individuals. Particular attention was paid to interactions that may affect the
interpretation of diagnostic testing of the HPA axis in patients with pituitary adenomas (Cushing
disease) or adrenocortical tumors (Cushing syndrome).

INTRODUCTION
All diagnostic testing for Cushing syndrome (CS) relies on the negative feedback exerted by
cortisol and the glucocorticoid receptor (GR), primarily at the corticotropin-releasing
hormone-producing neurons of the hypothalamus and secondarily at the adrenocorticotropic
hormone (ACTH)-producing cells (corticotrophs) of the anterior pituitary (1). These 2 sites,
along with the cortisol-producing zona fasciculata of the adrenal cortex, form the
hypothalamic-pituitary-adrenal (HPA) axis.

After binding glucocorticoids, the GR translocates into the nucleus and binds the
glucocorticoid response element on the target gene promoters. Although considerable
numbers of genes are responsive to glucocorticoids in certain tissues, they may be resistant
in others (2); this response may also fluctuate in pathologic states or even during normal
physiologic processes (3). Accordingly, several mechanisms have been postulated for tissue-
specific regulation of glucocorticoid actions, from different metabolism of the ligands (4) to
HEXIM1-mediated repression of GR (5). Binding of receptors to target DNA is followed by
recruitment of mediators and coactivators to the proximity, resulting in RNA polymerase II
recruitment and activation of transcription (6).

Although the GR expression in pituitary corticotrophs and ACTH-producing tumors was
documented early on in several studies (7,8), documentation of the presence of GRs in
human fetal and adult adrenal cortex and in adrenocortical tumors (ADTs) was not shown
until recently (9-12). Relative GR insensitivity appears to be an early, if not primary, event
for the pathogenesis of ACTH-producing pituitary tumors, which are always more resistant
to cortisol and other glucocorticoids (for example, dexamethasone) than normal
corticotrophs. Rarely, GR resistance in these cells is caused by GR-inactivating mutations
(8). Despite the rarity of mutations, GR insensitivity is so widespread in ACTH-producing
tumors that we take advantage of this phenomenon in diagnostic testing for CS by using
various dexamethasone doses (and administration regimens) to distinguish among normal
HPA axis function, pituitary and ACTH-dependent causes (Cushing disease [CD]), and
ACTH-independent causes of CS (13-15).

Every study reporting on dexamethasone testing in large cohorts of patients with CD and
other forms of CS, however, has documented a large variation between individual responses.
For example, in a large cohort of pediatric patients with surgically proven CD who were not
exposed to any other medications and had no other comorbidities (unlike most adult patients
with CS), individual responses to an 8-mg overnight dexamethasone test varied as much as
30% (16). Interindividual variability in corticotroph GR sensitivity may account for a large
proportion of these differences in dexamethasone responses (8), but the molecular
mechanisms that are responsible remain unknown.

Likewise, in recent years, variable responses to dexamethasone testing have been noted in
patients with ACTH-independent causes of CS, and an attempt has been made to use these
responses diagnostically. “Paradoxical” responses to dexamethasone that were associated
with an increase in urinary cortisol excretion were first described in 1999 as a diagnostic test
in primary pigmented nodular adrenocortical disease (PPNAD) (17), but individual cases
with similar results had been reported previously in patients with adrenocortical cancer and
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other ADTs, especially virilizing adenomas (18,19). Again, the molecular mechanism for
this phenomenon remains unknown.

In this review, we present recent data that may offer explanations for at least part of this
variability in GR responses of pituitary corticotroph and adrenocortical cells, and we attempt
a synthesis with older results rarely cited today. The picture that emerges is that of complex
tissue-specific factors that may account for most of the GR sensitivity and function. The
implications are wide, from tumorigenesis in the pituitary gland and the adrenal gland, to
diagnostic testing in CS and other hypercortisolemic states (for example, depression), to
medical treatments that use glucocorticoids or seek to inhibit GR function.

