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The evolution of sexual dimorphism
in New Zealand giant moa (Dinornis)
and other ratites

Valérie A. Olson and Samuel T. Turvey

Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK

The extinct giant moa Dinornis is one of the most remarkable known examples

of reversed sexual size dimorphism (RSD), with males weighing 34–85 kg, but

females weighing up to 240 kg. However, there has been little consideration of

the evolutionary mechanism that produced this level of dimorphism, and most

living palaeognaths also exhibit varying levels of RSD. Using male and female

body mass data for extant ratites and tinamous and four extinct moa genera,

and tests of phylogenetic dependence (l) of body size evolution among

these species, we investigated whether Dinornis was truly unusual with respect

to RSD relative to other palaeognaths, which sex was under greater pressure to

change in size over evolutionary time, and which candidate hypotheses

explaining the presence and variability of RSD in the genus are most plausible.

We demonstrate that the extreme level of RSD exhibited by Dinornis represents

a straightforward consequence of positive allometric scaling of body size.

However, Dinornis females have undergone more evolutionary change than

males, and larger females from high-productivity environments are associated

with greater differentiation, possibly driven by intraspecific competition and

female-biased selection for increased offspring investment.
1. Introduction
Many different forms of sexual dimorphism are displayed among birds [1], and

attempts to explain complex patterns of phylogenetic variation in avian

dimorphism have been the subject of considerable debate ever since Darwin

[2]. Together with plumage dichromatism, the most obvious difference between

males and females of many bird species is sexual body size dimorphism (SSD).

Males are typically the larger sex in birds, and although female-biased SSD or

‘reversed’ sexual size dimorphism (RSD) is common in many invertebrates and

poikilothermic vertebrates [3], it is only displayed in a few avian groups, nota-

bly raptors (Falconiformes and Strigiformes), wading birds (Charadriiformes)

and some other mostly non-passeriform taxa [4–7].

Large numbers of hypotheses assignable to three main categories have been

proposed to explain both how and why RSD evolved and is maintained in these

bird groups, including ecological hypotheses (e.g. food competition between

sexes); reproductive role differentiation or ‘dimorphic niche’ hypotheses; and

behavioural/sexual selection hypotheses [5–8]. Following Darwin [2] and

Wallace [9], these competing hypotheses can also be categorized according to

whether they try to explain the evolution of male size, female size or both

[10,11]. In living birds, the highest RSD levels are displayed by Accipiter
hawks and jacanas; some Accipiter species have sexual dimorphism index

(SDI) ((mass of heavier sex/mass of lighter sex) – 1) values greater than 1.0

(i.e. females are more than twice the size of males), whereas the maximum

SDI value for jacanas is ca 0.8. This level of sexual dimorphism is almost as

great as the highest ratio of male-biased size dimorphism, shown by great

bustard Otis tarda (SDI ¼ 1.48 or higher; [1,4,6,12,13]).

The most dramatic known example of avian RSD was recently recognized in the

giant moa Dinornis, the largest representative of a remarkable adaptive radiation

of graviportal ratites (Dinornithiformes) that occupied large-herbivore niches in
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New Zealand in the absence of native mammalian competitors

and became extinct following the arrival of Polynesian colonists

ca 700 years ago [14]. Dinornis was formerly considered to rep-

resent three size-differentiated species occurring on both the

North and South Islands [14], but ancient DNA studies instead

revealed that it consisted of two geographically separated

allospecies, North Island Dinornis novaezealandiae and South

Island Dinornis robustus [15,16]. Although Dinornis males weig-

hed only 34–85 kg, females measured ca 2 m tall at the back

and weighed up to 240 kg. Dinornis females also displayed

considerable size variation, and were formerly interpreted

as representing two distinct species (the smaller Dinornis
novaezealandiae and the larger Dinornis giganteus [14]). The high-

est level of RSD in coeval Dinornis populations is observed

in Late Glacial North Island populations (SDI ¼ 1.94), whereas

the smallest level is observed in high-elevation sites from

northwest South Island (SDI¼ 0.27) [17].

Other moa species pairs that varied only in size have also

been reinterpreted as intraspecific sexual dimorphs [18].

