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Abstract
Several recent methods have been proposed to obtain significant speed-ups in MRI image
reconstruction by leveraging the computational power of GPUs. Previously, we implemented a
GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition
Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for
reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve
IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate
the computation of various data structures needed by the previous routine. Further, we enhance the
routine with capabilities for off-resonance correction and multi-sensor parallel imaging
reconstruction. Through implementation of optimized gridding into our iterative reconstruction
scheme, speed-ups of more than a factor of 200 are provided in the improved GPU
implementation compared to the previous accelerated GPU code.
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1. Introduction
Magnetic resonance imaging (MRI) is a unique clinical and research imaging technology
that enables users to visualize different anatomical, metabolic, and physiological properties
of the human body. For example, through adjustments in acquisition parameters, MRI scans
can give information about the proton density and local chemical environment of various
tissues, visualize flowing blood, or even probe micro scale restrictions to water diffusion.
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MRI image reconstruction consists of solving a large linear system relating the measured
data points to the object being imaged, using a system matrix F that models the MRI
physics, the data sampling trajectory in the data space or k-space, and other physical effects
such as receiver coil sensitivities and inhomogeneity in the magnetic field. The image
reconstruction seeks to find the best fit image, f, that fits the measured data, y, as y = Ff. For
usual-sized MRI imaging problems, F is too large to store, being of size M ×N3 for a 3D
image with N voxels (i.e. 256) in each dimension and with M data samples in k-space (i.e.
approximately the same as N3). Since F is composed of complex floating point entries, its
size can exceed tens of Petabytes. Instead of computing F and finding its inverse, several
other methods have been developed to solve the image reconstruction problem in MRI. A
common approach for data acquired along a regular grid in k-space, i.e. Cartesian sampling,
implements F as a Fast Fourier Transform (FFT). Thus, direct image reconstruction can be
performed through an inverse Fourier transform if no other physical experiment effects are
needed (such as receiver coil sensitivities [1], magnetic field inhomogeneity [2], or
incorporation of image regularization through a priori information from other scans or an
image roughness penalty [3]). Often, other physical effects or image regularization must be
included to achieve reasonable image acquisition time and sufficient image quality.
Incorporation of these other physical effects may inhibit the application of the FFT even for
Cartesian-sampled data. In these cases, the F matrix is often inverted using iterative
methods. We will refer to this inverse problem approach as iterative image reconstruction,
see [4] for a recent review.

Non-Cartesian data acquisition trajectories have been developed to provide more time-
efficient sampling of k-space. These non-Cartesian trajectories can make more optimal use
of the system gradient performance and allow for a wider range of tradeoffs in total imaging
experiment time versus potential image distortions. When data are sampled on a non-
uniform grid, such as with spiral sampling trajectories, the system matrix cannot be
approximated by a simple FFT, although, fast algorithms have been developed to leverage
the FFT in performing the evaluation. Additionally, the data acquisition may have long
readouts that require magnetic field inhomogeneity corrections [3] and several receiver coils
may have been used in the acquisition to compensate for under sampling k-space,
necessitating parallel imaging reconstruction [1, 5]. In these cases, application of the
advanced MRI image acquisition technique is impeded by the computational requirements
of the image reconstruction problem. Several algorithms have been proposed to address this
problem, including algorithms based on gridding [5, 6] and the non-uniform FFT with time-
segmented interpolation to compensate for field inhomogeneities [3]. These algorithms have
been successful in keeping reconstruction times for 2D high resolution data to tolerable
levels. However, for high spatial resolution 3D acquisitions, there is a strong need for
massively parallel hardware to perform the reconstructions in clinically-feasible times, on
the order of minutes, so that we can obtain information about quality of the image while the
patient is still in the MRI scanner.

In our previous work, we implemented a direct evaluation or brute force implementation of
the non-Cartesian sampling system matrix with magnetic field inhomogeneity terms on
graphics processor units (GPUs) [7, 8]. Instead of storing the large system matrix, its entries
are computed on demand for performing the required matrix-vector multiplications. This
implementation leveraged the massively parallel hardware of GPUs to perform matrix-
vector multiplication with the full system matrix, which is similar to a matrix version of the
discrete Fourier transform. If there are M sample locations and N3 image locations in a 3D
object, our original implementation had a computational complexity of MN3. In order to
leverage the computational advantages of the FFT for non-Cartesian data, an algorithm
called gridding can be used to approximate the application of the MRI system [6]. Gridding
can be used in both direct and iterative reconstruction approaches. In a direct reconstruction
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using gridding, data is compensated for nonuniform density, interpolated onto a uniform
grid using a fixed kernel interpolator, then the FFT is used to get the Fourier transform of
the data, followed by deapodization, which removes the effect of the fixed-kernel
interpolator shape. Gridding provides an approximation of the discrete Fourier transform,
which has been shown to be very accurate with proper choice of interpolation and
oversampling factors [6, 9]. In addition, the computational complexity of the problem is
reduced to MK3+(V3N3) log(V3N3), where K is the interpolation kernel width and V is the
oversampling factor as data is usually gridded onto a denser grid than the original problem
size to reduce interpolation errors [6]. In this work, we implement gridding on the GPU and
incorporate it into our previous iterative image reconstruction scheme to evaluate the
potential for speeding up reconstructions beyond our direct evaluation of the matrix products
for F on the GPU.

There has been previous work on implementing gridding on GPU’s to accelerate direct
reconstruction approaches, i.e. reconstructions that approximate the inverse using the
inverse Fourier transform in a gridding scheme with a single, non-iterative calculation.
Schiwietz et al implemented gridding for radial trajectories, allowing for easy handling of
sample locations that were contributed to by adjacent rungs of the radial acquisition [10].
Sorensen et al. [11] described a fine-grained gridding algorithm, with an output-driven work
assignment approach to avoid potentially expensive synchronization. Gregerson [12]
implemented an improved version of Sorensen’s gridding algorithm with a coarse-grained
thread parallelism for a better utilization of the vector cores on a GPU. This method works
well when a sample’s neighboring sample locations can be easily computed analytically for
a structured sampling pattern. This is not generally the case for non-Cartesian sampling
trajectories and the gridding algorithm that we will use will handle general non-Cartesian
trajectories. To handle general non-Cartesian trajectories with GPU-based gridding, Obeid et
al. [13] developed a novel compact binning algorithm to reorganize irregular input data onto
a constant number of compact bins with Cartesian coordinates. Gridding computation was
partitioned into several kernels and partly offloaded to the CPU.

