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Abstract
Chemoradiotherapy, the concurrent administration of chemotherapy and radiotherapy, is a
treatment paradigm in oncology. It is part of the standard of care and curative treatment of many
cancers. Given its importance, one of the primary goals of cancer research has been to identify
agents and/or strategies that can improve the therapeutic index of chemoradiation. Recent
advances in nanomedicine have provided a unique and unprecedented opportunity for improving
chemoradiotherapy. Nanoparticles possess properties that are ideally suited for delivering
chemotherapy in the chemoradiation setting. The goal of this review is to examine the role of
incorporating nanomedicine into chemoradiation and the potential impact of nanomedicine to
chemoradiotherapy.

Cancer is the leading cause of death worldwide and the second leading cause of death in the
USA [1]. The curative treatment of cancer generally involves multiple specialties including
surgery, chemotherapy and radiation therapy. Surgery and radiation therapy are both local
treatments. The goal of surgery is to remove the primary tumor, while radiation is used to
treat any residual disease and macrometastases that are known to surround the primary
tumor. Chemotherapy works systemically to eradicate micrometastatic disease. In recent
years, clinical research has established that combining the above treatment modalities is the
standard of care and has improved survival and cure in many cancers such as those of the
breasts and lungs [2,3].

Part of the multimodality treatment of cancer is the chemoradiotherapy treatment paradigm.
Chemoradiotherapy, the concurrent administration of chemotherapy and radiotherapy, is part
of the standard of care in the curative management of many cancers. Its origin traces back to
the 1970s when Nigro and colleagues demonstrated that combining mitomycin C, 5-
fluorouracil, and radiation for anal cancer could lead to complete resolution of disease [4].
This landmark paper lead to further use of combined chemotherapy and radiation therapy in
the neo-adjuvant, definitive and adjuvant settings [5]. In chemoradiation, chemotherapy acts
as a radio-sensitizer to enhance local control and, potentially, overall survival while also
eradicating distant micrometastatic disease [5].
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In the last two decades, the use of chemoradiation has expanded widely to brain, head and
neck, esophageal, lung (small cell and non-small cell), pancreatic, gastric, sarcoma, bladder,
cervical, vulvar, rectal and anal cancers [2,5–14]. It has been shown to improve local tumor
control, overall survival and cure. This includes superior outcomes when compared with the
sole use of chemotherapy, radiation therapy, or even sequential delivery of both [2,5,8]. For
inoperable patients, concurrent chemoradiation provides a treatment option with curative
intent, as is the case in many patients with lung cancer [2].

Another benefit of concurrent chemoradiation is potential organ-sparing approaches to
treatment [5]. The goal of organ preservation is to not only cure the patient’s cancer, but also
spare critical structures, avoid disfiguring surgery and maintain high quality-of-life after
treatment. Head and neck, anal, rectal, and bladder cancers are often treated with surgical
resection that permanently alters patient function [9–13]. Larynx preservation with definitive
chemoradiation can preserve a patient’s voice while avoiding a laryngectomy [9].
Chemoradiation for anal and rectal cancer may allow a patient to avoid an abdominoperineal
resection, which involves a permanent colostomy bag [4,11,12]. Radical cystectomy is the
gold standard for treating invasive bladder cancer. A recent publication adds to the growing
body of literature showing that concurrent chemoradiation may be an excellent bladder-
sparing approach to treatment [13].

While chemoradiation appears to be an outstanding option in many disease sites, there are
increased levels of toxicity associated with concurrent therapy [9,14]. They may lead to
prolonged treatment courses, reduction in dose of chemotherapy or radiation therapy, or an
incomplete course of treatment, all of which may lead to worse disease outcomes. Some
physicians may not offer concurrent chemoradiation due to concern over a patient’s inability
to tolerate the rigors of treatment, thus, putting them at a decreased chance of cure prior to
starting treatment. Even for those who finish treatment, complete resolution of tumor may
only be seen in a small fraction of patients [15]. Hence, there is room for improvement,
especially if higher efficacy and similar or lower toxicities can be achieved.