Bimodal body size measurement data considered to represent

sexually dimorphic populations are available for large tem-

porally/geographically sympatric samples of Euryapteryx
curtus and Pachyornis geranoides (¼P. mappini [19]), with

females again provisionally identified as the larger sex [20].

RSD has now been confirmed in Euryapteryx, Pachyornis
and Emeus through ancient DNA research [16].

Although the discovery of extreme RSD in Dinornis has

been the subject of substantial interest, there has been little

further consideration of the evolutionary mechanism that pro-

duced this level of dimorphism. The New Zealand moa

radiation is phylogenetically nested within modern ratites,

although its exact phylogenetic position remains debated

[21–24], and the prevailing view of ratite relationships has

been challenged by recent studies suggesting that tinamous

are also nested within a paraphyletic ratite clade [24,25]. How-

ever, irrespective of which phylogeny is adopted, most living

palaeognaths (ratites and tinamous) also exhibit varying levels

of RSD, associated with prominent or exclusive paternal care of

eggs and offspring, and a diverse array of mating systems ran-

ging from monogamy to mixed polygyny/polyandry [6,26–28].

Dinornis was one of the largest birds ever to evolve [14]; by

contrast, ostriches, the largest living ratites, weigh 90–130 kg

[27]. An appropriate evolutionary null hypothesis must, there-

fore, be that extreme RSD in Dinornis may simply conform to

positive allometric scaling within the palaeognath clade, rather

than being an unusual deviation of this genus from the norm

for their body size (for similar conclusions over the evolution

of antler size in the giant deer Megaloceros see [29]).

Male body size varies more than female body size among

related taxa, so that larger species are more sexually

dimorphic with male-biased SSD, but less sexually dimorphic

with female-biased SSD [3,30,31]. This pattern is referred to

as Rensch’s Rule and has led to considerable investigation

into allometric trends in SSD evolution. The classic method

to test for agreement with the rule is to regress male body

size on female body size; if the slope of the regression is sig-

nificantly greater than one, then Rensch’s Rule is supported.

Allometry consistent with Rensch’s Rule has been con-

firmed in a range of avian taxa, but significant examples

are generally associated with male-biased SSD, suggesting

that sexual selection acting on male size drives the evolution

of this pattern of allometry [32]. Although Rensch’s Rule has

also been demonstrated in Charadriiformes [33], other studies
have found no evidence for it in Falconiformes, Strigiformes

or Tinamiformes, suggesting that it is not generally

supported in birds that exclusively exhibit RSD [3,28].

The nature of allometric trends in male and female body

size across palaeognaths, therefore, remains difficult to pre-

dict empirically, and a series of questions need to be

addressed. Does Dinornis fit the relative pattern of SSD

shown by other extant and extinct palaeognaths, or does it

exhibit significantly different male and female body masses

than expected for a bird of its size? Furthermore, which sex

underwent the greater change in size in Dinornis, and what

were the rates of body size evolution in moa and other

palaeognaths, and the ecological factors associated with

evolutionary differences across the group?
2. Material and methods
(a) Body mass data
We collected body mass data for all extant ratite species and moa

species for which both male and female measurements are avail-

able, and also for two tinamou genera (table 1). SSD was

calculated as log(male) minus log(female) body mass [38].

Direct body mass measurements were used for extant ratites,

whereas moa body masses were calculated using an algorithm

based on available skeletal measurement data. Femoral circum-

ference, an accurate predictor of body mass in large birds, has

recently been used to estimate body masses for some moa taxa

[19,39]; however, published femoral circumference data are una-

vailable for moa samples containing identified sexual dimorphs

[16,17,20], so a regression equation developed for birds in general

(and irrespective of sex) based on femoral length [40], represent-

ing another widely used predictor of avian body mass also used

in recent moa studies [14,17,39], was used instead. Although the

use of a broad-taxon regression to calculate moa body masses

could conceivably affect accuracy of estimation if moa deviated

consistently in size from taxon-wide trends, different moa species

show considerable variation in robust or gracile leg morphology

[14,41], suggesting that our estimates are unlikely to be consist-

ently biased, and the high R2 value for this equation (0.99 [40])

further indicates that our mass estimates are likely to be accurate

and so useful for investigating patterns of palaeognath evolution.

