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The vascular conducted response in cerebral blood flow regulation
Lars Jørn Jensen1 and Niels-Henrik Holstein-Rathlou2

Despite recent advances in our understanding of the molecular and cellular mechanisms behind vascular conducted responses
(VCRs) in systemic arterioles, we still know very little about their potential physiological and pathophysiological role in brain
penetrating arterioles controlling blood flow to the deeper areas of the brain. The scope of the present review is to present an
overview of the conceptual, mechanistic, and physiological role of VCRs in resistance vessels, and to discuss in detail the
recent advances in our knowledge of VCRs in brain arterioles controlling cerebral blood flow. We provide a schematic view of the
ion channels and intercellular communication pathways necessary for conduction of an electrical and mechanical response in the
arteriolar wall, and discuss the local signaling mechanisms and cellular pathway involved in the responses to different local
stimuli and in different vascular beds. Physiological modulation of VCRs, which is a rather new finding in this field, is discussed in
the light of changes in plasma membrane ion channel conductance as a function of health status or disease. Finally, we discuss
the possible role of VCRs in cerebrovascular function and disease as well as suggest future directions for studying VCRs in the
cerebral circulation.
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INTRODUCTION
The regulation of blood flow to the brain is under dynamic and
precise control to ensure adequate oxygen and nutrient supply as
well as to washout metabolic waste products. Regional blood flow
control to peripheral tissues is accomplished by neurohormonal
mechanisms, and is fine-tuned by local control mechanisms
working either through the release of local vasoactive metabolites
or mechanical forces such as shear stress or wall stress acting on
the endothelium and smooth muscle cell layer of feeding
arterioles and precapillary arterioles. The brain, however, encap-
sulated in a confined space in the skull and protected by the
blood–brain barrier, relies almost entirely on local mechanisms to
match the demand and supply of energy to the neurons of the
brain, a mechanism known as neurovascular coupling.1

Theoretical work, however, suggests that in arteriolar networks
nonlocal mechanisms are necessary for achieving optimal
performance with regard to the delivery of oxygen and
nutrients.2,3 It has been speculated that vascular conducted
responses (VCRs) could be such a nonlocal mechanism and
thereby assist in coordinating and enhancing the effects of
changes in local vascular resistances in brain arteriolar networks
and thereby contribute to the effective and highly dynamic
distribution of blood flow to areas of the brain undergoing large
changes in neuronal activity.4,5

DEFINITION OF VASCULAR CONDUCTED RESPONSE
A VCR is, by definition, initiated by a local stimulation causing
vasodilation or constriction, which rapidly spreads bidirectionally

along small blood vessels independent of blood flow or
perivascular nerves.6,7 Most studies have focused on VCRs
elicited by local application of agonists to arterioles, but it is
clear that local stimulation of either capillaries or small venules
may likewise initiate a VCR that spreads upstream into the
supplying arterioles.8,9 Conduction velocity has been estimated to
41 to 3 mm/s in intracellular Ca2þ or diameter measurements
with limited time-resolution10–13 and 420 to B45 mm/s in
electrophysiological recordings with higher time-resolution.14,15

For comparison, the velocity of intercellular Ca2þ waves spreading
along arterioles has been estimated toB0.1 mm/s.16,17 Thus,
conducted vasomotor responses spread with velocities that are
1 to 3 orders of magnitude faster than the spread of intercellular
Ca2þ waves. The ability of a local vasoactive stimulus to transform
into a conducted vasomotor response is dependent on the type of
agonist applied, as well as on the vascular cell type targeted by
the agonist. For example, it has been shown that a local depolari-
zation imposed on the vascular smooth muscle cell (VSMC) layer in
rat renal and mesenteric arterioles conducts with typical length
constants of a few hundred micrometers.12,18,19 Conversely, in
skeletal muscle feed arteries and arterioles local application of
acetylcholine (ACh), which activates muscarinic receptors on
endothelial cells (ECs) and leads to hyperpolarization, conducts
with limited decay for up to a couple of millimeters.15,20,21