THE GR IN THE ANTERIOR PITUITARY
Shortly after the discovery of the first mutations of the GR in humans with glucocorticoid
resistance (20-22), we described the first patient with somatic inactivation of the GR in a
large pituitary corticotroph adenoma that was associated with severe Nelson syndrome (23).
To date, few other patients with CD have been found to have either somatic or germline GR-
inactivating mutations (8,24). The important role of an intact HPA axis function and the
normal expression of the GR in preventing corticotroph adenoma expansion (if not
formation) is demonstrated by the cases of ACTH-producing tumors in patients with familial
glucocorticoid deficiency (25), as well as the relatively frequent loss of heterozygosity,
leading to hemizygosity and, thus, haploinsufficiency of the GR gene (NR3C1) (26).

Could polymorphisms of the GR gene (NR3C1) that confer partial inactivation in specific
functions of the molecule (without causing generalized resistance), such as transcriptional
repression of the pro-opiomelanocortin gene or protein-protein and DNA interactions,
predispose to ACTH-producing tumors? The GR gene (NR3C1) is sufficiently and
frequently polymorphic (27), and this question has been asked but the response is not
generally affirmative (8,26,28,29).

Is the GR gene (NR3C1) downregulated at the message or protein level in ACTH-producing
adenomas? Several studies have investigated this possibility, inasmuch as loss-of-
heterozygosity studies suggested that haploinsufficiency of the GR could be associated with
partially defective negative feedback by cortisol and could thereby lead to abnormal growth
and proliferation of corticotrophs. It appears that, indeed, in at least those adenomas with
deficient responses to dexamethasone, the GR is downregulated (30,31), although this is not
a generalized phenomenon and, in fact, in some ACTH-producing adenomas there might
even be upregulation of the receptor (32,33).

At least 3 new players in the regulation of GR expression and function in the pituitary
corticotrophs add to the variability of GR responses beyond NR3C1 genetic variants and
haploinsufficiency. The first is the expression of 11β-hydroxysteroid dehydrogenase
(11βHSD) type 2 in pituitary cells, and the corticotrophs in particular (33). Variable
expression of this enzyme could modulate cortisol levels that are available for occupying the
GR in corticotrophs (33-35); upregulation of 11βHSD type 2 and consequently conversion
of cortisol to inactive cortisone may, in at least some ACTH-producing tumors, lead to
decreased GR responses and functional resistance without any direct defect of the GR
(34,36).

The second factor of variation in GR response is the expression of the Brg1 molecule in
pituitary corticotrophs. Negative feedback regulation of the pro-opiomelanocortin gene by
the GR is in part exerted by transrepression mediated by the GR and Brg1, the
adenosinetriphosphatase subunit of the Swi-Snf complex (37). Brg1 is constitutively present
at the pro-opiomelanocortin promoter, whereas recruitment of GR (activated by the ligand)
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and HDAC2 results in histone H4 deacetylation of the pro-opiomelanocortin locus and
inhibition of the promoter clearance by RNA polymerase II (37,38) (Fig. 1). Therefore, loss
of Brg1 or HDAC2 should produce resistance to the action of the GR in the pituitary
corticotrophs; indeed, it has been shown that approximately 50% of GR-resistant
corticotroph adenomas were deficient in nuclear expression of either protein (38).

A third possible player in GR function in the anterior pituitary is the newly identified aryl
hydrocarbon receptor (AHR) interacting protein (AIP). AIP, originally called XAP2 (39), is
a molecule that not only binds to AHR (as its ligand) but appears to have several other
protein-protein interactions, including those with Hsp-90 (39) and the GR (40,41). Recently,
patients with familial pituitary tumors were found to harbor germline mutations in the AIP
gene (42), which appears to act as a tumor suppressor gene because overexpression of the
normal but not the mutated AIP reduces cell proliferation (40,41). The AIP molecule is
highly polymorphic in the general population, and how these genetic polymorphisms affect
GR function directly or through its interactions with SRC-1 or Hsp-90 (39-41) remains
unknown. Although most mutant AIP-caused pituitary tumors are growth hormone- or
prolactin-producing lesions, about 2% or more of the ACTH-producing tumors seem to be
caused by germline AIP mutations (41,43). In a previous cohort of our patients with CD, a
child with a corticotropinoma had an extremely GR-resistant and aggressive tumor; this
lesion was eventually cured after 2 surgical procedures and irradiation (43).