Numerous other approaches have been pursued to increase the therapeutic ratio without
much success. Intra-arterial chemotherapy in head and neck cancer has been explored to
improve drug delivery to the site of disease. However, in a Phase III trial it showed no
advantage in locoregional control or survival, while increasing neurologic toxicity [16].
Others have attempted to use nitroimidazole compounds (i.e., misonidazole, nimorazole and
etanidazole) as radiosensitizers [17,18]. They mimic oxygen and work by making hypoxic
tumor cells more sensitive to treatment. Unfortunately, insufficient drug delivery to the
tumor and associated toxicity has limited their utility to date [17,19]. One approach for
targeted therapy involves biologic agents such as cetuximab and bevacizumab [15,20].
These drugs act by blocking specific cell molecules, such as EGFR or VEGF, with a goal of
interfering with tumor or microenvironment growth. While some applications of targeted
therapies have shown promise, as is the case with cetuximab in head and neck cancer [20],
other examples show only a modest improvement, such as bevacizumab in rectal cancer
[15]. Furthermore, toxicity remains a problem. There have been reports of dermatologic
manifestations and, in some regions of the USA, life-threatening anaphylaxis [21,22]. While
there are multiple approaches being investigated, an optimal solution remains elusive.

Ideally, the best agent for chemoradiation would go directly to the tumor and remain there
while not accumulating in adjacent normal tissues. Conventional chemotherapy is a systemic
but nonspecific therapy that cannot achieve this goal. However, newer technologies in
nanomedicine and the application of nanotechnology to medicine, may provide solutions to
this targeting problem. Nanoparticles (NPs), by definition, are typically less than 100 nm in
size, biodegradable, biocompatible and possess unique properties that permit targeted
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approaches to delivering various chemotherapeutics. This revolution in technology is
potentially a major breakthrough when applied to chemoradiation.

In this review, the authors will provide background information on nanomedicine, provide
examples of the benefit of intersecting it with chemoradiation, discuss the current NP
platforms, including those already evaluated for chemoradiation, and assess the advantages
and disadvantages of NP therapies in chemoradiation. The goal of this review is to examine
the role of incorporating nanomedicine into chemoradiation and its potential impact on
cancer treatment.

NP advantages in chemoradiation
The enhanced permeability & retention effect

Tumor angiogenesis differs from normal vascular biology in many ways, providing
therapeutic opportunities for NPs. While normal tissue vascular biology exhibits a highly
organized structure, tumor vasculature is disorganized and irregularly branched [23–28].
Furthermore, there is a heterogeneous density of vessels in the tumor and the defective
architecture includes a more porous endothelium, with vascular pores ranging from less than
100–2000 nm in size, compared with normal pores of 5–10 nm [24,28,29]. Lymphatic
vessels, which are normally responsible for removing excess fluid from tissue, often
function only at the tumor periphery, which leads to inefficient fluid drainage, providing
another opportunity for NP accumulation at the tumor [23,25]. This combination of features
– irregular tumor vasculature structure, high vascular density within the tumor, increased
tumor vessel permeability and defective lymphatic drainage – has been named the enhanced
permeability and retention (EPR) factor [25,27]. This feature allows NPs to accumulate in
high concentration within the tumor, while minimal accumulation occurs in adjacent and
systemic normal tissue.

Preferential accumulation in tumor
As Jain et al. describe, any therapeutic agent traveling from the systemic circulation to the
tumor requires three steps. First, it flows via blood vessels to different regions of the tumor.
It then crosses the blood vessel wall and finally penetrates the interstitial space at the target
cells [23].

Based on this process, NP size leads to a preferential accumulation in tumors compared with
small-molecule therapeutics. The EPR effect typically creates a favorable tumor to normal
tissue dose gradient, which may lead to greater treatment efficacy while sparing more
healthy tissue. This is an advantage compared with traditional chemotherapy where
nonspecific systemic distribution may lead to toxicity in the heart, lung, kidneys or nerves
and, in turn, limit tolerance to a full course of therapy.