Femoral length data were not compared directly because pub-

lished data are largely unavailable for extant ratites. Median

body masses for North and South Island Dinornis, E. curtus
and P. geranoides were calculated from available femoral

measurement data [17,20]; body mass data were also calculated

for Dinornis populations displaying maximum and minimum

recorded RSD levels [17]. Body mass data calculated for male

and female specimens of Emeus crassus identified using molecu-

lar sexing [16] were also incorporated to increase the number of

included moa taxa, although it is important to note that these

specimens originate from different collection localities, meaning

that comparable male and female body mass estimates may be

confounded by geographical and temporal size variation

recorded in many moa lineages and populations [14,20]. Palaeog-

nath body masses, and an indication of the degree and direction

of SSD across the group, are shown in figure 1.

(b) Phylogenies
Several different phylogenetic studies, representing alternative

hypotheses about the evolutionary relationships of extant ratites,

tinamous and moa, have been published over the past decade.

These studies have investigated both higher-order relationships

of ratite and tinamou genera and the placement of moa, and also

finer-scale evolutionary relationships between different moa



Table 1. Palaeognath body masses and SSD, calculated as log(male mass) minus log(female mass). (Moa highlighted in bold. Mean body masses measured from
living birds used for extant palaeognaths, and body mass estimates derived from Quaternary skeletal remains used for moa species. Dinornis body mass estimates
vary widely from different Pleistocene and Holocene environments, and so median, minimum, and maximum estimates are used for each species.)

taxon measure male mass (g) female mass (g) SSD source

Apteryx australis mean 2335.8 2690.9 20.061 [27,34 – 36]

Apteryx haastii mean 2278.2 2760.3 20.083 [35,37]

Apteryx mantelli mean 2069.3 2484.1 20.079 [27]

Apteryx owenii mean 1133.8 1350.6 20.076 [27,34 – 36]

Casuarius casuarius mean 31 650 45 750 20.160 [34,37]

Dinornis novaezealandiae median 56 600 11 1976 20.297 [14,17]

min 37 800 10 9000 20.460

max 75 000 126 000 20.225

Dinornis robustus median 80 333 151 723 20.276 [14,17]

min 70 000 89 000 20.104

max 84 000 151 723 20.257

Dromaius novaehollandiae mean 31 500 36 900 20.069 [27,34,37]

Emeus crassus mean 42 800 68 300 20.203 [16]

Eudromia elegans mean 582 738 20.103 [28]

Euryapteryx curtus mean 17 200 28 100 20.213 [20]

Pachyornis mappini mean 31 800 51 400 20.209 [20]

Rhea americana mean 28 350 21 546 0.119 [27,34]

Struthio camelus mean 115 000 100 000 0.061 [27]

Tinamus guttatus mean 638.3 737.5 20.063 [27]

Tinamus major mean 982.1 1107.1 20.052 [27,34]

Tinamus solitarius mean 1284.0 1476.4 20.061 [27]

Tinamus tao mean 1565.0 1648.1 20.022 [27,34]
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Figure 1. Male and female body sizes and SSD in ratites. Minimum, median
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genera and species. To ensure that our analyses were not biased

towards any particular evolutionary hypothesis and to investigate

any differences in RSD evolution associated with different
hypotheses, we used topologies and branch lengths from three

studies on palaeognaths that incorporated some moa taxa (here-

after referred to as the Cooper [21], Haddrath [22] and Phillips

[24] phylogenies) and also two ancient DNA studies on moa that

were fully resolved at the species level, which differ mainly in

the timing of morphological radiation of different moa clades (here-

after referred to as the Baker [42] and Bunce [43] phylogenies).

Using these hypotheses, we constructed six composite phylogenies,

representing alternative hypotheses for examining the evolution of

ratite RSD (figure 2). Other recent hypotheses of ratite and tinamou

relationships could not be used because they did not provide

branch length data [23], or because there was no congruence

between novel tree topologies lacking moa and the phylogenetic

placement of moa in other studies, making it impossible to add

moa into the higher-order palaeognath phylogeny [25].

Following previous studies [44,45], we used genus-level rather

than species-level trees to avoid potential confounding problems.