THE GR IN THE ADRENAL CORTEX
As mentioned in the Introduction, expression of the GR in human adrenal cortex (and
ADTs) was documented relatively recently (9-12), although there had been evidence—from
ligand studies—that glucocorticoids had a direct effect on the rat adrenal glands as early as
the late 1970s (44). The earlier findings, however, that glucocorticoids have a suppressive
effect on adrenocortical function in hypophysectomized rats (44), could not be confirmed in
humans (45). As early as in the mid-1980s, there was a suspicion that physiologic
(replacement) doses or even moderately higher doses of dexamethasone or cortisol do not
suppress zona fasciculata function. Evidence for this was derived from experiments that had
been conducted in the mid-1960s: intravenous infusion of ACTH was shown to stimulate
steroid production even after high doses of glucocorticoids (45). Investigators who could not
confirm this finding had used extraordinarily high doses of glucocorticoids (46-48), as
pointed out by Kontula et al (45).

Of note, the affinity (dissociation constant) and specificity of the GR binding in
glucocorticoid-exposed adrenal tissue were compatible with the data obtained from human
leukocytic GR assays (45), an indication that the adrenal gland GR is no less functional than
in other tissues. Its presence in both cortical and medullary tumors (that is,
pheochromocytomas) was also shown in the 1980s (49-51) and subsequently confirmed
(12,52). More recently, a familial case of GR haploinsufficiency in conjunction with
macronodular adrenal hyperplasia was reported; this finding suggested that glucocorticoid-
regulated adrenocortical cell signaling may have a role in the regulation of adrenal growth
(53). Alternatively, affected patients in this family also presented with inappropriate plasma
levels of ACTH, which may explain gradual hyperplasia of the adrenal cortex (53).

Kontula et al (45) were the first to show avid dexamethasone binding by cells derived from
human adrenocortical hyperplasia. As mentioned in the Introduction, it was recently shown
that patients with particular forms of adrenocortical hyperplasia exhibit an increase in
cortisol excretion in response to the administration of dexamethasone during the Liddle test
(11,17). In fact, an increase of 50% or higher of the basal level of urinary free cortisol or 17-
hydroxysteroid excretion on the last day after administration of high-dose dexamethasone is
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diagnostic of PPNAD (17) and other micronodular adrenocortical hyperplasias (54). This
response, however, is not pathognomonic of PPNAD or micronodular adrenal hyperplasia;
patients with cortisol-producing adrenocortical adenomas (55) have this type of response in
as many as a fifth of the cases (17,55). In this latter group of patients, the response to
dexamethasone has been attributed, at least in part, to the occurrence of somatic PRKAR1A
mutations (55). Germline mutations of PRKAR1A, the gene that codes for the type 1A
regulatory subunit of the cyclic adenosine monophosphate (cAMP)-dependent kinase or
protein kinase A (PKA), are responsible for PPNAD (56,57).

The molecular mechanisms involved in dexamethasone-induced cortisol secretion from
PPNAD have not been fully elucidated. A recent study has shown that the plasma cortisol
response to administration of dexamethasone observed in vivo in patients with PPNAD (17)
can be reproduced in vitro (11). Therefore, the occurrence of a direct stimulatory action of
the drug on hyperplastic adrenocortical tissues was confirmed (17). In contrast,
dexamethasone was found to have no effect on cortisol release by tissue explants derived
from ACTH-independent macronodular adrenal hyperplasias (11). Immunohistochemical
studies revealed the presence of the GR in the nodules of PPNAD, whereas limited or no
immunoreactivity was detected in the internodular, mostly atrophic, cortex. In addition, the
GR appears to be overexpressed in PPNAD tissues in comparison with normal adrenal gland
tissues. This observation suggests that the abnormal stimulatory action of dexamethasone on
cortisol release is a GR-mediated phenomenon (11). Because it was known that the GR can
interact with the cAMP-dependent PKA through a protein-protein interaction (58), the
paradoxical increase in cortisol secretion induced by dexamethasone in PPNAD could
possibly be the consequence of a GR-mediated action of dexamethasone on PKA that was
constitutively active because of the PRKAR1A mutations (59,60). In a recent study, we
investigated this hypothesis on cultured adrenocortical cells derived from PPNAD (61).
Dexamethasone stimulated in vitro cortisol secretion from cultured dispersed PPNAD cells,
and this effect was not reduced by the adenylate cyclase inhibitor SQ22536 or potentiated by
the phosphodiesterase inhibitor IMBX and the cAMP analogue 8Br-cAMP. In contrast, the
PKA inhibitor H89 and the GR antagonist RU-486 (mifepris-tone) did inhibit the cortisol
response to dexamethasone. Interestingly, dexamethasone had no effect on cortisol
production from normal human adrenocortical cells but stimulated the production of
corticosteroids in the presence of RU-486 (61).