NP clearance is another important advantage. While chemotherapy may be processed via
multiple routes for excretion from the body, NPs are mainly removed from the circulation
via the mononuclear phagocytic system (MPS) and hepatic excretion [30]. MPS (formerly
known as the reticuloendothelial system) processing may lead to excretion in bile or
accumulation of NPs within the Kupffer cells of the liver and macrophages in the spleen
[30,31]. The distinctive properties of NP accumulation and clearance enhance the
therapeutic ratio by reducing the amount of systemic toxicity experienced compared with
small-molecule therapeutics [32].

Chemoradiation uses radiosensitizing doses of chemotherapy, given concurrently with full-
dose radiation therapy, to create a synergistic response to both treatments. However, this
approach uses small molecules that will diffuse into both normal and malignant tissue,

Miller and Wang Page 3

Ther Deliv. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increasing the risk of normal tissue toxicity. In this setting, NP preferential tumor
accumulation should minimize the side effect profile in combined modality treatment.
Metabolism is critically important as we apply NPs to chemoradiation. For example,
radiation treatment fields that are at or near the liver will need to be developed carefully
because of an increased risk of hepatic toxicity. There are already dose constraints to organs
at risk when performing treatment planning for radiation therapy, but these may need to be
adjusted when using concurrent NP-based therapeutics. While this is an important
consideration, NPs have the potential to not only enhance the ability to tolerate and complete
treatment, but they may also permit systemic therapy dose escalation or radiation therapy
dose de-escalation due to their specific, beneficial properties.

NP therapeutics under preclinical & clinical evaluation
As mentioned earlier, NPs are generally defined as particles that are less than or equal to 100
nm. They are designed to carry systemic therapies while also being biodegradable and
biocompatible. With this definition in mind, decades of research has led to the development
of five categories: liposomes, albumin-bound, polymeric, dendrimers and metal NPs.

Liposomes
There are numerous liposomal formulations currently approved for clinical use in the USA,
with more in the drug-development pipeline. They are spherical, layered vesicles that self-
assemble when placed in water [33]. They range in size from 50 nm to micrometers, which
permits loading with a variety of therapeutics, including simultaneous small molecules and
macromolecules [33–36]. Liposomes are classically eliminated by the MPS system;
however, PEG can be added to the liposome surface and significantly enhance circulation
half-life, which allows for increased tumor accumulation [37]. There are already multiple
clinical approvals for liposomal-based NP chemotherapeutics (Table 1). DaunoXome®

(liposomal daunorubicin) is used to treat AIDS-related Kaposi’s sarcoma, acute myeloid
leukemia and non-Hodgkin’s Lymphoma [38–41]. PEGylated liposomal doxorubicin, also
called Doxil® or Caelyx®, is approved to treat AIDS-related Kaposi’s sarcoma, multiple
myeloma, and ovarian and breast cancers [23,42–45]. Non-PEGylated liposomal
doxorubicin (Myocet®) is used in Europe as first-line treatment for breast cancer, where
trials have shown similar outcomes, but less cardiac and hematopoietic toxicity [41,46]. The
large size variation and easy construction will permit for a growing list of clinical
applications, particularly in oncology, of liposomal NPs.

Albumin-bound NPs
The NP albumin-bound (nab) platform uses albumin to shuttle hydrophobic therapeutics.
Albumin is an ubiquitous serum protein that naturally carries molecules in the bloodstream,
attached by reversible noncovalent binding [47]. Albumin enters cells via glycoprotein 60
receptor-mediated transcyctosis, permitting excellent transport of nab drugs [48]. This clear
molecular pathway has translated to clinical success: Abraxane®, a combination of a 130-nm
nab with the chemotherapeutic drug paclitaxel, has shown a 25% increase in overall
response while demonstrating an improved safety profile when compared with paclitaxel
alone in metastatic breast cancer [49,50]. Follow-up studies have validated the increased
efficacy and safety profile, even in a geriatric patient cohort (i.e., ≥65-years-old) [51]. This
has led to studies evaluating Abraxane in lung, esophageal and ovarian cancers, as well as
melanoma [52]. While the only US FDA-approved indication is for metastatic breast cancer,
there are more than 1500 ongoing clinical trials involving Abraxane, which should lead to
expansion of the approval for treatment of additional disease sites [201]. It is important to
note that nab–paclitaxel does not possess all classic NP properties, as its 130-nm particles
dissociate into 10-nm complexes once they are diluted in plasma [53]. Further understanding
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of the mechanism of action and pharmacokinetics of nab-based therapeutics will lead to
better targeting and development of new drugs on this platform [54–57].