Many ratite genera are species-poor (comprising only 1–2 species

[27]), and separate male and female body mass estimates are simi-

larly only available for 1–2 species within different moa genera,

such that available data are effectively at the genus level for these

taxa. However, five extant kiwi (Apteryx) species are now recog-

nized [46]. The number of Apteryx species in the dataset,

combined with the small body mass of this genus, has the potential

to disproportionately influence phylogenetically controlled ana-

lyses at the species level. Furthermore, fossil species and extant

species may be defined according to different taxonomic criteria,

and revisions to the taxonomy of extinct versus extant species are

often not contemporaneous or consistent with one another.
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Figure 2. (a – f ) Hypotheses of phylogenetic relationships between extinct and extant palaeognath genera, and showing ratios of male : female phylogenetically
independent body mass contrasts among ratites exhibiting female-biased SSD. Pies plotted at nodes of candidate phylogenies indicate value of male contrast (dark)
relative to that of female contrast ( pale); pies that are 50% dark and 50% pale indicate equal contrast values for both sexes. When testing Rensch’s Rule in taxa
with female-biased SSD we expect male contrasts to be larger than female contrasts (i.e. pies should have larger dark than pale segments), whereas in taxa with
male-biased SSD the reverse should be true. (Online version in colour.)
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Indeed, whereas species-level taxonomy for most extant ratites and

genus-level taxonomy for moa are both well understood, moa

species-level taxonomy is notoriously unstable and has been in a

state of continuing revision in recent years [14–16,19,42,43]. Tina-

mous are genus- and species-rich, and so we selected two

representative genera (Tinamus and Eudromia) for which male and

female body mass data are available and which are close to the

root of the tinamou clade [47]. We obtained a divergence date for

these genera from ref. [48]. We calculated body masses and SSD

for each genus using the means of all congeners sampled. Inclusion

of taxa with missing data values can influence estimates of scaling

parameters [49], and so our trees did not include genera for which

no separate male and female body mass values were available.

(c) Phylogenetic analyses
Our primary research question concerned the distinctiveness of

Dinornis with respect to the apparent extremity of its RSD: are

Dinornis species particularly sexually dimorphic given their

body size and phylogenetic position? If a trait exhibits phyloge-

netic signal, then the phylogeny should explain at least some

proportion of the distribution of character values among taxa.

We investigated this prediction using the test statistic lambda (l)

[50], a tree-transformation parameter that gradually eliminates

phylogenetic structure by multiplying off-diagonal elements of

the variance/covariance matrix describing tree topology and

branch lengths by values between 0 and 1 (l ¼ 1 indicates com-

plete phylogenetic dependence, whereas l ¼ 0 indicates no

phylogenetic dependence [49]). We did not calculate a related

measure of evolutionary rate, kappa (k) [49,50], because k will

always tend towards one in phylogenies that contain few nodes

or that do not include all species, as is the case in our study.
The trait value for the root of a phylogeny can also be esti-

mated from its topology, branch lengths and species trait values.

The root value is equivalent to that obtained from the ‘squared-

change parsimony’ algorithm and is also the maximum-likelihood

estimate under Brownian motion. The independent contrasts alge-

bra can also be used to compute a standard error or confidence

interval. We derived the root trait value and its standard error

from phylogenetic regression analysis in which the independent

variable is set to a constant (1) and the dependent variable is

the trait of interest. Upon removal from the tree, species with unu-

sual trait values for their phylogenetic position will affect l and

root trait estimates more than taxa with trait values more typical

of the clade [51]. We therefore tested for distinctiveness of Dinornis
by first estimating l and different root body size measures across

the entire phylogeny, and then removing each genus from the

phylogeny one at a time and re-estimating l and root body size.

We also conducted a final iteration in which we removed both

genera of tinamous simultaneously. We performed this procedure

for three root body size measures (male body mass, female body

mass and SSD), repeating it for all six composite phylogenies and

for all three Dinornis body mass estimates.

We also conducted a simple test of Rensch’s Rule using each of

our six candidate phylogenies. We calculated six sets of phylogen-

etically independent contrasts, one for each phylogeny, where

each set comprised both male and female body mass contrasts

(cf. [28]), to calculate differences in body mass values between

pairs of sister taxa and scale them by their expected variances

(the so-called ‘contrasts’; [52]). Contrasts therefore represent the

result of evolutionary divergence that occurs after the origin of

each pair, and are independent of phylogenetic associations. We

used reduced major axis regression to determine the slope of the

relationship between male (independent) and female (dependent)
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contrasts for each phylogenetic hypothesis. If Rensch’s Rule is sup-

ported in ratites, then negative allometry among taxa with RSD is

expected (i.e. males of sister taxa should differ more than females).