These results are in accordance with the data showing the dual role of mifepristone as an
agonist or active antagonist of the GR. As a GR antagonist, mifepristone binds to the
receptor and hinders the GR from releasing from the associated heat shock proteins; thus,
the translocation of the RU-486/receptor complex to the nucleus is prevented (62) (Fig. 2
A). This action should result in glucocorticoid resistance. Nevertheless, some of the
complexes manage to reach the target DNA. This happens because of the agonistic activity
of mifepristone. The complex RU-486/receptor translocates to the nucleus, where it can
actively recruit nuclear coregulator proteins such as TIF2 and nuclear receptor corepressor
and thus regulate gene expression (63) (Fig. 2 B). It seems that the concentration of GR in
the cell increases the agonistic activity of mifepristone by driving the formation of
receptor:DNA:coactivator complexes, which can then be converted to transcriptionally
active complexes (64). Thus, the decrease of basal cortisol and corticosterone levels found in
PPNAD cultures (61) might be the consequence of an agonistic effect of mifepristone,
which is potentiated by the constitutively active PKA (65). It has been shown that the
activated GR mediates negative feedback in adrenocortical steroidogenesis (66). It is
possible that there is a local GR resistance in mediating cortisol negative feedback in
steroidogenesis of PPNAD cells, which is overcome by administration of mifepristone.
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Overall, these data indicated that dexamethasone stimulates PKA catalytic subunits in
PPNAD cells through a GR-mediated mechanism that may involve direct GR-PKA catalytic
subunit interaction (61,67). From these studies, we concluded that “the GR-mediated
stimulatory effect of glucocorticoids on cortisol synthesis, together with overexpression of
GR and PKA constitutive activation, is likely to form a local amplification loop that may
explain the high secretory activity of PPNAD cells” (61).

Dissimilar responses by human and rodent adrenocortical cells to administration of
dexamethasone may explain the discrepancies between the data obtained by Kontula et al
(45) and earlier studies (44) (in addition to dose differences). In our study, we also found
that dexamethasone inhibited the production of corticosterone by wild-type mouse
adrenocortical cells, similar to that observed in earlier studies in mice and rats (44,68),
whereas dexamethasone had no effect on release of cortisol from normal human
adrenocortical cells (61). In addition, incubation of both normal human and mouse
adrenocortical cells with RU-486 unmasked a stimulatory effect of dexamethasone on
release of cortisol and corticosterone (61) that corresponds, therefore, to a GR-independent
and likely nongenomic action, as recently observed in an ectopic dexamethasone-stimulated
adrenocortical adenoma responsible for hypercortisolism (69). It is possible that this
unexpected effect may be mediated by an unknown membrane receptor and may involve
second messengers, as has been proposed in other tissue models (70). Because
dexamethasone alone has no influence on production of cortisol from normal human
adrenocortical tissues, we postulate that, in physiologic conditions, the GR-independent
stimulatory action of dexamethasone on production of glucocorticoid is counteracted by an
inhibitory GR-mediated effect of the drug through an unidentified cross-talk at the PKA
level. Apparently, the GR-mediated inhibitory action of dexamethasone is predominant in
mouse adrenocortical tissues.