Polymeric NPs
Polymeric NPs are one of the areas of greatest research interest. They form biocompatible
and biodegradable particles in an aqueous environment [58,59]. They exhibit great
versatility with a high-loading capacity that can include hydrophilic or hydrophobic small
molecules, as well as macromolecules such as proteins and nucleic acids [60]. An additional
advantage of polymeric NPs is the potential for biological targeting and subsequent
improved drug delivery. Aptamers, antibodies and folate molecules can be engineered into
NPs [58,61–70]. While functionalizing NPs with targeting ligands is not unique to
polymeric NPs, they are distinctive in their ability to be tailored prior to particle assembly.
Modulating docetaxel release by altering NP construction is just one clinical example of
these features. Using the particle replication in non-wetting templates process, precise
control of NP size and shape can be consistently reproduced, providing a model for
development and design of other NPs [71].

In the preclinical setting, a group in Asia showed higher therapeutic efficacy in vivo with
taxane-containing polymeric NPs (paclitaxel and docetaxel) treating non-small cell lung
cancer (NSCLC) [72]. Genexol-PM, a polymeric micelle formulation of paclitaxel, is
clinically approved to treat breast and lung cancer in South Korea, while ongoing trials are
evaluating its use in NSCLC, metastatic breast, pancreatic and advanced urothelial cancers
[73–78]. Preclinical data exists on BIND-014, a targeted NP docetaxel NP, showing
prolonged circulation, controlled release, enhanced tumor accumulation and prolonged
tumor growth suppression when compared with conventional docetaxel [79]. This promising
data has led to a Phase I clinical trial that is now accruing patients with metastatic cancer
[202]. Finally, Phase I data of docetaxel-PNP on 19 patients with solid tumors was recently
presented, establishing a maximum tolerated dose of 60 mg/m2, leading the way for Phase II
studies of this polymeric NP chemotherapeutic agent [80].

Dendrimers
Dendrimers are composed of macromolecules, such as amino acids, nucleotides and sugars.
They form well-defined and regularly branched structures which afford great flexibility in
design and modification for use as NPs. They are readily modified, with drugs linked via
chemical bonds or inserted into the dendrimer core via hydrophobic interactions. There are
no den-drimer NPs currently approved for clinical use, but preclinical research continues to
focus on dendrimer–drug conjugate development [81].

Metal NPs
Gold, titanium and other metals have been used to modify chemotherapy release, primarily
constructed as a nanoshell to control drug release [82]. Despite being inert and
biocompatible, a high proportion of the particles are not excreted, creating a toxicity profile
that has limited advancement past preclinical studies [30]. Gadolinium, a heavy metal used
in MRI imaging, may afford opportunities to serve as a diagnostic and therapeutic NP. Early
animal model studies show promise for this approach as a radiosensitizer and imaging
contrast agent [83]. Nonetheless, there are no clinically approved metal NPs to date.

NP therapeutics used in chemoradiation
While there are many NP therapeutics in clinical and preclinical development for the
treatment of cancer, those approved for use in humans include only doxorubicin,
daunorubicin, nab–paclitaxel and polymeric NP paclitaxel. With only a few clinically
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available NPs, even less data exist for concurrent chemoradiation. This creates a new field
of research as more NPs come to market.

Liposome trials
Liposomal-based anthracyclines were the first NP therapeutics approved for human use.
Current commercially available products include PEGylated liposomal doxorubicin (trade
name Caelyx abroad and Doxil in the USA), liposomal daunorubicin (DaunoXome), and
nonP-EGylated liposomal doxorubicin (Myocet) [84]. Clinically, DaunoXome is approved
to treat Kaposi’s sarcoma and has promising Phase III clinical trial data in non-Hodgkin’s
lymphoma and acute myeloid leukemia [39,40,47].