These direct reconstruction implementations, based on approximating the inverse as the
inverse Fourier transform, are generally designed for specific imaging contexts and can be
hard to generalize for the variety of imaging physics that are encountered in modern imaging
experiments. There are also many cases where simple direct reconstructions do not yield
acceptable results because the inverse problem is complicated enough that the inverse
problem solution is not well-approximated by applying simple Fourier operations to the
measured data. Inverse problem approaches, which find the solution based on an accurate
representation of the data acquisition operator, have the benefit that they are very flexible
and can be applied across a large range of imaging scenarios with various combinations of
coil sensitivities, magnetic field inhomogeneity, and complicated constraints [4]. In these
cases, it’s generally necessary to perform some kind of matrix inversion. However, because
the matrices involved are very large, direct matrix inversion is not feasible, and it is more
practical to use iterative methods. Our iterative method will use gridding to accelerate the
required precomputations. The resulting fast iterative image reconstruction will include the
ability to incorporate other physical effects or prior information, such as: 1. the magnetic
field distribution, 2. parallel imaging with multi-coil acquisitions, and 3. the incorporation of
a priori information about the imaging object, such as is achieved through spatial
regularization.

Before we describe our algorithm, we note that several other groups have presented GPU
implementations of the parallel imaging (PI) reconstructions and various regularization
approaches with clinically-feasible runtimes. Roujol et al. [14] proposed a GPU
parallelization of temporal sensitivity encoding (TSENSE) for high temporal resolution

Gai et al. Page 3

J Parallel Distrib Comput. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interventional imaging. Sorensen et al. [15] presented a fast iterative SENSE implementation
which performs 2D gridding on GPUs. Nam et al. [16] implemented an iterative 3D
compressed sensing (CS) reconstruction method for 3D radial trajectories on a GPU, in
which both the forward and backward operator are evaluated through a gridding-based
approximation. Uecker [17] described a GPU implementation of a non-linear approach to
estimate the coil sensitivity maps, which are needed during PI image reconstruction. Knoll et
al. [18, 19] demonstrated a TV regularization for MR artifact elimination on GPU using
radial sampling trajectories. Murphy et al. [20] described the GPU implementation of an
autocalibrating reconstruction method, called ℓ1-SPIRiT. It solves a constrained non-linear
optimization over the image domain and its implementation on GPU leverages the data
parallelism among the multiple CPUs and GPUs on a single node. ℓ1-SPIRiT operates on
data that is initially transformed into a Cartesian space to simplify further steps in the
reconstruction at the expense of potential interpolation errors initially. ℓ1-SPIRiT provides
an approximation for non-Cartesian data and implements compressed sensing features to
achieve high quality image reconstructions. Our algorithm differs from ℓ1-SPIRiT in several
ways. First we operate in the non-Cartesian domain throughout the reconstruction, whereas
ℓ1-SPIRiT uses an initial interpolation step. Second, our algorithm uses SENSE parallel
imaging compared to a GRAPPA framework in ℓ1-SPIRiT. Finally, we incorporate magnetic
field inhomogeneity correction and general regularizing penalty functions.

In this work, we further develop the Illinois Massively Parallel Acquisition Toolkit for
Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) a software
tool to incorporate a variety of reconstruction methods common to non-Cartesian MRI on
GPUs to enable clinically-feasible reconstruction times [21]. In our previous work, an
iterative Toeplitz strategy [22, 23] was used on the GPU [7], with a direct, brute-force
evaluation to calculate the necessary matrix-vector multiplications with system matrix F. In
this work, we speed up the reconstructions through incorporation of an optimized GPU
gridding approach [13] to speed computations associated with the Toeplitz strategy. We
further adapt the strategy to include parallel imaging and magnetic field inhomogeneity-
correction as in [23]. The resulting speed-ups enable clinically-feasible reconstructions of
3D non-Cartesian arbitrary sampling trajectory, parallel imaging, magnetic field correction,
and incorporation of a priori constraints.

The remainder of the paper is structured as follows. Section 2 outlines the derivations of the
Toeplitz reconstruction strategy and its GPU parallelization. Section 3 discusses an output-
driven, input binning based approach to perform gridding using GPU. The achieved
acceleration over classic gridding implementations on CPU is up to 26.3x. Section 4
presents the comparison of the performances of the full reconstruction utility on an example
3D diffusion weighted MRI data set. The paper is concluded in Section 5 with a discussion
of several aspects of future work.

2. The Toeplitz strategy with gridding acceleration
The ideal MR signal equation relates the two- (or three-) dimensional data in k-space to the
image through a Fourier transform. In reality, tissues possess a property called magnetic
susceptibility which alters the effective magnetic field inside the brain. For this reason, the
IMPATIENT solver adopts a more accurate model of the complex baseband signal during an
MRI experiment, following the setup in [3]:

(1)

where dm is the received data at time tm, f(x) is a continuous function of the object’s
transverse magnetization at location x; s(x) is the spatial sensitivity of the receiver coil; ω(x)
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is the field inhomogeneity present at x; km is the k-space sampling location at sampling time
tm, with m indicating the index of the sample point for m = 1,…,M, with M samples; and
ε(tm) is the noise term.

2.1. Iterative Image Reconstruction Formulation
We assume a discrete image model to assist in the numerical implementation. The problem
is simplified by parameterizing the object f(x) using a linear combination of N basis
functions:

(2)

Therefore, MR reconstruction becomes that of estimating the parameter vector f = (f1,…, fN)
of expansion coefficients. For simplicity, IMPATIENT sets the basis function φ(x) to be the
Dirac delta functions (i.e., φ(x) = δ(x)). Inserting Eq. (2) into Eq. (1), we can derive the
forward operator as:

(3)

where F models the forward operator for a single coil with uniform sensitivity taking into
account field inhomogeneity, sn is a scalar sensitivity value measured at the nth voxel
location, i.e. xn, and S is the diagonal sensitivity matrix with sn on the diagonal [1].

Similarly, the adjoint operator for each coil is

(4)

where FH denotes the adjoint operator for a uniform sensitivity coil with field
inhomogeneity correction (the superscript H denotes complex conjugate transpose) and 
denotes the complex conjugate of sn.