PHYSIOLOGICAL ROLE OF VASCULAR CONDUCTED RESPONSES
The functional role of conducted vasomotor signals within the
microcirculation, especially in feed arteries and arterioles, is most
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likely to coordinate changes in resistance and flow in vascular
networks, which would enable changes to be manifested more
efficiently and rapidly throughout tissues in response to, for
example, changes in metabolic need. For example, to meet the
metabolic needs associated with an increased neuronal activity, it
is necessary to dilate not only the blood vessels within the cortex,
but also the larger penetrating and pial arterioles that supply the
corresponding cortical area. This necessitates a mechanism that
allows local vascular signals from neurons or glial cells to have an
effect also on more remote parts of the microcirculation. One such
possible mechanism is the VCR.4 Likewise, in exercising skeletal
muscle, an increased metabolic demand leading to dilatation of
arterioles deep within the tissue, would benefit from conduction
of the dilatation in a retrograde manner to coordinate a
simultaneous dilatation of feed arterioles and arteries, resulting
in a more efficient and instant supply of oxygen and nutrients to
the tissue.3,22 In the kidney, the tubuloglomerular feedback
mechanism, which constricts the afferent arteriole secondary to
an increased glomerular filtration rate, is thought to rely in part on
the upstream conduction of a depolarization along the glomerular
microvasculature.12,23 In disease states exhibiting an increased
microvascular resistance, for example, diabetes or hypertension, it
follows that impaired conducted vasodilatation or augmented
conducted vasoconstriction could contribute to or even be
responsible for the increased arteriolar resistance.

HOW VASCULAR CONDUCTED RESPONSES ARE TYPICALLY
MEASURED
The methodological approach depends on whether measurements
are performed with isolated arterioles (ex vivo) or in an
anesthetized animal with some part of its microcirculation exposed
for in vivo/intravital microscopy measurements. Isolated arterioles
are usually mounted between glass pipettes for intraluminal
perfusion at physiological pressure. However, very small arterioles
may also be studied without pressure and flow, being positioned at
the bottom of a recording chamber using suction micropipettes or
bioadhesive proteins.24 Measurements of local and conducted
diameters require a light microscope equipped with a digital or
video camera for recording of the experiments. The local responses
are elicited by placing the tip of a micropipette (tip 1 to 5mm)
adjacent to an arteriole for application of agonists such as
norepinephrine (NE), phenylephrine (PE), ACh, or KCl, etc. Often a
microiontophoresis device is used to deliver agonists, which
ensures a tight control of agonist delivery. For delivery of sufficient
quantities of KCl, it is necessary to use a pressure microejection
device. Alternatively, a local response may be elicited by direct
electrical stimulation via a micropipette whereby the vessel is
exposed to a train of unipolar pulses causing perturbations of the
membrane potential.25,26 The experiments are usually performed
by initially recording the local response a few times, then moving
the objective to an upstream location for recording of the
conducted (remote) response to repetitive local stimulation (see
Figure 1). Alternatively, the stimulation site is moved to different
downstream sites while the conducted responses are observed
consecutively at a fixed upstream site. The distance to the
upstream location is usually between 500 to 2,000 mm depending
on the type of vessel and agonist applied.

The change in EC and VSMC intracellular Ca2þ concentration
([Ca2þ ]i) have also been measured during a VCR. Here, local and
conducted measurements were performed using either ratio-
metric (Fura-2, Fura-PE3) or single-wavelength excitation (Fluo-3)
of Ca2þ indicators using epifluorescence microscopy.11,13,27–29 For
simultaneous recording of Ca2þ signals at multiple sites along an
arteriole during a VCR, an objective with low magnification (� 20)
and high numerical aperture and a sensitive CCD camera for
capturing a sufficient amount of fluorescence has been used.13,18

Conducted vasoconstriction is associated with an increase in

[Ca2þ ]i in both the VSMC and the EC, and the change in [Ca2þ ]i

showed an attenuation with distance from the local stimulation
site that paralleled the degree of vasoconstriction.13,18,27,29 The
wide-field recordings of [Ca2þ ]i can be used as a measure of the
conducted signal, and therefore provides detailed information on
the strength of the conducted signal along the vessel. Such data
have enabled a detailed mathematical description of the conduction
process by nonlinear curve-fitting and computer simulations.18

The electrical intercellular communication underlying the
conduction of vasomotor responses along the vascular wall has
been measured using sharp microelectrodes inserted in either
VSMC or EC at various locations along the arteriole.27,30–33 Usually
investigators impale only one cell at the time and stimulate at
various locations along the vessel successively, ending up with a
number of Vm measurements along the conduction pathway
obtained at different time points. A few studies have also obtained
Vm recordings in arterioles at dual sites, making it possible to
record conducted responses in VSMCs and ECs simultaneously, or
to inject current at the local site and record Vm deflections at the
conducted site.15,30 This technique has provided crucial insight
into which cell type(s) is involved in initiation and rapid spreading
of the VCRs along the vessel wall.