Concurrent Caelyx and radiation therapy has been pursued in multiple small clinical trials.
As reported by Koukourakis and colleagues in 1999, 30 patients (15 with NSCLC and 15
with squamous cell carcinoma of the head and neck) safely received definitive treatment,
with tolerable toxicity profiles including the expected mucositis [85]. They demonstrated
preferential accumulation of technetium-tagged Caelyx in tumor on SPECT scans, which
correlated with treatment response. While not the primary endpoint of the trial, there were
complete response rates of 21% in NSCLC and 75% in head and neck cancer, which are
encouraging numbers for two difficult-to-treat disease sites [85]. This was followed by a
study from the same group where 25 patients with stage IIIB NSCLC were treated with
Caelyx, docetaxel and conventionally fractionated radiotherapy [86]. Patients were also
dosed with amifostine, a radioprotector, with a goal of reducing side effects from treatment.
While 36% of the patients experienced grade 3 esophagitis, the regimen was otherwise well
tolerated, which is encouraging in a disease where 5-year survival rates are approximately
15%. Phase I data in 2004 examined the combination of concurrent Caelyx, cisplatin, and
radiotherapy for head and neck and lung squamous cell carcinoma [87]. A total of 18
patients were entered on the trial and the limiting toxicity was grade 3 mucositis, including
treatment breaks of at least 7 days for three of the patients. These are important
complications, but well within the expected rates with conventional treatment approaches. In
another multimodality combination, Caelyx, oxaliplatin, amifostine and hypofractionated
concurrent radiotherapy were combined to treat 29 stage IIIb and two stage IV patients with
NSCLC [88]. Grade 3 esophagitis was the main toxicity, modest complete and partial
response rates (39 and 55%, respectively) were seen, and 2-year follow-up data showed
progression-free survival of 58% and overall survival of 45% [88]. Building upon this data,
Koukourakis et al. exchanged vinorelbine for oxaliplatin to treat 14 patients with stage IIIb
or IV NSCLC [89]. Esophagitis occurred at expected rates, but this study revealed increased
grade 3 neutropenia, leading to treatment delays in approximately 30% of the patients.

While there are some small trials exploring liposomal doxorubicin with concurrent radiation
therapy in lung cancer, fewer still exist for other disease sites. Varveris and colleagues, the
same group publishing many of the lung cancer studies, pursued a Phase I/II study with
Caelyx in cervical cancer. They used concurrent cisplatin and radiation, establishing an
maximum tolerated dose of 12 mg/m2/week and showing that nearly 30% of the patients
(seven of 24) had a complete response to this treatment regimen [90]. In two breast cancer
trials, patients received liposomal doxorubicin (PEGylated and non-PEGylated), docetaxel,
and radiation therapy; patients with her-2/neu overexpressing tumors also received the
molecularly targeted therapy trastuzumab [91,92]. Both studies established the feasibility of
treating breast cancer with concurrent chemoradiotherapy. In bladder cancer, 38 patients
received definitive treatment with amifostine and radiation therapy, with or without
liposomal doxorubicin [93]. With nearly 2 years of follow-up, there was a 10% increase in
complete response rate with the addition of Caelyx, while no difference in toxicity was
noted.
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This group of studies shows early promising results with concurrent Caelyx/Doxil and
radiation therapy. However, further advances towards large Phase II and randomized Phase
III clinical trials have not yet been shown. This may be due to the well-described
cardiotoxicity profile of anthracyclines. Without long-term data, further clinical application
of anthracycline-based NPs may be hampered, especially in thoracic malignancies such as
lung and breast cancer where the heart may be directly exposed to both therapies.

