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Summary
present four U-statistic based tests to compare genetic diversity between different samples. The
proposed tests improved upon previously used methods by accounting for the correlations in the
data. We find, however, that the same correlations introduce an unacceptable bias in the sample
estimators used for the variance and covariance of the inter-sequence genetic distances for modest
sample sizes. Here, we compute unbiased estimators for these and test the resulting improvement
using simulated data. We also show that, contrary to the claims in Gilbert et al., it is not always
possible to apply the Welch–Satterthwaite approximate t-test, and we provide explicit formulas for
the degrees of freedom to be used when, on the other hand, such approximation is indeed possible.
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1. Introduction
Gilbert, Rossini, and Shankarappa (2005) present a test for comparing intra-individual
genetic sequence diversity between populations. This has proven to be a very useful test
since intra-individual viral sequence diversity is a commonly used and readily calculated
summary statistic that often has interesting biological correlates (Heath et al., 2010, 2009).
Unfortunately, we discovered that the biased estimators for the variances and covariances of
inter-sequence genetic distances used there make it difficult to apply the test to modestly
sized samples, which typically occur in practice. Even though for small sample sizes a
permutation test becomes feasible, in reality it is inconvenient to use one statistic for small
samples and a different one for larger ones. In this note, we correct the bias in the original
statistic and verify the resulting improvement by explicit simulation of the appropriate null
model. We only explicitly address how to correct the first of the four tests proposed in
Gilbert et al. (2005), but the correction for the other three tests follows by extension of the
same methods and using the corrected variance.

Following the notation in Gilbert et al. (2005), let  be the sample mean, also called
empirical mean, of the pairwise Hamming distances Dij between sequences i and j from a
sample of size N
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(1)

In the simplest case of two independent samples with mean Hamming distance, respectively,
μ1 and μ2, Gilbert et al. (2005) define the following statistics for evaluating the null
hypothesis H0 : μ1 = μ2:

(2)

which is approximately normally distributed for large sample sizes. For small samples, they
suggest the use of Welch–Satterthwaite approximation to calculate the appropriate degrees
of freedom for a t-test.

This proposed test needs , the sampling variance of . The problem with estimating
this variance is that the Dij’s are not independent observations. To circumvent the problem,
Gilbert et al. suggest to use the theory of U-statistics (Lee, 1990) to estimate it from the
variances and pairwise covariances of the Hamming distances. The advantage of this is that
the results are blind to the nature of the correlation, and only assume that the sequences are
sampled independently in each subject. This independent sampling means that the
population variance–covariance matrix can be written in terms of only two independent

parameters. Again, following previous notation, let  be the variance of the

distribution of Hamming distances, and  be the covariance between the
Hamming distances of pairs sharing one sequence.

Then, it is shown in Gilbert et al. (2005) that the required sampling variance is given by

(3)

This formula requires the estimation of  and  from the sample. The estimators used in
Gilbert et al. (2005), however, have an O(1/N) bias arising from the same nonindependence
of the Dij. Note that this bias is of the same order as the contribution of the σ2 term itself,
and turns out to be numerically important for the sample sizes of interest in many
applications. Here we determine the corresponding unbiased estimators and use a simulation
to compare our improvement over the test proposed in Gilbert et al. (2005).

2. Unbiased Estimators
Let N be the number of sequences sampled, and Dij the Hamming distance between
sequence i and sequence j. We define

(4)

and

(5)
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The expression for  is proportional to a symmetrized version of the estimator  used in
Gilbert et al. (2005). This symmetrization is purely cosmetic, though our definition has a
lower sampling variance than the one used in Gilbert et al. (2005). The improvement

demonstrated later is, however, not sensitive to this precise choice. Note also that both 

and  can be negative.

We aim to find unbiased estimators of  and  in the linear span of these two statistics. In

terms of E(Dij ≡ μ, we can write  and
E(Dij Dkl) = E(Dij)E(Dkl) = μ2, when i, j and k, l refer to nonoverlapping indexes. A little
algebra shows that

(6)

is an unbiased estimator of , whereas , the statistic defined in Gilbert et al. (2005),

has a  bias :

(7)

In Table 1, we show the performance of our variance estimator S2 by comparing it with the
true  and the estimator  defined in Gilbert et al. (2005) for different values of N.

Notice that neither S2 nor  is guaranteed to be positive since both  and  can be
negative and large.

We note that the inter-sequence distances are not normally distributed, in fact they are
always positive. Nevertheless, we show by simulations below that, even for rather small
samples, the use of equation (6) to estimate the denominator in (equation 2) leads to an
acceptable test statistic.

3. Simulations
To test our formulas, we simulate a population of independently evolved random sequences,
i.e., sequences that can be thought of as being drawn from a star phylogeny. We then
randomly draw two samples and test the difference in means using both the statistic defined
in Gilbert et al. (2005) and our improved one. We then repeated the simulation drawing from
a nonstar phylogeny population. To compare directly with the explicit formulas provided in
Gilbert et al. (2005), we display and discuss later the result of using a normal approximation.

4. Welch–Satterthwaite Approximation
To extend these results, we attempt to design an approximate t-test following the Welch–
Satterthwaite approximation advocated in Gilbert et al. (2005). Recall that a random variate

T is t-distributed if there exist independent variates Z and C such that , where Z is
normally distributed, and C is χ2-distributed with degrees of freedom ν.