Intravital microscopy for recording of VCRs in arterioles from
intact, anesthetized animals has been performed using the hamster
cheek pouch preparation, the rat mesenteric preparation and the
mouse cremaster muscle preparation. These studies have mainly
reported diameter measurements, but importantly Ca2þ dynamics
in ECs in vivo were recently reported using a transgenic mouse
expressing a GCamP2 Ca2þ sensor under the control of a Cx40
promotor found only in ECs of the vasculature and Purkinje fibers
of the heart.16 Finally, sharp microelectrode measurements of Vm in
VSMCs and ECs during VCRs in the above-mentioned in vivo
models are routinely performed in only a few laboratories.10,32,34,35

MOLECULAR AND CELLULAR MECHANISMS INVOLVED IN
CONDUCTION OF VASOMOTOR SIGNALS
There is consensus in the literature that conducted vasodilatation
is preceded by spreading of a hyperpolarization between the cells
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Figure 1. Experimental approach for measurement of conducted
vasomotor responses in arterioles (here depicted as local and
conducted vasoconstriction). A micropipette (P) tip for delivery of
agonist (green shade) is placed adjacent to an arteriole. It is
important to make sure that the agonist is carried away from the
vessel with the superfusate flow. At 1,000 mm in the upstream
direction, the arteriole diameter is recorded through a microscope
objective. The magnitude of the conducted response (CR) is seen to
decay with distance from the local response (LR). See text for further
details.
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in the vascular wall, and that conducted vasoconstriction is
initiated by a local depolarization conducted intercellularly to
distant sites. However, the cell type(s) involved in these processes
is still under debate, and seems to depend on the nature of the
local stimulus and the cell type stimulated. As an example, local
application of ACh onto an arteriole activates muscarinic receptors
on the endothelium at the local site, which leads to Ga/q activation,
diacylglycerol, and inositol triphosphate (IP3) production causing
Ca2þ store release and capacitative Ca2þ entry through receptor-
and storage-operated cation channels in the ECs.36,37 This
activates endothelial small and intermediate conductance Ca2þ -
activated Kþ channels (KCa2.3 and KCa3.1), which leads to a
hyperpolarization of ECs. The ECs are interconnected by gap
junctions and the local endothelial hyperpolarization therefore
spreads longitudinally from EC to EC along the length of the
vessel.20,38–41 Subsequently, the hyperpolarization spreads from
the ECs into the VSMCs through gap junctions in the
myoendothelial projections.42–45 As ECs are 30 to 140mm long
and oriented along the longitudinal axis of the vessel, each EC
may establish contact with as many as 20 VSMCs.46,47 The
hyperpolarizing current from ECs to VSMCs results in a reduction
in the number of open voltage-gated (L-type) Ca2þ channels in
the VSMCs, a fall in VSMC [Ca2þ ]i and vasodilatation. As the
hyperpolarization spreads along the endothelium, more and more
VSMCs are hyperpolarized and eventually relaxed.

In the case of a vasoconstrictor, such as NE or PE applied locally
onto arterioles and activating Ga/q-coupled receptors in VSMCs,
both monophasic conducted vasoconstriction as well as biphasic
local vasoconstriction followed by a conducted vasodilatation has
been observed depending on the vascular bed under study.25,48,49

In the first case, a local depolarization caused by activation of
receptor-operated cation channels and/or PKC-mediated
inhibition of Ca2þ - and/or voltage-activated Kþ channels in
VSMC, is conducted along the vessel through gap junctions
coupling VSMCs with VSMCs. In addition, the depolarization may
spread into the underlying endothelium, and can be conducted
through this cellular pathway along the vessel wall. As the
depolarization spreads into distant VSMCs, L-type channels are
activated and the concomitant Ca2þ entry and rise in [Ca2þ ]i

leads to conducted vasoconstriction. In the latter case where a
transient local vasoconstriction is followed by a secondary
conducted vasodilatation, evidence has shown that a local Ga/q-
mediated IP3 release and Ca2þ increase in VSMC may spread via
myoendothelial gap junctions into adjacent ECs to increase their
local [IP3] and [Ca2þ ]i to activate endothelial Ca2þ -activated Kþ

channels thereby causing a secondary conducted hyper-
polarization and vasodilatation.48–51 Application of a local high
KCl concentration has also been widely used as a tool to induce
conducted depolarization and vasoconstriction. This leads to a
conducted vasoconstriction of rather limited amplitude, which is
thought to rely primarily on intercellular communication via the
VSMC layer. Interestingly, the tendency of local vasoconstrictor
application acting on VSMCs to induce conducted vaso-
constriction with limited amplitude compared with agonists
acting on ECs, have been explained by a higher dissipation of
current through gap junctions and ion channels for VSMC-initiated
responses. Thus, with a sufficiently strong local depolarization of
VSMCs to overcome current dissipation, the depolarization can
spread into adjacent ECs and be conducted with limited decay
along this pathway as well.52