Liposomal cisplatin has been studied in a few early clinical trials, including one where 12
patients received Lipoplatin™, 5-fluorouracil and concurrent radiation therapy for locally
advanced gastric cancer [94]. Patients experienced toxicities consistent with conventional
cisplatin, while actually reporting improved performance status 2 months after completion
of treatment. Increasing the number of cycles of combined chemotherapy improved the
complete response rate from 33 to 80%, although the number of total patients in each group
(six and five, respectively) was small. Regardless, these are very encouraging early results
that merit further investigation.

In head and neck cancer, concurrent chemo-radiation with weekly cisplatin is often
employed with curative intent, but can be a difficult treatment course due to multiple acute
toxicities. Rosenthal et al., evaluated dose escalation with liposomal cisplatin and concurrent
radiation therapy. After infusion reactions were addressed by slowing rates and further
diluting Lipoplatin, treatment-related toxicity was similar to that of concurrent cisplatin [95].
As is the case with Caelyx/Doxil, Lipoplatin has sparse but encouraging early-phase clinical
data and is yet to be tested in larger clinical trials.

Albumin-bound NP data
Abraxane, an albumin-bound 130-nm NP-containing paclitaxel, has already been approved
for the treatment of breast cancer and is actively being investigated in other tumor types
[96]. There are preclinical data on its role as a radio-sensitizer in breast and ovarian cancer.
Interesting timing data came out of this study- the best responses were seen when radiation
was initiated 2–3 days after administration of nab-paclitaxel, without apparent increases in
normal tissue toxicity [57]. Outside of this paper, a search of the literature yields few
publications involving concurrent administration of abraxane and radiation therapy.
However, this will seemingly change in the coming years, as evidenced by a subsequent
search [203], where “abraxane AND concurrent AND radiation” yields 99 results, with 33
active clinical trials [204]. This includes a number of Phase III clinical trials in lung,
esophageal, head and neck, endometrial and cervical cancer using a combination of multiple
agents, including chemotherapy and molecularly targeted therapies, increasing the need to
have a tolerable toxicity profile that may be afforded by NP-based chemotherapeutics.

Polymeric NP data
The authors’ group has evaluated a combined lipid-polymeric docetaxel NP as a
radiosensitizer in a preclinical model of head and neck cancer. While there is data that
conventional docetaxel is an excellent radiosensitizer, it requires a solvent to be
administered, which can be the source of numerous toxicities. Encapsulation in a lipid-
polymer NP may eliminate this issue [97,98]. Further targeting of this NP can be achieved
by adding folate to the surface [61]. This may be particularly useful in head and neck cancer
where folate is often an overexpressed surface marker [99].

After validating folate-mediated uptake of NPs in an in vitro head and neck cell line,
preclinical studies in a xenograft head and neck cancer mouse model were pursued. Folate-
targeted NPs lead to increased radiosensitization over both conventional docetaxel and non-
folate-targeted NP docetaxel [61]. As was seen in preclinical studies with nab–paclitaxel,
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there again appears to be optimal timing for delivery of folate-targeted docetaxel NPs, but
the underlying mechanism has not been discovered. These data provide an encouraging
approach to use not only NPs, but also molecular surface receptors to further target
treatment delivery [61].

A combination of polymeric NP features is seen in the targeted NP docetaxel NP BIND-014,
which is now entering Phase I clinical trials [79,100]. Nonetheless, Genexol-PM, remains
the only clinically approved polymeric NP chemotherapy to date [73]. It is approved for the
treatment of breast and lung cancer in Asia. While research into its role in advanced
NSCLC, metastatic breast cancer, pancreatic cancer and advanced urothelial cancer is
ongoing, it has not been evaluated for use in concurrent chemoradiation [74–78].

NPs & biologic therapies
The combination of NPs and biologic therapies in chemoradiation has also been pursued.
Some biologic agents cannot be administered systemically, so NPs may be a way to safely
and effectively deliver these treatments. Examples to date include delivery of gene therapy,
such as antisense oligonucleotides and siRNA, as well as radioprotective agents.