Parallel imaging is performed by placing an array of receiver coils around the object to be
imaged, with each receiver coil lending spatially distinct reception profiles to the acquired
data sets [1, 5]. Eq. (1) shows that the signal equation includes coil sensitivity information.
The data from multiple coils can be combined together and each coil has its own sensitivity
incorporated into a larger system of equations. Letting c = 1,…,C indicate which coil of C
coils that are being used in the experiment, then Sc(xn) is the complex spatial sensitivity
profile of coil c at spatial location xn. With these coil sensitivity maps, the parallel imaging
model in matrix form can be represented as follows [1, 5]:

(5)
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where yc is the signal vector, d, received from coil c and ỹ is formed by stacking yc’s into a
single column; Sc is the diagonal matrix holding the complex spatial sensitivity profiles on
the diagonal entries from the cth coil; A denotes the parallel imaging augmented system
matrix.

To find the solution of f from Eq. (5), IMPATIENT MRI solves a penalized least squares
problem of the following form:

(6)

where f is the vector of image voxel coefficients to be reconstructed with f̂ the estimated
best-fit image, A is the full system matrix from Eq. 5, ỹ is the vector of measured k-space
data, W is an optional diagonal weighting matrix (e.g., to incorporate anatomical structures
extracted from some reference images [24]), R is the binary image mask indicating the
support of the object, D is a sparse matrix for incorporating regularization penalties based on
prior information such as spatial derivatives (described in Section 2.5), and λ is a
regularization parameter. The first term in the above cost function measures the closeness
between the expected signal from the estimated MR image and the acquired k-space data.
The second term introduces additional prior information to constrain and regularize the
solution.

Minimizing Eq. (6) with respect to f gives the following linear system:

(7)

Direct matrix inversion of the resulting matrix in front of f̂ would require a large amount of
memory, even for a small sized problem. Therefore, the iterative conjugate gradient (CG)
algorithm [25] is preferable for solving the linear equations in Eq. (7). Starting from an
initial guess, the CG algorithm searches for the image estimate f iteratively to minimize the
cost function Eq. (6). The key bottlenecks in the overall computational complexity of the
CG method are two dense matrix-vector multiplication operations. One of the operations
requires an evaluation of matrix-vector multiplication using AHỹ. The other one requires an
evaluation of two consecutive matrix-vector multiplications of the form AHAf. The
evaluation of AHỹ only happens once per image, while AHAf is evaluated repeatedly in the
iterations. DHWHWD is usually not a significant factor for computational performance
because matrix D and W often have sparse matrix structures that permit efficient
multiplication by exploiting the properties of addition and multiplication with zeros.
Therefore AHAf and AHỹ are the two most expensive computations in the advanced
reconstruction algorithm.

CG is used to solve the optimal linear system in Eq. (7). Most of the linear algebra
operations involved in such a CG solver (dot product, summation reduction, vector addition)
are memory bounded. Thus, the main performance bottleneck lays in the calculation of AHỹ
and AHAf. In addition, both AHỹ and AHAf can be computed as a sum of C terms, with C
denoting the number of coils. In the case of AHAf, for instance, each such term involves two
point-wise vector multiplications (using the sensitivity map values for the coil) and one
evaluation of FHF in between. Again, because point-wise vector multiplications are memory
bounded operations, FHF becomes the main performance bottleneck of AHAf. Similar
reasoning shows that FHyc is the main bottleneck of AHỹ. This paper focuses on
accelerating the calculation of FHyc and FHF so as to accelerate the entire 3D non-Cartesian
high-resolution MRI reconstruction approach to clinically-feasible times.
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2.2. Field Inhomogeneity Correction via Time Segmentation
As discussed in the previous section, the dominant computation in each iteration of the CG
algorithm is computing FHF and FHyc. Computing FHyc corresponds to evaluating Eq. (4)
with the input data from coil c. For Cartesian k-space trajectories, one can evaluate Eq. (4)
quickly via the FFT if the field inhomogeneity is ignored. However, for non-Cartesian k-
space trajectories (spirals, etc.) direct evaluation of Eq. (4) is very time consuming. When
field inhomogeneity is ignored, an efficient algorithm, such as gridding, can be used to
rapidly and accurately evaluate the discrete signal in Eq. (4) even for non-Cartesian
trajectories. However, the gridding method is not directly applicable when the field
inhomogeneity is included because Eq. (1) is not a Fourier transform integral. We
circumvent this problem by approximating FHyc in Eq. (4) by a time segmented version, as
in [3, 26]. This allows the use of the gridding technique to compute Eq. (4) rapidly and
accurately.

Similarly, it has been previously shown in [22] that in the absence of the field
inhomogeneity, matrix FHF has a Toeplitz structure that allows for efficient computation of
matrix multiplication via convolution and the FFT. However, in the presence of the field
inhomogeneity term, the matrix FHF is not Toeplitz anymore. The problematic part is also
the non-Fourier exponential terms introduced to correct the field inhomogeneity. In the case
of computing FHF, applying the time segmentation method again allows an efficient, yet
accurate, approximations by recovering the Toeplitz structure, as demonstrated in [23].

We follow the approach outlined in [23]. Eq. (4) has non-Fourier effects due to the field
inhomogeneity term e−iω(xn)tm. One way to approach this problem is through time
segmentation, using small time segments over which t is approximately constant [26]. This
allows us to approximate the term e−iω(xn)tm as a linear combination of two products that
separately depend on xn and tm:

(8)

where the acquisition window is partitioned into L time segments of width τ with L + 1
break points. t[0] is the starting time of the acquisition. The parameter L is a parameter that
the user is free to choose, with more time segments yielding better accuracy. An
approximation at intermediate time points are evaluated by interpolating between these
break points. For the interpolation across time segments, we use al(tm) as the Hanning
window interpolator for the lth time segment at time tm. Other window options for the
interpolator includes the min-max interpolators [3].

Combining Eq. (8) and Eq. (4), the adjoint operator can be approximated as follows:

(9)

The key property of Eq. (9) is that the inner Fourier transform (the weighted sum of the
signal dm · al(tm) with the coefficients eiωn(τl+t[0])) can be approximated efficiently using a
gridding method.