As noted, the KCl-induced conducted signal is smaller in
amplitude compared with the vasomotor signals induced by local
vasodilator or vasoconstrictor hormones, which are often con-
ducted without significant decay within the distances of 1 to
2 mm usually investigated in this type of study. This has led to the
hypothesis that a regenerative mechanism exist in the vascular
wall, which would account for propagation of a hyper- or
depolarization over long distances in the microcirculation.15,26,35,53

In hamster retractor muscle feed arteries, it was shown that
inward-rectifier (KIR) Kþ channels possess the inherent biophysical
properties necessary to facilitate the conducted hyperpolarization
and vasodilatation to local ACh application. Using a range of
in vitro methods and computational modeling, it was shown that
the negative-slope conductance of KIR channels during hyperpolari-
zation of VSMCs would augment the initial hyperpolarization as it
conducts through VSMCs along the vascular wall.54 Thus, this was
the first concrete molecular evidence of a regenerative mechanism.

Previous studies suggested that voltage-gated Naþ channels
may be expressed in the vascular wall, either in ECs53 or in sensory
nerve terminals adjacent to arteriolar VSMCs55 and that activation
of these channels might contribute to the regenerative condu-
ction process. This topic is still not completely resolved, but
recent studies did not find a role for TTX-sensitive13,25,29 or
TTX-insensitive Naþ channels18 in conducted depolarization in rat
renal or mesenteric arterioles.

Recently, a new hypothesis argues against the requirement of a
regenerative mechanism for nondecaying conducted vasodilata-
tion. This model, which gained support from experimental
evidence in mouse cremaster arterioles in vivo, proposes that
the conducted hyperpolarization is more negative than the range
of membrane potentials at which L-type channel window currents
occur, thus causing the vasodilatation to be maximal over a long
segment of the arteriole, while the conducted hyperpolarization in
fact decays electrotonically.34 Thus, only at large distances from
the local site is the hyperpolarization small enough to allow a
limited Ca2þ entry through L-type channels, which would tend to
decay the conducted vasodilatation. It will be interesting to see
this model investigated in more vascular beds and using virtual
arteriolar models incorporating the crucial ion channels and
intercellular resistances known to affect conduction.

PHYSIOLOGICAL MODULATION OF VASCULAR CONDUCTED
RESPONSES
An interesting question is whether VCRs are subject to physiolo-
gical or pathophysiological modulation in the sense that the
extent of the conduction can be modified by physiological factors,
for example, hormones or nervous activity. The extent or spread of
a VCR can be expressed by its length constant l. The length
constant is the distance from the site of stimulation where the
response has decayed to B63% of the initial value.7,56 The
intercellular electrical circuit of an arteriole consists of an inner
conduction pathway with resistance Rj determined by the
combined gap junctional and cytoplasmic resistances, and an
outer semipermeable leak pathway consisting of the plasma
membrane with the resistance Rm. In analogy with electrotonic
conduction in axons, the length constant l in arterioles depends
on the ratio between the resistance of the plasma membrane and
the resistance of the intercellular compartment: l¼O(Rm/Rj). This
implies that the conducted responses can be regulated by
modulating either the gap junctional resistance or the resistance
of the plasma membrane. The latter is primarily determined by the
activity of the Kþ channels present in the cell membrane.57,58

The gap junctional resistance depends on the number of gap
junctional channels, the single channel conductance and the open
probability.59 Several factors, like changes in gene activity,
intracellular trafficking of connexins, [Ca2þ ]i, intracellular pH,
and posttranslational modifications of connexins, for example,
phosphorylation, are able to modify one or more of these three
parameters, and, thus, modulate gap junctional resistance.59 The
connexins found in the vascular wall are primarily Cx37, Cx40,
Cx43, and Cx45.59 Cx40 appears to be the dominant connexin, and
it is found primarily in the ECs. In accordance with the central role
of gap junctions, Cx40 knockout mice has impaired conducted
vasodilation,20 and nonspecific inhibitors of gap junctions like
carbenoxolone or palmitoleic acid completely abolish the VCR.13,60
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Despite the central role of gap junctions in VCR, there are at
present no experimental data to show that modifications of gap
junctional resistance plays a role in physiological or pathophysio-
logical modulations of VCRs.