Davis etal. reported development of CALAA-01, a polymeric NP containing siRNA
targeting the M2 subunit of RRM2 in solid tumors [101]. Initial clinical data showed high
levels of NP accumulation in melanoma biopsies, which correlated with downregulation of
RRM2 messenger RNA and protein levels. This has led to a Phase I clinical trial assessing
safety, toxicity and the specific pharmacokinetics of this siRNA-based NP [205]. Another
study looked at inhibiting the DNA repair gene ATM, to magnify chemoradiation response
[102]. Preclinical data in mice, using a polymeric nanoparticle that contains antisense ATM
oligonucleotides, showed ATM protein expression reduction prior to radiation therapy..

The therapeutic ratio can be altered by attempting to sensitize tumor tissue to treatment, as is
the case above, or by enhancing normal tissue tolerance. The latter approach was pursued
using a liposomal NP containing manganese superoxide dismutase, a protein that diminishes
ionizing radiation damage [103]. Plasmid-based liposomal manganese superoxide dismutase
was given during a Phase I trial of concurrent paclitaxel, carboplatin and radiation therapy in
patients with stage III NSCLC. Ten patients were enrolled, no dose-limiting toxicities were
detected and a 70% overall response rate was achieved for the standard chemoradiation
regimen [103]. This is particularly important because of the difficulty many stage III
NSCLC patients have completing their treatment course as prescribed.

Metal NP data
Metal NPs have properties that naturally lead researchers to explore their use in
radiosensitization. Gold NPs magnify radiation effects via electron scattering and
preferential accumulation in tumor at high rates (i.e., 8:1 in one preclinical study) [104–
106]. A preclinical breast cancer study in mice showed that combined modality therapy
using gold NPs followed by radiotherapy had an 86% 1-year survival rate, compared with
20% survival when treated with radiation therapy alone or 0% when using gold NPs alone.
Furthermore, tumor response correlated with the amount of gold NPs received [106]. While
renal clearance is the primary means of excretion, gold NP clinical applications remain
limited due to the high dose needed and the overall poor post-treatment clearance of a
potentially toxic heavy metal.

A Phase I clinical trial in France is evaluating NBTXR3, a metal NP containing hafnium
oxide, for treatment of soft tissue sarcoma [206]. Somewhat unique to this study, the drug
will be directly injected into the tumor. The NP is activated via electrons emitted after
administration of high energy photons from external beam radiation therapy. Surgery will
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follow, which should provide interesting pathologic and pharmacokinetic information.
Preclinical, in vitro data have shown this NP to be relatively inert and nontoxic, raising the
hope for an effective clinical application of metal NPs [107].

Other groups have sought to develop a metal NP that can serve as both an imaging agent and
a radiosensitizer, such as polysiloxane-coated gadolinium oxide NPs [83]. These particles
can be detected by MRI up to 45 min post-injection. They, too, are renally excreted.
Preclinical data in a rat gliosarcoma tumor model showed a median survival increase of 3
months when radiation therapy was delivered 20 min after NP administration [83].

Revitalizing abandoned therapies
There are therapeutics that were previously abandoned due to unfavorable systemic toxicity
profiles. However, incorporating these drugs into NPs may reduce toxicity and reinvigorate
their clinical applicability [108]. One recent example is a paper by the authors’ group
looking at Wortmannin (Wtmn), a furanosteroid metabolite of the fungi Penicillium
funiculosum and Talaromyces (Penicillium) wortmannii. A lipid-polymer NP was
engineered to include Wtmn and showed higher solubility while also demonstrating lower
toxicity, as compared with conventional Wtmn. NP Wtmn also had promising in vitro results
as a radiosensitizer, when compared with cisplatin. This led to in vivo studies, where Wtmn
or NP Wtmn showed little effect on tumor growth. However, NP Wtmn followed by
radiation therapy showed statistically significant tumor growth delay, with an apparent
synergy between NP Wtmn and radiation therapy even compared with Wtmn and radiation
therapy [108]. If other seemingly abandoned drugs can be revitalized by incorporating them
into a NP platform, drug development could experience a paradigm shift in the approach to
developing new anticancer therapies.