Our methods avert potential difficulties for investigating SSD

in clades containing extinct taxa, caused by models for predicting

SSD requiring information about the relationship between body

size and reproductive success for each sex [53]. This information

is unavailable for nearly all extinct taxa. Our analyses do not

require information on sexual behaviour or reproductive output

of extinct species, and do not rely on a priori inferences regarding

mechanisms driving male and female body sizes in ratites, but

instead examine whether the pattern and rate of change itself can

reveal the relative plausibility of different evolutionary hypotheses.

3. Results
(a) Phylogenetic distinctiveness of body size and sexual

body size dimorphism
When we retained all genera in analyses and compared esti-

mates of l across all phylogenies and Dinornis body mass

estimates, all values of l were very close to one (range¼
0.917–0.982). For analyses of both male and female genus-

level body masses, there was some variation in l depending

upon the combination of phylogenies used (figure 3a). The

lowest l estimates were obtained using Bunce’s moa phylogeny

combined with Cooper’s or Haddrath’s palaeognath phylogeny

(0.917–0.941), whereas the highest estimates were obtained

using Baker’s moa phylogeny combined with Phillips’ palaeog-

nath phylogeny (0.977–0.982). Using Bunce’s moa phylogeny

shows increasing phylogenetic dependence with decreasing

Dinornis body mass estimate (i.e. smaller estimates of Dinornis
body mass appear to be closer to that predicted by phylogeny

alone); however, l does not change with Dinornis body mass

using Baker’s moa phylogeny. Within one sex and phylogenetic

hypothesis, l also varied according to which Dinornis body

mass estimate was used, although the nature of the variation

depended upon which phylogeny was used. However, no

values of l for any analyses were significantly different from

one (0.05 , p , 0.10 in all cases). For SSD, no phylogenies

produced any shifts in l away from one (all values . 0.9999).

Root estimates of ‘ancestral’ palaeognath body mass are

8.91–18.20 kg for males and 10.47–19.95 kg for females,
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depending on phylogeny and Dinornis body size estimate.

These values are intermediate among the body masses of taxa

included in the analyses, as expected when the estimate is

derived directly from taxa in the phylogeny. Both species-

level phylogenetic hypotheses for moa (Baker/Bunce) predicted

fairly similar root estimates of ratite body mass; where the

palaeognath phylogeny was held constant, differences in root

mass estimate using these phylogenies ranged from 119 to

665 g. Altering the higher-order palaeognath phylogeny unsur-

prisingly produced more disparate estimates; when moa

phylogeny was held constant, differences in root mass estimate

ranged from 1.64 to 9.02 kg. The highest root body mass esti-

mates were predicted for hypotheses incorporating Phillips’

phylogeny, in which small-bodied tinamous are nested within

the larger-bodied ratites (figure 3b). Root estimates of palaeog-

nath body mass were always smaller for males than for females
(figure 3b). This difference in root estimates between the sexes

also meant that the root estimate of SSD was female-biased,

with the least female-biased estimates produced by Phillips’

phylogeny and the most female-biased estimates produced by

Haddrath’s phylogeny (figure 3c).

When we removed each genus from the phylogenies in

turn and recalculated l and root body mass estimates,

palaeognath taxa showed different patterns defined by

body mass and phylogenetic dependence (figure 4a,b). A

group of small- and large-bodied genera including Apteryx,

Eudromia, Tinamus, Pachyornis and Struthio have body

masses approximately in line with what is expected solely

on the basis of phylogeny, and removal of these taxa

caused reductions in l. Removal of both tinamou genera

simultaneously caused a large reduction in l of about 0.1

(figure 4a,b). A second group of typically larger-bodied
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genera including Casuarius, Dinornis, Dromaius, Emeus,

Euryapteryx and Rhea all have phylogenetically more atypical

body masses, and removal of these taxa caused increases in l.

In this group, Dinornis females were more atypical than males

and Emeus females were less atypical than males. Casuarius,
Dromaius and Rhea females and males had only a small

effect on l; in Euryapteryx, both sexes caused a large increase

in l of 0.05.