In a recent study, the hypothesis was tested that an increase of
Rm caused by inhibition of plasma membrane Kþ channels would
lead to augmented conducted vasomotor responses in rat
mesenteric terminal arterioles. Using an experimental and
computational approach, it was demonstrated that BKCa and KV

channels limit conducted vasoconstriction in intact rat mesenteric
arterioles by effectively dissipating current out of the VSMCs and
limiting the transfer of current to other cells in the wall via gap
junctions.18 As both BKCa and KV channels are depolarization-
activated, it is an interesting question whether conducted hyper-
polarization could be modified by plasma membrane Kþ channel
activity. In rat mesenteric small artery, simultaneous inhibition of
BKCa and KV channels using a cocktail of pharmacological drugs,
lead to augmentation of conducted hyperpolarization and
vasodilatation to local ACh and isoproterenol application.61

Presumably, these blockers eliminate the dissipation of hyper-
polarizing current along the arteriole; however, it is somewhat
unexpected to see an effect of inhibiting these voltage-gated
channels as hyperpolarization could be expected to completely
close BKCa and KV channels. Recently, however, nonvoltage-gated
endothelial SKCa and IKCa channels were also shown to limit the
conducted hyperpolarization to local ACh in an isolated
endothelial tube preparation from mouse epigastric arteries,62

demonstrating that the major Kþ conductances in both ECs and
VSMCs can play a role in modifying the conducted vasomotor
responses by constituting a regulated leak pathway in the vascular
wall as the conducted signal is passing through the cells. This
dissipation of current effectively limits the conduction and would

therefore serve as a means of physiological regulation of
conduction and perhaps explain the difference in l between
responses obtained in different animal models with altered ion
channel expression as a consequence of a treatment or disease.

Aging is associated with a reduction in BKCa channel expression
and function in rat coronary and skeletal muscle arteries,63,64 and
this might alter conducted vasomotor responses in arterioles from
aged individuals. In hypertensive animals, cerebral artery BKCa

channels are upregulated,65 whereas in diabetic mice and rats the
b1-subunit of the BKCa channel is downregulated, leading to
impaired function of the channel.66,67 Thus, it can be expected
that the changes in BKCa channel expression and function
modifies the length constant of VCRs in these diseases. Having
defined a key role of Kþ channels for modulation of VCRs, it can
be predicted that intracellular regulators of Kþ channel activity,
such as PKC, PKA, 20-HETE, epoxyeicosatrienoic acid (EETs),
prostaglandins, and PIP2 would be capable of regulating VCRs.

Interestingly, such effects may explain the modulation of VCRs
that have been observed under certain conditions. Conducted
vasoconstriction to local depolarization or NE application in
mesenteric terminal arterioles was augmented by systemic Ang
II infusion and abolished by the Ang II receptor antagonist losartan
in anesthetized rats.68 In isolated rat mesenteric terminal arterioles
preconstricted with NE and neuropeptide Y, the l for conducted
vasoconstriction to local depolarization was increased in a similar
manner.18 We suggest that the action of systemic or topical
administration of Ga/q-coupled receptor agonists to modulate the
VCRs may be explained by PIP2 depletion or PKC-mediated inhibi-
tion of vascular BKCa and KV channels. In contrast to the above
effects of agonists, sympathetic nerve activation in skeletal muscle
arterioles was previously noted to inhibit conducted vasodilatation
to local ACh application. This effect was mediated via a1- and
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Figure 2. Conduction mechanism involved in vascular conducted responses (VCRs). The schematic shows coupled endothelial cells (ECs) and
vascular smooth muscle cells (VSMCs) in the arteriolar wall, equipped with ion channels and gap junctions necessary to sustain conduction
through the intercellular compartment(s) along the vessel. On the right, two pipette tips (green color) show delivery of a depolarizing (upper
panel, VSMC) and hyperpolarizing (lower panel, EC) current to initiate conduction along the vessel. Both the depolarization (red curve) and
hyperpolarization (blue curve) is seen to decay with distance from local stimulus. Blue barrels depict gap junctions coupling EC–EC, and
VSMC–VSMC, as well as myoendothelial coupling (EC–VSMC). Green barrels depict voltage-gated Ca2þ channels (VGCC) whose activity
convert the de- or hyperpolarizations into an increased or decreased Ca2þ influx into VSMC. Brown barrels depict various Kþ channels in EC
and VSMC, whose function is to modify the electrical responses as they are conducted along the EC and VSMC pathways. See text for further
explanations. BK, big conductance Ca2þ -activated Kþ channels; IK, intermediate conductance Ca2þ -activated Kþ channels; SK, small
conductance Ca2þ -activated Kþ channels; KV, voltage-gated Kþ channels; KIR, inward-rectifier K