The mathematical expression for AHAf can be similarly derived in Eq. (10) by applying the
time segmentation technique to approximate the “joint” field inhomogeneity term, which
depends now on two locations in the image as ei[ω(xn)−ω(xn′)]tm.
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(10)

Eq. (10) shows that AHAf is a weighted sum of convolution products between the signal fn ·
e−iωn(τl+t[0]) and the convolution data structure Ql(xn), weighted by the coefficients
eiωn(τl+t[0]). The convolution data structure Ql is defined as follows:

(11)

In Eq. (10), the inner convolution can be calculated efficiently using the FFT algorithm.
Hence, the task of computing AHAf is divided into two phases, with the first phase
computing Ql and the second phase computing AHAf using Ql via FFT. For a fixed scan
trajectory, Ql needs only to be computed once as it depends only on the k-space trajectory
and the image size.

Algorithm 1 shows the pseudo-code for computing AHAf given the input image f and Ql.
The implementation starts with modulating the input image f with the field inhomogeneity
term and computing the Fourier transform Qf [l] of a Ql matrix. Note that because only the
Fourier transform of Ql is needed for the subsequent calculation, it is recommended to
release the storage space allocated to Q[l] after its Fourier transform Qf [l] is calculated.
Then, the inverse Fourier transform is taken on the point-wise product between the two
vectors F and Qf [l]. Finally, the output vector AHA is computed in a cumulative fashion.
The symbol ⊙ stands for the point-wise product of two vectors, which produces another
vector as the output with each element being the product of the associated elements of the
two input vectors.

2.3. Computing Ql and FHy: The gridding approach
The equations for computing FHy and Ql are quite similar. However, Ql requires
considerably more computation time and memory because it is two-fold bigger in size in
each dimension. In our previous work, Ql and FHy were computed directly based on their
mathematical definitions [7]. In this paper, we utilize the more computationally efficient but
less accurate approximation of gridding.

Eq. (11) can be viewed as a Fourier transform of the signal al(tm). As a result, gridding
techniques can be used to compute this discrete Fourier transform efficiently. In our
gridding code, each data point in our time-segmented interpolator is convolved with a
Kaiser-Bessel window [6], then resampled on a Cartesian grid preparatory to an FFT. The
Kaiser-Bessel function is used to determine the weight of the contribution of a sample point
onto a grid point, based on the distance between the two. A cutoff distance (i.e., kernel
width) is imposed on the Kaiser-Bessel kernel beyond which the contribution is considered
to be insignificant. After the Fourier transform, a process called deapodization is used to
remove the effect of the chosen interpolation kernel from the resulting transform. Our
approach toward efficient gridding on GPU will be described in detail in Section 3.

The main motivation for substituting the direct evaluation of Eq. 11 with gridding is
significant reduction in computational complexity. As mentioned previously, using gridding
only takes MK3 +V3N3 log(V3N3) arithmetical operations, while the direct evaluation takes
MN3 operations to compute the same result. For a hypothetical example with 32,768 k-space
points and a 256 × 256 × 128 image, the gridding reconstruction reduces computation time
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by nearly 3 orders of magnitude. Gridding can be further sped up by non-integer
oversampling factors V ∈ [1.0,2.0) with acceptable error levels compared to noise in the data
[9].

Although we have not experienced stability problems in our application, we note that our
implementation stresses speed over numerical accuracy and stability. A less aggressive
approach (e.g., using LSQR [27], or brute force, or no time segmentation) might be
appropriate in certain situations where the numerical accuracy and stability are bottlenecks.

2.4. Implementation of the conjugate gradient linear solver
The reconstructed image is found by iteratively solving Eq. (7) by using a conjugate gradient
linear solver. The solver terminates when the number of iterations exceeds a threshold.
During each iteration, the solver performs a large FFT and inverse FFT, several BLAS and
sparse BLAS operations (including multiplication of vectors and sparse matrices, as well as
addition, scaling, and scalar multiplication of vectors), and several other computations (such
as summation reduction, shifting, and sampling). The linear solver uses NVIDIAs CUDA
CUFFT Library [28] for the FFT and inverse FFT operations, and implements the other
operations as customized code. CUDA’s cufft-Complex structure type is used to represent
complex-valued objects.

2.5. Incorporation of a priori information in the image reconstruction
The IMPATIENT package allows the incorporation of a priori information and constraints
into image reconstruction. In addition to prior information that can be incorporated using the
weighted-least squares regularization penalty of Eq. (6), it’s also possible to use Eq. (6)
within the multiplicative half-quadratic optimization framework [29, 30, 31] to solve more
general cost functions of the form

(12)

where Φ(f) is an appropriate regularization function (e.g., the popular total variation [32] and
ℓ1 norm penalties, or more complicated penalties that are even more tailored to expected
image characteristics (e.g. [33, 34]). Specifically, multiplicative half-quadratic approaches
solve Eq. (12) for non-quadratic regularization functions by iteratively solving Eq. (6) while
updating the diagonal weight matrix W based on the current estimate of f.

The IMPATIENT package provides two alternative ways to implement the regularization
function: 1) Using explicit finite difference calculations through template shift-and-subtract
operations. 2) Using sparse matrix vector multiplication to evaluate DHWHWD operating on
a given vector. The first approach is limited to finite-difference based regularization that
imposes spatial smoothness on the image, but requires no effort in managing sparse
matrices. Although the second approach requires extra effort to optimize sparse matrix
storage and related computations on the GPU, it enables a more general form of
regularization. The sparse matrices used for regularization penalties are stored in
compressed row format [35, 36] and are able to be tailored by the user to the penalty that fits
the prior information that they wish to enforce.

2.6. Overall architecture of the IMPATIENT algorithm
Figure 1 shows a summary of the reconstruction architecture of the Toeplitz-based strategy
in IMPATIENT. The Toeplitz reconstruction algorithm in IMPATIENT consists of three
steps: computing the data structure Ql, computing the vector FHy, and solving the linear
system for the image iteratively via a conjugate gradient linear solver. The two selector
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switches select between direct evaluation (previous implementation) and gridding (current
work) for the computation of Ql and FHy.

3. Gridding on GPU
Although Toeplitz reconstruction was previously implemented on GPUs [7], the use of the
direct evaluation approach for calculation of Ql and FHy on GPUs has been impractical for
3D high-resolution data. Despite significant speed-ups over CPU implementations, the direct
matrix-vector evaluation approach cannot provide the needed reconstruction speed for such
large problems. Alternatively, gridding provides an approximation of these computationally
costly operations. Therefore, the remainder of this section describes the gridding algorithms
for computing FHy and Ql efficiently on the GPU.