This procedure was also repeated for SSD (figure 5). Four

genera (Dromaius, Rhea, Struthio and Tinamus) exhibited SSD

lower than that estimated when all genera were included,

and three other genera (Casuarius, Dinornis and Eudromia)

exhibited SSD higher than this estimate. However, although

removal of Eudromia and Emeus caused very slight l shifts,

in no case did l depart significantly from one upon removal

of a genus from a phylogeny. Root estimates of SSD varied

slightly when most genera were omitted, but standard errors

around these estimates overlapped extensively for most

genera; only removal of taxa with male-biased SSD (Struthio
and Rhea) caused large changes in SSD root estimate (figure 5).
(b) Rensch’s Rule
Our phylogenetically controlled tests did not support

Rensch’s Rule in palaeognaths. In all tests, the 95% confi-

dence limits around the slope always included one, and the

95% confidence limits around the intercept always included

zero (table 2). This isometric pattern contrasts with the allo-

metric relationships expected under Rensch’s Rule. Rensch’s

Rule also predicts that male body mass contrasts should be

larger than female body mass contrasts where female-

biased SSD occurs, whereas the opposite should be true

where male-biased SSD occurs. This was not the case for

palaeognaths, in which male and female body mass contrasts

were often similar and showed no specific bias towards either
sex (figure 2). This similarity of contrasts between the sexes

was most pronounced when we used Phillips’ phylogeny.
4. Discussion
Our analyses of composite phylogenies find no support for the

existence of Rensch’s Rule in palaeognaths, and provide

important insights into patterns of male and female body

size evolution in moa and other species. Using a series of

different source phylogenies to examine the evolution of

sexual dimorphism, in the absence of independent critical

assessment of the relative robustness of each phylogeny, inevi-

tably leads to some variation in inference about evolutionary

patterns in this character state across the group. However,

despite this variation in source phylogenies and evolutionary

outputs, there is a strong consensus across our results that

all observed levels of SSD in all palaeognaths are extremely

close to what would be expected, given their body size and

phylogenetic position alone. The evolution of SSD in palae-

ognaths is, therefore, completely correlated with phylogeny,

with no genus out of the ordinary with respect to relative

size differences between males and females.

The extreme level of RSD observed in Dinornis can, there-

fore, be interpreted as predominantly an allometric scaling

effect associated with the overall increase in body size

shown by this moa lineage, presumably in response to inde-

pendent selective pressures and niche availability in New

Zealand terrestrial environments during the Cenozoic,

rather than a specific adaptation in itself. Body size evolution

in Dinornis was also associated with other substantial biologi-

cal changes, including marked acceleration in juvenile growth

rate relative to other moa taxa [41]. In comparison with other

moa, on the basis of both relative magnitude and phyloge-

netic dependence of body size, Dinornis is most similar to



Table 2. Slopes (b), intercepts (a), and upper/lower confidence limits for regression of female on male phylogenetic contrasts of body mass. (Three estimates
of Dinornis body mass used in all analyses. n ¼ 10 contrasts.)

Dinornis size
estimate

phylogenetic
hypothesis b

lower
95%

upper
95% a

lower
95%

upper
95%

Median Baker – Cooper 1.002 0.898 1.118 0.0050 20.0042 0.014

Baker – Haddrath 1.004 0.898 1.122 0.0056 20.0039 0.015

Baker – Phillips 1.025 0.932 1.128 0.0064 20.0030 0.016

Bunce – Cooper 1.016 0.920 1.121 0.0045 20.0062 0.015

Bunce – Haddrath 1.018 0.921 1.125 0.0052 20.0058 0.016

Bunce – Phillips 1.030 0.941 1.128 0.0062 20.0047 0.017

Minimum Baker – Cooper 0.989 0.891 1.099 0.0054 20.0031 0.014

Baker – Haddrath 0.992 0.892 1.031 0.0059 20.0028 0.015

Baker – Phillips 1.016 0.926 1.114 0.0066 20.0022 0.015

Bunce – Cooper 1.001 0.913 1.097 0.0048 20.0047 0.014

Bunce – Haddrath 1.002 0.913 1.101 0.0055 20.0044 0.015

Bunce – Phillips 1.018 0.935 1.108 0.0063 20.0035 0.016

Maximum Baker – Cooper 0.999 0.904 1.105 0.0053 20.0032 0.014

Baker – Haddrath 1.002 0.904 1.109 0.0059 20.0029 0.015

Baker – Phillips 1.022 0.936 1.116 0.0067 20.0020 0.015

Bunce – Cooper 1.012 0.928 1.103 0.0050 20.0045 0.015

Bunce – Haddrath 1.014 0.928 1.106 0.0057 20.0041 0.016

Bunce – Phillips 1.026 0.948 1.110 0.0066 20.0031 0.016
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Emeus; the most unusual moa genus instead appears to be