þ channels. The duration bar is arbitrarily set
to 10 seconds in the plot of Vm versus distance. The ECs and VSMCs are not drawn to scale.
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a2-adrenergic receptors, and it was hypothesized that NE released
from arteriolar varicosities caused a decrease in Rm by opening
depolarizing ion channels in VSMCs, which would increase the
dissipation of conducted hyperpolarizing current along the vessel.69

The length and branching of the vessel(s) under study will also
influence the VCRs. Short arteriolar segments with electrically
sealed ends tend to have larger remote responses, and thus larger
l values, because of the smaller total plasma membrane area
available for dissipative currents. On the other hand, increasing
vessel length can be expected to cause increased dissipation of
current into the intercellular and extracellular compartments.
When estimating l, it is therefore important to utilize an equation
that incorporates the method of reflection that takes into account
the variable degree of dissipation as a function of vessel
length.56,70 Branching of the vessels, as in an intact microcircu-
latory network, would also effectively dissipate the conducted
vasomotor signals due to significant current dissipation into the
vascular cells along the side branches.31

Figure 2 summarizes the molecular and cellular mechanisms
involved in conduction and modulation of VCRs in arterioles.
Homocellular coupling of ECs and VSMCs is achieved through gap
junctions between neighboring cells, and heterocellular coupling
occurs by gap junctions in myoendothelial projections passing
through the internal elastic lamina. Voltage-dependent Ca2þ

channels are the effectors linking the conducted electrical signals
with the appropriate relaxation or contraction of VSMCs. Small and
intermediate conductance Ca2þ -activated Kþ channels are
important for initialization of the conducted hyperpolarization to
a local rise in EC [Ca2þ ]i. In some vascular beds, the negative-slope
conductance of inward-rectifier KIR channels augment hyperpolar-
izations as they conduct through the VSMC pathway. Finally,
several types of Kþ channels in EC (SKCa, IKCa) and VSMC (BKCa, KV)
limit intercellular conduction of electrical signals due to charge
dissipation across the cell membrane.

VASCULAR CONDUCTED RESPONSES IN THE CEREBRAL
MICROCIRCULATION
The most intensively studied conducted vasomotor responses in
the cerebral circulation are those initiated by local ATP, ADP, or
adenosine application onto rat cerebral penetrating arterioles
(passive diameter o100mm) isolated from middle cerebral
arteries. Here, local adenosine application elicited both local and
conducted vasodilatations,71,72 which conducted rapidly in a
decaying manner.71 ATP and ADP caused initial local vasocon-
striction followed by a secondary local vasodilatation, which was
conducted rapidly and in a decaying manner to remote sites.71–73

The local constriction to ATP was inhibited by low concentration
of pyridoxalphosphate-6-azophenyl-20,40-disulfonic acid (3 mM)
and a,b-methylene ATP (1 mM), showing that P2X-receptors are
involved.73 The local secondary dilatation was reduced by
impairment of endothelial function using air emboli, while the
local constriction was enhanced by this procedure.73 The local
dilatation was also sensitive to blockers of NOS (nitric oxide
synthase) and Cytochrome P450 (CYP450), as well as to inhibition
of endothelial IKCa by luminal application of TRAM-34, and to
abluminal application of iberioxin to inhibit smooth muscle BKCa

channels. Upon local ATP application a transient depolarization
followed by a hyperpolarization preceded the local vasomotor
responses.73 Taken together, these data indicate that local ATP
activates smooth muscle P2X receptors causing local depolariza-
tion and vasoconstriction. At the same time, local ATP activates
endothelial P2Y receptors, leading to a local rise in EC [Ca2þ ]i,
which activates NOS, PLA2, and CYP450 enzymes. The local EC
Ca2þ increase will cause hyperpolarization and secondary local
dilatation by activating endothelial IKCa channels directly,36,58 and
indirectly activating VSMC BKCa channels through a PLA2/CYP450/
EET-dependent mechanism.74,75 The conducted dilatations to local