Implementing a gridding algorithm on a GPU can be challenging. As demonstrated in Figure
2, CPU gridding algorithms are traditionally implemented in an input driven approach,
where every sample point contributes to all of the grid points within the neighborhood
defined by the gridding kernel width, which results in an O(M) algorithm instead of an
O(N3M) one, where M is the number of non-Cartesian input sample points and N3 is the
number of image locations, which is proportional to the number of Cartesian grid output
elements. Mapping the input-driven approach naively onto a GPU’s vector architecture, each
k-space point is assigned to a different parallel processing unit. If all the k-space points are
processed in parallel, inputs attempting to update the same output element may suffer from
data races. This results in multiple processing elements potentially writing to the same
output grid point simultaneously, which will lead to incorrect results in the absence of time
consuming synchronization. The three input elements highlighted in Figure 2 (left) may
suffer from a data race if they attempt to update their shared output simultaneously.
However, ensuring this synchronization is costly and can deteriorate the computing
performance, especially when several threads try to simultaneously update the same
element, since atomic operations causes threads’ updates to be serialized. Several previous
methods have been published which implement gridding on the GPU, including [10, 11, 12].
They rely either on atomic operations to handle data races or particular data acquisition
trajectory structures to allow for straightforward combination of multiple points gridded to
the same location, such as for radial trajectories in [10] or for radial and spiral with a pre-
processing distribution plan in [11]. In contrast to these methods, and required for our target
application, we develop here a gridding algorithm that handles any non-Cartesian 3D
trajectory.

The alternative approach to the commonly used input-driven algorithm is an output-driven
algorithm, where every output is computed by a single processing thread and all the
processing elements share the input elements in a read-only manner. By letting each thread
compute exclusively the value of an output grid point, data races are avoided while
calculating the contributions from all the neighboring input k-space sample points. By
privatizing the output among the threads, multiple output may end up reading the same input
elements. Since read accesses do not modify the input elements’ values, no synchronization
is needed. However, in arbitrary 3D k-space sampling patterns, the sample point locations
cannot simply be inferred nor can neighboring sample points be calculated analytically.
Every output element must check each of the M sample points to determine which fall
within its cutoff before computing their contribution. The result is an O(MN3) algorithm,
despite the amount of useful computation being only O(N3).

The GPU-accelerated gridding algorithm in IMPATIENT is adapted from the work of Obeid
et al. [13]. It is an optimized, output-driven algorithm, where every output pixel is computed
by a single thread and the input k-space data is shared among all the threads. Input binning
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is used to ensure that the output-driven gridding algorithm runs in the same O(M) time as the
traditional input-driven approach does on the CPU. This is achieved by sorting the k-space
points into bins with nonuniform capacity and regular k-space coordinates. Overlapping
computations on CPU and GPU is used to further improve the load imbalance caused by
varying bin sizes. A bin is a container corresponding to a sub-region of the k-space
containing all of the input points that fall within this space. These containers have known
characteristics, such as the size of the sub-regions they cover and their element capacity, and
this makes them easier to access than individual input elements. Easy access to input
elements is enabled by placing them within the bins. Instead of each output element having
to traverse the array of all the input elements, it only needs to access the bins that fall within
its kernel width to get to the neighboring input elements. Figure 2 (right) depicts the
execution of the output-driven approach with binning. Note that some elements that fall
within a neighboring bin may not themselves be neighbors of the output element, so it is still
necessary to calculate their distance from the output before computing their contribution. In
fact binning cannot completely prevent an output from reading input elements that are
outside of its kernel width, but it can reduce the number of these occurrences significantly.

3.1. Compact binning based gridding on GPU
One simple way to make all the bins easily accessible is to make them all identical (equal in
capacity). This is referred to as regular binning in Figure 3. This bin configuration provides
ease of access to the bin, and better control over coalescing and alignment of memory
accesses. However, in a non-Cartesian acquisition, the k-space sampling density can vary
substantially from region-to-region in k-space, such as in spiral trajectories where the
sample density is much higher in the center of the trajectory than it is on the outside. To
maintain a uniform size for all the bins, the incurred large memory requirement from
padding renders the regular binning infeasible.

In this situation, compact binning is necessary to eliminate the need for padding, see
compact binning in Figure 3. The main idea behind compact binning is to allow each bin to
have its own bin depth regardless of all the other bins. As a result, the overhead of memory
padding is eliminated, and the size of the bin data structure becomes only as large as the
number of input elements. The variable bin depth and elimination of padding come at the
expense of more complicated access methods to these bins. Since the size of each bin is
independent of all the other bins, accessing a bin can no longer be computed as a function of
the bin index and the bin capacity. Therefore, additional overhead is incurred in trying to
determine the starting offset of each bin. The added overhead stems from the need to pre-
compute the starting index of every bin and store it in an array which will then be used as a
look-up table for accessing the bins during the gridding.

The compact binning algorithm implemented as part of our GPU-accelerated gridding
algorithm consists of four steps: (1) Determine the size of each input bin. (2) Determine the
starting index of every bin. (3) Binning the input k-space sample points. (4) Perform the
gridding operation by convolving the input points in the bins with the Kaiser-Bessel kernel.

Step 1—The size of each input bin calculated in this step will be used to determine the
starting index of each bin. The basic idea is to determine, for each input point, the bin index
it belongs to and to count the total number of input elements that are all put in the same bin.
Determining the bin sizes can be done either on the CPU sequentially or on the GPU in
parallel. In fact, IMPATIENT implements both versions and uses the CUDA NO SM 11
ATOMIC INTRINSICS macro to branch between the two based on the GPU version. The
sequential CPU version is necessary for GPUs with compute capability 1.0, in which atomic
updates of global memory are not supported. The bin size calculation starts with a zero-

Gai et al. Page 11

J Parallel Distrib Comput. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



initialized integer array of a size equal to the number of bins, and as each k-space point is
visited and its bin index determined, the integer corresponding to that bin is incremented by
1. When performed in parallel on GPU, generating the integer array is simply done using
atomic updates into the array.

Step 2—The operation that determines the start of each bin is called an exclusive prefix
sum [37]. Since each entry in the bin size array (from Step 1) corresponds to the size of a
bin, computing the starting offset of a bin corresponds to the sum of the sizes of all the bins
that precede it. The prefix sum can be explained as follows. Let p be an index of some
element in an array, the exclusive parallel prefix operation computes for each i, except i = 0,
the sum of all the elements from index 0 to index i − 1. Our GPU implementation of the
parallel prefix sum is a variant of the work by Mark Harris in GPU Gems 3 [38], with a few
optimizations applied to achieve more efficient memory usage.