Consider a set of N sequences with pairwise Hamming distances {Dij} drawn from a
population described by μ, σ1, σ2 defined in the Introduction. Let σ be the variance–
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covariance matrix of D ≡ {Dij}. It is easy to see that  IN,
where IN is the N-dimensional identity matrix, and LN is the graph Laplacian of the edge
graph of the complete graph on N vertices. σ can be easily diagonalized by diagonalizing LN
using the representations of the permutation group of N elements. Using Cochran’s theorem
(Cochran, 1934), one can then find independent chi-square variates CN −1 and CN(N −3)/2
with degrees of freedom N − 1 and N(N − 3)/2, respectively, such that

(8)

(9)

(10)

However, note that b can be negative, and hence S2 is not positive semidefinite. This
problem is shared by the expression used in Gilbert et al. (2005), and distinguishes this
problem from that considered by Satterthwaite and Welch (Welch, 1947; Satterthwaite,
1946). The simple case b = 0 is when the intersequence Hamming distances Dij can be

written as the sum  of distances of each sequence from a common ancestor; i.e.,
when the underlying sequence set is phylogenetically independent, or, in other words, when
the phylogeny is “star-like.” In the more general case, S2 is not positive definite but has the
same unit mean and the same variance as a scaled chi-square variate with degrees of
freedom given by

(11)

(12)

A simple estimate of ν (not unbiased) in terms of  and  is

(13)

Even though this is not the Welch–Satterthwaite approximation in sensu stricto because of
the negative coefficient (equation (10)), in Table 2, we show the efficacy of using this
estimate of the degrees of freedom to improve the z-test to a t-test for the small sample case
with a sample with typical distances set to a moderate value of 20. In the case of star
topology, for which the problematic term vanishes, this t-test has almost its nominal size
(0.05), and even the normal approximation (z-test) using the unbiased estimators performs
reasonably down to a sample size of about 30. In contrast, using the test presented in Gilbert
et al. (2005), rather large deviations are seen even at a sample size of 50. For the nonstar
case, the t-test becomes noticeably over-conservative below a sample size of about 20, but
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the normal approximation errs in the opposite direction, and both our corrections perform
noticeably better than the test presented in Gilbert et al. (2005).

5. Discussion
We have improved the statistics proposed in Gilbert et al. (2005) and used a simulation to
validate it. We have also computed the degrees of freedom for performing an approximate t-
test using the Welch–Sattherthwaite formula. The t-test has its nominal size when the
underlying sequences have no phylogenetic structure, and is conservative otherwise. The
original test, on the other hand, provides an inadequate control of type I errors even for
moderate sample sizes. For example, we requested the data used by Heath et al. (2009) and
were able to compare our p-values to the ones the authors had obtained using the statistic
proposed by Gilbert et al. (2005). One particular comparison of two samples, of sizes 13 and
8, respectively, is illustrative: it yielded a very low p-value (0.003) using the test proposed in
Gilbert et al., whereas our statistic gives p = 0.058 with the normal approximation and p =
0.059 with the Satterthwaite–Welch t-test. We also found a pair where the normal
approximation failed due to the nature of the data: the statistics in Gilbert et al. (2005) and
the one developed here yielded p = 0.07 and p = 0.0002, respectively, but the p-value from
the Satterthwaite–Welch t-test was p = 0.68.

The R code implementing the new proposed statistic is available for download at “ftp://ftp-
t10.lanl.gov/pub/TwoSampleTTest/.”
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Table 1

Comparison between , the  estimator defined in Gilbert et al. (2005), and our estimator S2 for
different sample size N. All quantities were calculated through 10,000 runs from the simulation described in
Section 3. In the star topology, the branch lengths of the phylogenetic tree were distributed according to a
Poisson of mean 10. The non-star topology consisted of two stars with Poisson distribution with means 10 and
5 connected by a branch of length 12.

Star topology Non-star topology

N Var(μ̂) Ŝ 2 S 2 Var(μ̂) Ŝ 2 S 2

4 9.939 1.972 9.96 19.6995 6.9244 19.281

5 7.889 2.571 7.969 14.395 7.425 15.144

8 4.98 2.713 5.008 8.291 5.738 8.158

10 3.973 2.513 4.002 6.27 4.899 6.223

20 2.051 1.61 2.003 2.972 2.856 2.955

30 1.312 1.158 1.331 1.893 1.97 1.92

50 0.799 0.737 0.7998 1.135 1.215 1.13

100 0.399 0.384 0.3998 0.558 0.623 0.559
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Table 2

Fraction of 10,000 samples that result in p ≤ 0.05 for a variety of tests. The column N gives the sample size,
whereas the columns GRS, z-test, and t-test refer to the tests as described in Gilbert et al. (2005), the z-test
implemented with our unbiased variance estimator, and the t-test implemented using the Satterthwaite and
Welch approximation. In the star topology, the branch lengths of the phylogenetic tree were distributed
according to a Poisson of mean 10. The nonstar topology consisted of two stars with Poisson distribution with
means 10 and 5 connected by a branch of length 12. The Satterthwaite–Welch approximation would have been
exact for the star topology if the branch lengths were distributed normally.

Star topology Nonstar topology

N GRS z-test t-test GRS z-test t-test

4 0.280 0.101 0.050 0.099 0.070 0.020

5 0.260 0.084 0.049 0.126 0.097 0.016

8 0.151 0.069 0.048 0.123 0.085 0.023

10 0.126 0.067 0.054 0.106 0.070 0.032

20 0.081 0.058 0.051 0.067 0.055 0.046

30 0.070 0.055 0.053 0.054 0.054 0.047

50 0.061 0.053 0.049 0.045 0.051 0.045

100 0.053 0.048 0.053 0.039 0.049 0.051
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