Conclusion & future perspective
The authors have presented the wide array of NPs and their progress in development from
theory through clinically approved and implemented NP chemotherapeutics. These particles
have unique properties that make them well-suited for use in the treatment of cancer and
especially in chemoradiotherapy. To date, nanomedicine, especially in oncology, has been
focused on systemic therapies. However, identifying novel applications that take full
advantage of the NP’s properties will enhance the likely clinical success of these drugs. In
this case, there is a clear need for advancing the paradigm of concurrent chemoradiation that
merits further investigation at all levels (i.e., basic, translational, preclinical and clinical) of
research. Early data allude to myriad opportunities for investigation, from the various
combined modality approaches, to the timing of drug versus radiation therapy delivery
[30,68]. Unfortunately, progress past a handful of small Phase I and II clinical trials has not
been realized so far.

As new NP formulations are developed, rapid elucidation of drug characteristics will be
important in accelerating the time from development to clinical application. The NP-based
chemotherapeutics developed show promise in increasing the therapeutic ratio. However,
the need continues to be great, and moving drugs past the preclinical stage and into the
treatment paradigm of human cancers is critical. Further advancing that mission via
concurrent chemoradiation must be one of the next steps. Understanding optimal combined
modality approaches will be important as the protocols that pursue NP chemotherapeutic
and radiation therapy dose escalation, or even de-escalation, depending on the need are
established. As more sophisticated molecular targets are added to NPs, an even greater
enhancement of the therapeutic ratio may be realized [79]. NP-based therapeutics are
positioned to play a significant role in the improvement of treating cancer patients,
especially with concurrent chemoradiation. The authors’ goal is to achieve not only greater
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cure, but also lower toxicities, thus, providing patients with long and productive lives after
treatment.

Key Terms

Chemoradiation Combined use of chemotherapy and radiation therapy, typically
referring to their concurrent administration, for the treatment of
cancer

Therapeutic ratio Also termed the therapeutic index, is a ratio of the therapeutic effect
amount of toxicity
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Executive summary

Nanoparticle advantages in chemoradiation

• Nanoparticles exhibit properties that may be of particular benefit when treating
cancer patients with combined chemotherapy and radiation therapy. This
includes the enhanced permeability and retention effect.

Nanoparticle therapeutics under preclinical & clinical evaluation

• There are five major categories of nanoparticles: liposomes, albumin-bound
nanoparticles, polymeric nanoparticles, dendrimers, and metal nanoparticles.

• There are a handful already approved for clinical use in cancer (Table 1), with
many more in preclinical and clinical development across medicine.

Nanoparticle therapeutics used in chemoradiation

• While clinical approval exists for only a few nanoparticle chemotherapeutics,
even fewer have clearly defined roles in chemoradiation. There are a number of
small clinical trials that have been pursued, but widespread use of this combined
approach is yet to be realized clinically.

• Newer combinations, such as BIND-014, are combining nanomedicine with
targeting and may create another opportunity to pursue treatment with
nanoparticle-based chemoradiation

• Nanomedicine may revitalize previously abandoned therapeutics, such as
Wortmannin, by developing safe delivery mechanisms of otherwise systemically
toxic therapies.

Future perspective

• Applications of nanomedicine in chemoradiation hold great potential, but there
remains a wide chiasm between translating results of drug development into
clinical application.

• There is a need for more clinical trials of nanomedicine applied specifically in
the chemoradiation setting.

• Greater cross-discipline collaboration is needed to accelerate the movement
from preclinical promise to clinical delivery in order to provide the most benefit
to patients.
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Table 1

Clinically approved nanoparticle therapeutics.

Category Drug names Indications

Liposome DaunoXome® (liposomal daunorubicin) AIDS-related Kaposi’s sarcoma, acute myeloid
leukemia and non-Hodgkin lymphoma

Liposome Doxil®/Caelyx® (PEGylated liposomal doxorubicin) AIDS-related Kaposi’s sarcoma, multiple myeloma
and ovarian and breast cancer

Liposome Myocet® (non-PEGylated liposomal doxorubicin) Breast cancer

Albumin-bound nanoparticles Abraxane® (albumin-bound paclitaxel) Metastatic breast cancer
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