Step 3—Using the starting index of every bin recorded in Step 2, Step 3 places each input
element in its correct bin. Similar to Step 1 and 2, this step is also implemented in two ways
(namely, both sequentially and in parallel) to accommodate all GPU series. In order to
perform binning, another zero-initialized integer array of offsets into each bin is needed to
determine the offset within the bin at which to place a given input element. The offset array
is important because multiple input points may have the same bin index and we do not want
to put them all in the same location in the bin. For each input element, we determine once
again the bin it belongs to, place it at the current offset within the bin, then increment the
offset. If performed in parallel, binning can be achieved by atomically incrementing the
offset counter, and the effects of this atomicity are not too severe, since the only contention
is between elements trying to update the same bin, and all other bins can be populated in
parallel.

Step 4—In order to perform the actual parallel gridding on GPU, the output grid is first
divided into tiles, where each tile is a subset of spatially local output grid points. Each tile is
assigned to a thread block where every thread computes exclusively the result of one or
more output elements from that subset. The spatial locality of the output in a tile is important
to maximize sharing of input data among threads within the block. Algorithm 2 shows the
pseudo code for the gridding computation. sharedLocalBin is an array in shared memory
that is accessible by all the threads within a block. Each thread is shown to compute only
one output element and compute that output’s index based on the 2D blockIdx and 3D
threadIdx. Since every thread computes an output element exclusively, the result can be
accumulated on-chip in a local register.

Every output element is computed by a single thread exclusively, and that thread can
compute the value of that element locally (line 2). Every block iterates over all the bins that
its output tile intersects: zLo to zHi, yLo and yHi, and xLo to xHi are the 3D bounds of the
region intersected by a given tile. for each bin that is visited, all of its elements are loaded
cooperatively into shared memory by all the threads in the block. Note that a bin is visited if
at least one of the outputs within the block’s tile intersects that bin; however, that bin may
fall outside the kernel width of other outputs in the tile. That is why it is still necessary to
check whether a given input point is within the kernel width of the output point before
computing its contribution to that output (Line 15). Once all the bins and all the elements
within them have been inspected, and their contributions added, each thread writes its
privately computed output to the global array that is the final result. binOffsetArray in line 9
and 10 stores the starting offsets of the bins generated in Step 2 when performing the input
binning and is used to determine how many elements are in a given bin.
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Two comments about the efficient use of global and shared memory are important for our
implementation. The first important implementation detail is that, instead of accessing each
bin separately as shown in Algorithm 2, an entire range of contiguous bins is accessed
simultaneously in the actual code. More specifically, for any given z and y bin coordinates,
bins xL through xH, which occupy consecutive memory locations, can all be loaded
simultaneously since compact bins do not contain any padding elements; all the elements
between the start of xL and xH are in fact useful to the computation and all need to be
loaded into on chip memory. For that reason, rather than simply reading the start of each bin
and the one following it to determine the range of a single bin in x, we can read the start and
end indices of the entire range in x once, and load all the elements within that range into on
chip memory. The benefits of this optimization are three-fold. First, the number of accesses
to the bin offset array is reduced from two accesses per bin to two accesses amortized over
the number of bins within the range. Second, the access into the bins is more efficient as
memory bursts are better utilized by not breaking bins’ bounds. Finally, by accessing entire
ranges rather than individual bins, the loop for the x dimension is removed, thereby reducing
the overall number of loops within the kernel.

Another comment concerns the optimal data layout in global memory. One of the potential
drawbacks of compact binning is the resulting misalignment of bins in memory. To fix the
misalignment, the actual implementation lays out the input elements in the form of arrays of
float vector types (float2) since the effect of misalignment on float2 arrays is less severe
than on single float arrays. This approach involves a reorganization of the bin data structures
from array of structures to structure of arrays. Sung et al. discuss the benefits of this
transformation in their work [39]; however, unlike the strided access pattern they discuss, in
our case, all the elements within the structures are of the float type, we can have every
thread load a single float element from within the structure to shared memory, thus
maintaining a coalesced access since the stride of the access is one. Since the accesses into
the array of structures are already coalesced, laying out the data in a structure of array
format is not expected to significantly impact the performance. However, if we laid out the
data in a structure of short vector arrays, we would expect to see better performance for
misaligned accesses.

Finally, to improve load balance, the gridding task is partitioned evenly between the GPU
and CPU. A bin depth is determined that achieves the optimal balance between CPU and
GPU execution, and all of the elements that exceed this bin depth are offloaded to the CPU
when performing binning. Since kernel execution on the GPU is asynchronous to the CPU,
the optimal bin depth is defined as that which results in equal execution time on the GPU
and CPU. Figure 3 compares regular binning, compact binning and the execution model for
the partitioned compact bins.

4. Experimental results and discussions
This work uses the NVIDIA Tesla M2070 GPU as the hardware target for its advanced MRI
reconstruction study. The Tesla M2070 is an example of a Fermi based graphics card, which
consists of 448 CUDA cores, with groups of 32 CUDA cores being organized into 14
Stream Multiprocessors (SM). Running at 1.15 GHz, the Tesla M2050 GPU coprocessor is
rated at 1288 GFLOPS of peak theoretical performance (single precision).

4.1. Diffusion Weighted Imaging as an Enabled Application
High resolution 3D diffusion weighted imaging (DWI) is a technique that requires
significant computational power in order to reconstruct images. In addition to large image
sizes, high resolution images also typically are acquired using multiple receiver coils,
requiring parallel imaging, and using long readouts, making field inhomogeneity correction
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desirable. Additionally, multi-shot diffusion imaging is subject to errors from subject motion
during diffusion encoding. These motion induced phase errors result in random shifts of the
k-space trajectories and random offset phase in the data [40, 41]. Correcting for these errors
results in k-space trajectories that are shifted for each shot and are unique to each
acquisition. A stack-of-spirals 3D acquisition would normally allow for separate FFT in the
slice direction prior to 2D processing of each slice. However, with the motion-induced phase
errors in diffusion imaging, each shot of the stack of spirals acquisition is randomly shifted
resulting in a truly 3D trajectory, requiring a 3D reconstruction. The motion-induced phase
errors are estimated by collecting navigator data associated with each line of k-space
through an additional echo in the acquisition, see [41] for details on the sequence,
navigation, and estimation of k-space shifts from the navigator.