Euryapteryx, whose body size, while similar to predicted

ancestral body sizes, is appreciably small for its phylogenetic

position (figure 4).

However, there is also variation in relative phylogenetic

dependence of body size between different Dinornis sexes

and allopatric populations. Although observed levels of inter-

sexual variation in phylogenetic dependence are relatively

small in comparison with some other palaeognaths (figure 4),

we show that Dinornis females are phylogenetically more aty-

pical in body size than males. In contrast to male Dinornis,
female Dinornis body masses, therefore, evolved at least

slightly independently of phylogeny, indicating that there has

been some adaptation of female body size to ecological con-

ditions. Results from the most recent and densely sampled

moa species-level phylogeny [43] further suggest that larger

Dinornis body mass estimates are phylogenetically more atypi-

cal. These findings together indicate that Dinornis females have

undergone more evolutionary change than males, and that

smaller Dinornis females (the ‘novaezealandiae’ morph) are

closer to the expected female body mass value based on

phylogeny, whereas larger Dinornis females (the ‘giganteus’
morph) are associated with greater levels of adaptation. It is,

therefore, possible that whereas one factor may be responsible

for the origin of RSD in moa, another factor could have

maintained or modified it [8].

Darwin [2] believed that sexual selection on males was the

main driver of sexual dimorphism, whereas Wallace [9] con-

sidered that natural selection produced different female

phenotypes associated with effective nest defence in different

habitats. Selection on males for aerodynamic ability (for
display or attack) is suggested to have driven RSD evolution

in raptors and shorebirds, but this is unlikely in flightless

palaeognaths [28]. Conversely, female-based intrasexual com-

petition and dominance in intraspecific interactions (e.g.

selection for fecundity, offspring investment and/or defence

of breeding territory) have been invoked to explain RSD in

mammals and birds [1,7,28]. These hypotheses are consistent

with past selective pressures on New Zealand’s K-selected avi-

fauna, which evolved in the absence of mammalian predators;

many New Zealand birds are not only flightless and large-

bodied, but also have low reproductive rates, prolonged

immaturity and high investment in individual young [14,54].

Studies of moa cortical growth marks demonstrate that these

birds exaggerated the K-selected life-history strategy and

took up to a decade to reach skeletal maturity [41]. Intraspeci-

fic competition was, therefore, probably a major factor in moa

evolution, with selection for increased investment to produce

competitively fit offspring probably more intense among

females than males. Observed variation in female Dinornis
body masses may also represent variation in expression of

this probable adaptive response, as size variation is associated

with available nutritional content of vegetation [14,17]: females

were largest in low-altitude regions characterized by high-

productivity open forest-shrubland mosaics, and smallest in

lower-productivity subalpine zones and montane forests

where resource limitation may have constrained body size.

Examples of apparent sexual selection in nature are fre-

quently the source of scientific and popular interest, but

can remain critically untested within appropriate evolution-

ary frameworks. Our study not only helps to clarify

patterns of body size change in palaeognaths and the relative
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extent to which phylogeny versus selective processes have

driven body size evolution in this group, but also demon-

strates that the recently discovered extreme RSD in Dinornis
was in fact largely driven by positive allometric scaling

related to its huge body size. Although the giant moa was

in many other respects extremely ecologically and evol-

utionarily unusual, this level of sexual dimorphism is no
different from what we would expect based on wider

evolutionary patterns across ratites as a whole.

We thank Ed Braun, Rob Freckleton and Tamás Székely for discussion
and ideas. This research was supported by a NERC Postdoctoral
Research Fellowship (V.O.), and a NERC Postdoctoral Fellowship
and a Royal Society University Research Fellowship (S.T.T.).
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