ATP were dependent on an intact endothelium and were
preceded by conducted hyperpolarization,73 consistent with
electrotonic conduction and electromechanical coupling of the
conducted vasomotor responses as observed in other systemic
arterioles.15,27,32 Nitric oxide synthase or cyclooxygenase inhibition
did not affect the conducted vasodilatation. CYP450 inhibition, on
the other hand, strongly attenuated both local and conducted
dilatations to ATP.73 However, the CYP450 inhibitor was applied to
the bath and not via pipette to the local or remote sites, so it is
difficult to conclude whether EETs play a role in the local response
only, or in the conduction process per se. As EETs are known to
activate Ca2þ -activated Kþ channels, it cannot be excluded that
EET activation along arterioles could theoretically contribute to
conducted hyperpolarization. However, EETs are usually released
in response to receptor activation and/or local Ca2þ increases and
it is therefore difficult to imagine how EETs could be activated on
a time scale fast enough to account for the spreading electrotonic
hyperpolarization underlying the conducted vasodilatation in
arterioles. The data presented by Dietrich et al73 suggest that
the conducted vasodilatations to ATP are initiated by local hyper-
polarizations and conducted electrotonically in a decaying manner
via intercellular coupling of ECs and spread via myoendothelial
junctions to the VSMC layer to cause remote vasodilatations.

In another study76 on isolated cerebral penetrating arterioles
(passive diameter B55 mm), local elevation of [KCl] from 3 to 5 mM
produced a minor local constriction followed by robust dilatation,
and the dilatation conducted rapidly 41 mm with minimal decay.
The local initial constriction was most likely caused by an initial
Nernstian depolarization induced by the change in EK in VSMCs.
The local secondary dilatation was blocked by ouabain but not by
BaCl2 applied luminally or abluminally, indicating that activation of
the Naþ /Kþ -ATPase but not KIR channels mediate the local
hyperpolarization and dilatation to a local [Kþ ] increase from 3 to
5 mM.76 The local hyperpolarization seems to be conducted
through the endothelial pathway, since the conducted dilatation
to local KCl was significantly reduced after passing air emboli
through arterioles. The conducted dilatations were reduced, but
not abolished, by abluminal BaCl2, whereas there were no effects
of blocking KV, KCa, or KATP channels using a combination of
4-aminopyridine, tetraethylammonium, and glibenclamide.76

These data suggest that KIR channels function to amplify the
conducted hyperpolarizations, most likely due to their inherent
negative-slope conductance as suggested for skeletal muscle
arterioles.54 Bath application of ouabain blocked the conducted
dilatations to the same extent as the local dilatations, but ouabain
was not applied locally, so it cannot be determined whether the
Naþ /Kþ -ATPase contributes to the conduction process per se. It is
interesting that the conducted dilatations only decayed slightly
with distance. This suggests that cerebral penetrating arterioles
may have: (1) a very well-coupled endothelial layer, (2) expression
of KIR channels that may act as amplifiers of conducted
hyperpolarizations, (3) a hyperpolarized voltage threshold
beyond which dilatations are maximal, and (4) no major
dissipative ion currents in EC or VSMC during conducted
hyperpolarizations. If these requirements are met, the conducted
dilatations could theoretically spread almost without attenuation
over large distances in unbranched arterioles.

In rat penetrating arterioles (passive diameter 55 to 70 mm)
isolated from pial arteries, local ATP application elicited local
vasoconstriction followed by vasodilatation, as well as a conducted
vasodilatation.5 In pial arterioles, prostaglandin F (PGF)2a elicited
local vasoconstriction and simultaneous conducted vasodilatation.
Conducted dilations to ATP and PGF2a were interpreted to be
mediated via an endothelium-dependent mechanism.5 In pial
arterioles, local adenosine caused local vasodilatation, but did not
consistently produce conducted dilatation.

In an in vivo study of pial arterioles (15 to 40mm) in halothane
anesthetized rats equipped with an open cranial window,
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stimulation of parallel fibers in the cerebellar cortex produced
both strong local vasodilatation, presumably caused by a local
production of glutamate leading to local NO and adenosine
release, as well as an upstream remote vasodilatation in larger
feeding arterioles outside of the activated cortex area.4 However,
in this latter study, it could not be excluded that part of the
upstream vasodilation was due to flow-mediated vasodilation.

Taken together, pial and cerebral penetrating arterioles do
possess powerful conducted vasomotor responses that are
conducted electrotonically via an endothelial pathway. The latter
study4 demonstrates the important concept that local increases in
neuronal activity are coupled with upstream dilatation of arterioles
at sites outside the stimulated area, indicating an important role
for conducted vasomotor responses in neurovascular coupling.