Normally Ql can be pre-computed because it only depends on k-space trajectory and image
size. However with multi-shot diffusion imaging, the k-space trajectory is not known prior
to the data acquisition. This causes a need for a new Ql to be computed for each acquisition
of a 3D data set. The performance of IMPATIENT MRI was tested on five 3D diffusion
imaging datasets with imaging matrix sizes ranging from 32x32x4 to 256x256x32, for
benchmarking purposes. The 3D datasets are multi-shot stack of constant density spirals
with matrix size in the x and y directions increased with an accompanying increase in the
number of spiral interleaves and the z dimension increased by increasing the number of
phase encoding steps. Although the data would normally be amenable to gridding in-plane
and a separate FFT across the slice direction, due to motion-induced phase errors in
diffusion, the resulting k-space trajectories are truly 3D and change for each data set. The
ability to efficiently calculate Q, makes IMPATIENT an ideal platform for reconstructing
images in cases where many k-space trajectories are possible, such as in DWI.

Additional parallelization of the MRI image reconstruction problem is possible for data sets,
such as DWI, that acquire multiple volumes. DWI data sets acquire multiple image volumes
and multiple diffusion directions, all of which must be reconstructed to visualize the
underlying physical process of interest. Access to computational nodes with multiple GPUs
can provide trivial acceleration over the multiple volumes to be reconstructed.

4.2. Performance measurements and results
To evaluate the performance of our GPU gridding implementation, we isolate the gridding
GPU kernels into a standalone application and compare execution time with the CPU code
implementing the same gridding algorithm. Performance measurements on a Tesla M2070
GPU show that the proposed output-driven gridding GPU implementation achieves a
performance of 4.3 GFLOPS in single floating-point calculation for an image size of
240x240x32. The achieved speedup is 26.3-fold compared to the same algorithm
implemented on a single CPU core. All kernels, including the two binning steps, prefix sum
and the actual gridding operations, are considered in the measurement of GFLOPS rate. The
amount of memory on Tesla M2070 (6 Gbytes) limits the grid size to no more than
256x256x128 in single precision on the GPU. In order to measure the performance in
GFLOPS on a GPU, given a fixed data set, the number of floating point operations of the
CPU code is counted using the performance counters provided by the Performance API
(PAPI) [42]. Then, the GPU performance (in terms of GFLOPS) is evaluated using the
obtained counts and the GPU computation time. The CPU performance of the original CPU
code written in C++, implementing the identical gridding algorithm, is measured on a 3.3
GHz Xeon E5520 CPU and calculations are also done in single precision.

The proposed GPU gridding algorithm was implemented as an integral part of the Toeplitz
reconstruction strategy of IMPATIENT. Our GPU gridding code provides a fast
approximation to the direct evaluation of Ql and FHy. The performance of the Toeplitz
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strategy equipped with GPU gridding was compared with that of the original Toeplitz
implementation using direct evaluation [7]. All reconstructions were performed on the same
workstation. The speed benefit of the new gridding-accelerated Toeplitz strategy is
substantial as demonstrated by typical image sizes in Figure 4 and 5. All reconstructions
execute 10 conjugate gradient iterations and use 8 time segments. To emphasize speed over
accuracy, a gridding oversampling factor of 1.4 is chosen for both Ql and FHy. The gridding
kernel width is hard-coded to 4 (measured in Nyquist k-space sampling distances) and the
rest of the gridding parameters are determined based on the results in [9]. The execution
timings are broken down into three steps. The baseline algorithm for comparison is the basic
Toeplitz strategy, which evaluates Ql and FHy using direct evaluation of the matrix-vector
products [7]. Using a Tesla M2070, five 3D DWI data sets were tested: 256x256x32,
240x240x32, 128x128x16, 64x64x16 and 32x32x4. All data was acquired with on a
Siemens 3 T MRI scanner with 4 receiver coils, using a custom-designed multi-shot 3D
stack-of-spirals DWI sequence, with 4-shots covering the in-plane encoding and separate
shots for each slice encoding. The sequence includes a second echo for the navigator
acquisition which is a sigle-shot, low-resolution stack-of-spirals to allow for estimation of
phase errors associated with each shot of the high-resolution acquisition. The images were
reconstructed with a SENSE reconstruction, although full data sampling was acquired [5].
Due to random shifts of the k-space trajectories, some undersampling will occur at random
and the SENSE reconstruction provides a robust reconstruction despite these random
trajectory shifts. All data was acquired on healthy volunteers in accordance with the local
Institutional Review Board. All calculations are done in single precision mode.

Cylinder charts in Figure 4 show the ratio of computing time spent in each of the three steps
during reconstruction of the five data sets. The length of the cylinder represents the
normalized total execution time. In the baseline Toeplitz strategy with the direct evaluation
(Figure 4, Left), the time spent on the CG step (Step 3) is negligible (less than 0.5% for
larger data sizes) compared to the combined time spent on Steps 1 and 2. Furthermore, the
corresponding execution pipeline is highly unbalanced as the first two steps dominates the
pipeline. With the performance contributed by gridding, the gridding-accelerated Toeplitz
strategy (Figure 4, Right) becomes much more balanced. The proportional times spent on
Steps 1 and 2 become closer to that spent on Step 3, making the total runtime almost evenly
distributed among the pipeline. In summary, we observed consistent decreases in
computation time by using gridding, with the maximum speedups of more than 1134x in
Step 1 and 39x in Step 2. An interesting exception is 32x32x4, where in Step 2 we see a
slowdown instead of a speedup. This is likely due to the eight time segments for the time-
segmented gridding approach requiring eight sets of weighting, convolution, and FFT. The
FFT’s require synchronization prior to computation, incurring some time penalty on the
GPU. However, direct calculation of the Toeplitz formulation fits well with the ideal GPU
problem, small amount of data per kernel and large amounts of computation without a
required synchronization. The small sized problem results in a very quick direct evaluation
on the GPU, with no time segmentation and only final synchronization needed. This shows
that the direct evaluation Toeplitz is faster on small data sizes than the gridding-accelerated
Toeplitz. It is interesting to note that for the CPU, there is less penalty in the required
synchronization for the FFT and there is no capability for massively parallel calculations in
the Toeplitz formulation. So this tradeoff of problem size and computation time is expected
to be different for GPU than for CPU.