In human PPNAD, the increase in PKA catalytic subunit intracellular content that results
from PRKAR1A-inactivating mutations seems to favor a GR-dependent stimulatory action
of dexamethasone. In a transgenic mouse model of PPNAD (71-73), no effect of
dexamethasone was observed in vitro (61) or in vivo (72,73); this finding suggests that
inactivation of the PRKAR1A gene reduces the GR-dependent inhibitory action of
dexamethasone on mouse cells. In contrast, the observation that dexamethasone stimulated
the release of corticosterone in the presence of RU-486 in this transgenic mouse as
efficiently as it did in wild-type mouse adrenocortical tissues (61) indicates that PRKAR1A
(partial) inactivation does not modify the GR-independent stimulatory effect on
glucocorticoid production.

Collectively, these data suggested that the effects of glucocorticoids on adrenocortical cells
are complex, are tissue-specific and possibly context-specific, and may involve nongenomic,
in addition to GR-mediated, actions. Most likely, genomic effects of glucocorticoids mediate
negative feedback in the adrenocortical steroidogenesis, whereas nongenomic effects serve
to enhance it under specific circumstances.

This complexity in adrenocortical GR responses should be considered whenever
dexamethasone is administered to humans for diagnostic or therapeutic purposes, beyond the
known differences in dexamethasone absorption and metabolism (16,74). The fact that the
GR responses to dexamethasone of each human are controlled by so many factors also
explains the old observation that despite the wide interperson variability (probably
attributable to many genetic variants of the molecules that participate in the foregoing
phenomena), there is relative intra-person stability in HPA axis testing results (75). Some of
this variation can be ascribed to functional GR polymorphisms, which may also predispose

Briassoulis et al. Page 6

Endocr Pract. Author manuscript; available in PMC 2013 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to adrenocortical tumor formation (76), but clearly GR genetic differences are not the only
source of HPA axis functional variance.

CONCLUSION
This review emphasizes the variability in expression and function of the GR in pituitary and
adrenocortical cells as one of the reasons for the considerable differences in HPA axis
function across individuals. There are other phenomena, especially clinical observations,
such as those of CS in a patient with normal secretion of ACTH and cortisol but high GR
numbers (77) and the absence of CS in a patient with high levels of ACTH and cortisol and
low 11βHSD type 1 activity (78). The molecular cause of these observations remains largely
unexplained; therefore, much more must be learned about the HPA axis and its regulation.
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Abbreviations

ACTH adrenocorticotropic hormone

ADTs adrenocortical tumors

AHR aryl hydrocarbon receptor

AIP AHR interacting protein

cAMP cyclic adenosine monophosphate

CD Cushing disease

CS Cushing syndrome

GR glucocorticoid receptor

HPA hypothalamic-pituitary-adrenal

11βHSD 11β-hydroxysteroid dehydrogenase

PKA protein kinase A

PPNAD primary pigmented nodular adrenocortical disease
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Fig. 1.
Brg1-dependent transrepression. Ligand (C) activation of glucocorticoid receptor (GR)
results in formation of a Brg1-dependent protein complex, which also contains NGFI-B and
HDAC2. This scenario results in deacetylation of histone H4, block of polymerase II at the
promoter, and inhibition of transcription initiation. Hsp = heat shock protein; POMC = pro-
opiomelanocortin.
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Fig. 2.
A, Mifepristone (RU-486) can act as a glucocorticoid receptor (GR) antagonist; when
mifepristone binds to the GR, it prevents the release of the GR from the associated heat
shock protein (Hsp) and prevents the translocation of the RU-486/GR complex to the
nucleus. B, In primary pigmented nodular adrenocortical disease cells, mifepristone
probably acts as an agonist or antagonist, depending on the protein kinase A (PKA) status.
Through a GR-PKA interaction, the constitutively active PKA in these cells may potentiate
the agonist activity of mifepristone. The complex RU-486/GR translocates to the nucleus,
where it recruits nuclear coactivator TIF2 and nuclear receptor corepressor (NCoR) and
regulates gene expression.
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