PERSPECTIVES FOR STUDYING CEREBRAL VASCULAR
CONDUCTED RESPONSES
The ultimate goal in any physiological and pathophysiological
study of the microcirculation in the brain is to gain knowledge of
the in vivo function of the brain. Therefore, in addition to studying
isolated cerebral arterioles, the study of VCRs in vivo would be
highly desirable. However, the anatomy of the brain and its blood
supply offers considerable obstacles in pursuing in vivo studies of
the important penetrating arterioles. These are not readily visible
on the brain surface, but branch downwards into the brain. It
seems probable that such studies would be advanced by
employment of sophisticated imaging techniques enabling
researchers to record responses deep within brain tissues, coupled
with spatially well-defined focal stimulation of brain arterioles.
Such methods are already available, for example, multiphoton
microscopy of brain arterioles77,78 and localized uncaging of Ca2þ

or IP3 in a single or few cells.79–81 As gap junctions, voltage-gated
Ca2þ channels and endothelial-dependent responses are known
to be sensitive to anesthetic concentrations of propofol,
thiopental, halothane, isoflurane, sevoflurane, and other general
anesthetic agents82–87 it is of paramount importance to validate
the method of anesthesia carefully in such in vivo studies.

POTENTIAL ROLE OF VASCULAR CONDUCTED RESPONSES IN
CEREBROVASCULAR DISEASE
Subarachnoid hemorrhage is associated with regional cerebral
hypoperfusion that is treatment-resistant and may cause pro-
longed episodes of regional brain ischemia. It has been speculated
that the associated hypoperfusion to subarachnoid hemorrhage
could be caused by either augmentation of conducted vasocon-
striction or impairment of conducted vasodilatation in penetrating
cerebral arterioles. By mimicking the effects of locally released
oxyhemoglobin during subarachnoid hemorrhage, Kajita et al72

showed that the conducted vasodilatations to local ATP, ADP, and
adenosine application were markedly reduced in isolated cerebral
penetrating arterioles exposed to oxyhemoglobin, and in parallel
the conducted vasoconstriction to PGF2a was increased.

The VCRs are most likely also important for reperfusion
following brain ischemia. A recent study in rats investigated the
conducted vasodilatation to local ATP or adenosine application
after experimental middle cerebral artery occlusion at 1 and 24
hours reperfusion, respectively. It was demonstrated that con-
ducted vasodilatation to ATP and adenosine was augmented after
prolonged reperfusion, only. Thus, it is possible that regional
hypoperfusion and ischemia in the brain is compensated for by
augmentation of conducted dilatation without concurrent
changes in conducted vasoconstriction.71

Cortical spreading depression (CSD) is associated with changes
in the diameter of arterioles on the cortical surface, as well as
changes in blood flow distribution in the cortex. A recent study
reported that a wave of vascular dilatation is running ahead of the

leading edge of CSDs induced by local depolarization of the cortex
in anesthetized rats and mice equipped with cranial windows.88

The spreading dilatation was independent of underlying cortical
or parenchymal activity and consistently followed the pattern of
arteriolar networks on the cortical surface and was never observed
to traverse cortical areas independent of arterioles. Furthermore,
the rate of spreading dilatations was about twice the rate
observed for CSDs (4 mm/min versus 2 mm/min) and this lead
the authors to speculate that changes in the local parenchymal
chemical environment, such as astrocytic Ca2þ waves, could
trigger an electrical event that might initiate conducted
vasodilatation along parenchymal arterioles.88 However, it must
be pointed out that the conduction velocity of conducted
vasomotor responses is several orders of magnitude faster than
the spreading dilatations observed in the latter study. Although
this could be influenced by the choice of model or anestethic
agent, we would argue that conducted hyperpolarizations along
the endothelial pathway leading to remote dilatations, cannot
explain the phenomenon of CSDs. Much slower intercellular Ca2þ

waves have been described in ECs in culture,89 in isolated
vessels,17 and in vivo.16 The intercellular Ca2þ waves are depen-
dent on the PLC pathway, IP3 diffusion, Ca2þ -induced Ca2þ

release, and gap junctions.90 It remains to be investigated whether
intercellular Ca2þ waves in brain blood vessels are involved
in CSD.

CONCLUSIONS AND PERSPECTIVES
The conduction of vasomotor responses along the arteriolar wall
depends on intercellular communication of an initial local de- or
hyperpolarization along the electrically coupled cells of the
vascular wall, and on the degree of current dissipation across
the plasma membrane through several types of ion channels.
Although the local stimuli to initiate VCRs in cerebral arterioles
might not be the same as in other systemic arterioles, the
mechanisms of conduction do not seem to be different. The role
of VCRs in regulating cerebral perfusion in health and disease
deserves more attention due to their potential involvement in
neurovascular coupling and in conditions under which brain
ischemia might occur. The development of methods for studying
VCRs in cerebral arterioles in vivo is needed to advance our
understanding of their role in brain blood flow control in health
and disease.
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