As a comparison of our computational time performance with a previously implemented
gridding reconstruction, we can examine just the component FHy, which is equivalent to a
time-segmented gridding reconstruction across all coils. In our results, we see that for a
256x256x32 reconstruction, the time for gridding was 89.27 s on the GPU. If we divide this
number by the 32 slices, the 4 coils, and the 8 time segments, we get a value of 0.09 s per

Gai et al. Page 15

J Parallel Distrib Comput. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



256x256 gridding. However, this gridding time for our technique includes all of the
operations of binning, coil sensitivity weighting, multiplication of phase maps for the field
inhomogeneity correction, and time interpolation. As a comparison, in [11], for a 2D spiral
with a matrix size of 256x256, they obtained 0.02 s for gridding with no coil sensitivities or
field inhomogeneity. Additionally, in [11], they used a precomputed kernel to determine
how to assign incoming data points to particular GPU kernels to handle the overlapping
contributions from data. In our method, the time to compute the plan is included in the
gridding operation. If gridding of fixed trajectories is desired, other gridding
implementations may be more efficient where they can leverage pre-computed data
structures. However, for a general gridding technique, our gridding algorithm performs at a
similar rate without the need for precomputed plans.

Figure 6a and 6b shows two reconstructed brain images from a high resolution diffusion
imaging scan reconstructed with the IMPATIENT reconstruction utility. It gives the
reconstruction results for the gridding-accelerated Toeplitz strategy using a 240x240x32
matrix size and a full SENSE parallel imaging reconstruction with and without field
inhomogeneity correction. Notice that the field inhomogeneity correction reduces the
blurring induced by magnetic field inhomogeneities.

5. Conclusion
This paper describes the gridding-accelerated IMPATIENT MRI reconstruction toolkit
which can achieve clinically-feasible 3D, non-Cartesian, field-inhomogeneity corrected,
regularized, iterative image reconstruction from parallel acquisition arrays in MRI. We have
shown that, through the use of gridding on the GPU, we are able to diminish the
computational barrier associated with non-Cartesian, arbitrary trajectory MRI
reconstructions and facilitate incorporation of advanced image acquisition and
reconstruction techniques in the clinic. Our toolkit has demonstrated the feasibility of
utilizing GPU compute power to inject computational intensive algorithms into the advanced
MRI reconstruction workflow while maintaining clinically-relevant reconstruction times on
the order of minutes. As a proof of concept, we demonstrated a 3D DWI application enabled
by the IMPATIENT MRI package. The same application, would otherwise take too long for
both clinical and research imaging practitioners, requiring up to 15 hours with a previous
GPU-accelerated software platform compared to 5 minutes with the current IMPATIENT
MRI software. The IMPATIENT MRI software package is available for download at our
web site: http://impact.crhc.illinois.edu/mri.php.
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• GPU-accelerated software toolkit for arbitrary 3D non-Cartesian trajectories in
MRI.

• Incorporate parallel imaging, magnetic field correction, and a priori information.

• Enables clinically-feasible image reconstruction times for advanced
acquisitions.

• Achieved 200 times speed-up over previous GPU image reconstruction
algorithm.
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Figure 1.
Overview of the entire reconstruction pipeline of the Toeplitz-based strategy in
IMPATIENT. The Toeplitz strategy implemented in IMPATIENT provides two ways to
compute Ql and FHy. The black solid line is the direct evaluation approach introduced in our
previous work [7]. Alternatively, the red dashed line represents the faster gridding
alternative proposed in this paper.
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Figure 2.
Parallel implementations of the gridding algorithm on GPU. Left: the output-driven
approach is free of write-conflict contention, but has a quadratic computational complexity;
Right: Using compact binning as a data pre-processing step allows the output-driven
approach to complete in linear time.
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Figure 3.
Illustration of regular binning, compact binning and partitioned execution of compact
binning based GPU gridding.
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Figure 4.
Percentage of computation time spent in each step. Left: The baseline Toeplitz strategy with
the direct evaluations of Ql and FHy; Right: The fast Toeplitz strategy with Ql and FHy
computed via the GPU-accelerated gridding. The total execution times are normalized
between 0 and 1 to emphasize the relative time of each step. For comparison, Step 3 is
identical for both methods. The performance benefits from gridding are clearly
demonstrated by the reduction of the fraction of the time spent in Steps 1 and 2.
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Figure 5.
The execution time and the computational speedup between the two versions of the Toeplitz
reconstruction strategy on one Tesla M2070 GPU. In step 1, a reduction in execution time of
17.5 hours (63098.20 s to 55.64 s, about 1134x speedup) was obtained for the image size of
256x256x32 with 1574656 input samples per coil. Note that Step 3 takes the same amount
of time across the two versions as they use the same conjugate gradient solver.
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Figure 6.
Two pairs of reconstructed images to demonstrate the effect of the field inhomogeneity
correction for 3D DWI on GPU. Left: SENSE reconstruction without field inhomogeneity
correction; Right: SENSE reconstruction with field inhomogeneity correction. The blurring
artifacts, which is most noticeable around the area pointed to by the arrows, have been
reduced considerably with field inhomogeneity correction.
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Algorithm 1

Compute AHAf using Ql, Eq. (10).
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Algorithm 2

Pseudo code for parallel gridding operation on GPU with the compact binning.

00 __shared__ inElem sharedLocalBin[/*max size*/];

01 outputIdx index = computeOutputIndex(blockIdx, threadIdx);

02 outElem myOutElem = initOutElem(index);

03 int zLo = z0 cutoff;

04 int zHi = z0 + blockDim.z + cutoff;

05 // compute yLo, yHi, xLo, xHi similarly

06 for z = [zLo:zHi]{

07  for y = [yLo:yHi]{

08   for x = [xLo:xHi]{

09    int start = binOffsetArray[z][y][x];

10    int end = binOffsetArray[z][y][x+1];

11    if(threadIdx < end-start){

12     sharedLocalBin[threadIdx] = globalBinArray[start+threadIdx];

13    }

14    __syncthreads();

15    for i=[0:end-start]{

16     if(|sharedLocalBin[i].coords myOutElem.coords| < kernel-width){

17      /*compute the contribution of this input onto the output*/

18 } } } } }

19 globalOutputGrid[index] = myOutElem;

J Parallel Distrib Comput. Author manuscript; available in PMC 2014 May 01.


